Skip to main content
. 2025 Aug 28;11:e3149. doi: 10.7717/peerj-cs.3149

Table 1. Summary of previous studies.

Authors (Year) Dataset/Availability Classification algorithm Classification type
Qian et al. (2024) INbreast/Moreira et al. (2012) Multi-feature fusion neural network (MFNet) Benign group (BI-RADS 1, 2, and 3), malign group (BI-RADS 4, 5, and 6), BI-RADS 2 and 3 are discarded
Achak & Hedyehzadeh (2023) CDD-CESM/Khaled et al. (2022) Resnet-50, Resnet-18, and Densenet-201; the K-Fold10 technique Benign and malignant non-mass enhancement (NME) lesions
He et al. (2023) CBIS-DDSM/Lee et al. (2017) Semantic Pyramid Network with a Transformer Self-attention (SPN-TS) Detection/Benign and malign
Lou et al. (2022) INbreast/Moreira et al. (2012) Deep CNN Benign group (BI-RADS 1 and 2), malign group (BI-RADS 4, 5, and 6), BI-RADS 2 and 3 are discarded
Walton, Kim & Mullen (2022) CBIS-DDSM/Lee et al. (2017) CNN Co-locating lesions, classification according to the size of the mass type lesions
Malebary & Hashmi (2021) DDSM + MIAS/Heath et al. (1998), Suckling et al. (2015) ResNet, LongShortTermMemory of RecurrentNeuralNetwork(RNN-LSTM) + ResNet-ResNetnetwork + ResNet-VGG Normal (BI-RADS 1), benign (BI-RADS 2 and 3), malign (BI-RADS 4, 5, 6)
Aly et al. (2021) INbreat/Moreira et al. (2012) YOLO-V3; ResNet and InceptionV3 Mass classification, benign (BI-RADS 2 and 3), malign (BI-RADS 4, 5, and 6)
Cai et al. (2020) Nanfang Hospital (NFH), Guangzhou/Cai et al. (2019) Deep learning method using neutrosophic boosting Grading micro-calcification clustering: Three group classification, BI-RADS 3, 4, and 5
Al-antari, Han & Kim (2020) DDSM + INbreast/Heath et al. (1998), Moreira et al. (2012) YOLO detector, modified InceptionResNet-V2 classifier Clasificaton of breast lesions (Benign and malign)
Lu, Loh & Huang (2019) Local dataset Fully cannected CNN Binary (Benign and malign)
Gandomkar et al. (2019) Local dataset Convolutional Neural Networks (CNN), Visual Analogue Scales (VAS)Inception-V3 pre-trained on the ImageNet The low-risk group (BI-RADS 1 and 2), the high-risk group (BI-RADS 3 and 4)
Kim et al. (2018) Yonsel University health system/In-house dataset ResNet-5 0 Sorting out cases (BI-RADS 1 cases and others)
Jung et al. (2018) INbreast + GURO/Moreira et al. (2012), In-house dataset RetinaNet A mass detection based model, malignancy Binary (Benign and malignant)
Dhungel, Carneiro & Bradley (2017) INbreat/Moreira et al. (2012) Deep learning, Bayesian optimization, Transfer learning No mass (BI-RADS 1), benign mass (BI-RADS 2 and 3), malignant mass (BI-RADS 4, 5, and 6)
Geras et al. (2017) Health Insurance Portability and Accountability (HIPAA) Multi-ViewDeepConvolutionalNeuralNetwork Incomplete (BI-RADS 0), negative (BI-RADS 1), benign mass (BI-RADS 2)
Arevalo et al. (2016) BCDR/(Lopez et al., 2012) Various CNN algorithms: CNN3, CNN2, HGD, HOG, DeCAF, and Hcfeats Mass malignancy Binary (Benign and malign)
Lévy & Jain (2016) DDSM/(Heath et al., 1998) ShallowCNN (the baseline model), AlexNet, and GoogLeNet Binary (Benign and malign) BI-RADS 0, 1, 2, 3 as benign and BI-RADS 4,5