Skip to main content
. 2025 Aug 12;11:e3104. doi: 10.7717/peerj-cs.3104

Table 5. Performance comparison of various models with different sequence lengths under individual learning strategies.

A performance comparison of various models using different sequence lengths (300 and 600 bp) under individual learning strategies. The metrics include loss, accuracy (Acc), AUC, F1-score, specificity (Sp), and Matthews correlation coefficient (MCC). The results show how models like DNABERT-2_BASE, DNABERT-2_CNN, and DNABERT-2_BiLSTM perform differently across these sequence lengths. The best results for sequence lengths of 300 bp and 600 bp are indicated in bold.

Length Model Loss Acc AUC F1 Sp MCC
300 bp DNABERT-2_BASE 0.518 0.850 0.895 0.849 0.933 0.710
DNABERT-2_CNN 0.509 0.858 0.931 0.858 0.925 0.723
DNABERT-2_BiLSTM 0.467 0.867 0.841 0.865 0.967 0.749
DNABERT-2_C M _BL 0.395 0.858 0.924 0.857 0.942 0.727
DNABERT-2_C A _BL 0.495 0.867 0.903 0.866 0.942 0.742
600 bp DNABERT-2_BASE 0.537 0.846 0.916 0.843 0.975 0.716
DNABERT-2_CNN 0.567 0.871 0.940 0.870 0.958 0.753
DNABERT-2_BiLSTM 0.516 0.867 0.909 0.867 0.883 0.734
DNABERT-2_C M _BL 0.429 0.842 0.931 0.839 0.958 0.703
DNABERT-2_C A _BL 0.333 0.904 0.949 0.904 0.933 0.810