|
Qian et al. (2024)
|
INbreast/Moreira et al. (2012)
|
Multi-feature fusion neural network (MFNet) |
Benign group (BI-RADS 1, 2, and 3), malign group (BI-RADS 4, 5, and 6), BI-RADS 2 and 3 are discarded |
|
Achak & Hedyehzadeh (2023)
|
CDD-CESM/Khaled et al. (2022)
|
Resnet-50, Resnet-18, and Densenet-201; the K-Fold10 technique |
Benign and malignant non-mass enhancement (NME) lesions |
|
He et al. (2023)
|
CBIS-DDSM/Lee et al. (2017)
|
Semantic Pyramid Network with a Transformer Self-attention (SPN-TS) |
Detection/Benign and malign |
|
Lou et al. (2022)
|
INbreast/Moreira et al. (2012)
|
Deep CNN |
Benign group (BI-RADS 1 and 2), malign group (BI-RADS 4, 5, and 6), BI-RADS 2 and 3 are discarded |
|
Walton, Kim & Mullen (2022)
|
CBIS-DDSM/Lee et al. (2017)
|
CNN |
Co-locating lesions, classification according to the size of the mass type lesions |
|
Malebary & Hashmi (2021)
|
DDSM + MIAS/Heath et al. (1998), Suckling et al. (2015)
|
ResNet, LongShortTermMemory of RecurrentNeuralNetwork(RNN-LSTM) + ResNet-ResNetnetwork + ResNet-VGG |
Normal (BI-RADS 1), benign (BI-RADS 2 and 3), malign (BI-RADS 4, 5, 6) |
|
Aly et al. (2021)
|
INbreat/Moreira et al. (2012)
|
YOLO-V3; ResNet and InceptionV3 |
Mass classification, benign (BI-RADS 2 and 3), malign (BI-RADS 4, 5, and 6) |
|
Cai et al. (2020)
|
Nanfang Hospital (NFH), Guangzhou/Cai et al. (2019)
|
Deep learning method using neutrosophic boosting |
Grading micro-calcification clustering: Three group classification, BI-RADS 3, 4, and 5 |
|
Al-antari, Han & Kim (2020)
|
DDSM + INbreast/Heath et al. (1998), Moreira et al. (2012)
|
YOLO detector, modified InceptionResNet-V2 classifier |
Clasificaton of breast lesions (Benign and malign) |
|
Lu, Loh & Huang (2019)
|
Local dataset |
Fully cannected CNN |
Binary (Benign and malign) |
|
Gandomkar et al. (2019)
|
Local dataset |
Convolutional Neural Networks (CNN), Visual Analogue Scales (VAS)Inception-V3 pre-trained on the ImageNet |
The low-risk group (BI-RADS 1 and 2), the high-risk group (BI-RADS 3 and 4) |
|
Kim et al. (2018)
|
Yonsel University health system/In-house dataset |
ResNet-5 0 |
Sorting out cases (BI-RADS 1 cases and others) |
|
Jung et al. (2018)
|
INbreast + GURO/Moreira et al. (2012), In-house dataset |
RetinaNet |
A mass detection based model, malignancy Binary (Benign and malignant) |
|
Dhungel, Carneiro & Bradley (2017)
|
INbreat/Moreira et al. (2012)
|
Deep learning, Bayesian optimization, Transfer learning |
No mass (BI-RADS 1), benign mass (BI-RADS 2 and 3), malignant mass (BI-RADS 4, 5, and 6) |
|
Geras et al. (2017)
|
Health Insurance Portability and Accountability (HIPAA) |
Multi-ViewDeepConvolutionalNeuralNetwork |
Incomplete (BI-RADS 0), negative (BI-RADS 1), benign mass (BI-RADS 2) |
|
Arevalo et al. (2016)
|
BCDR/(Lopez et al., 2012) |
Various CNN algorithms: CNN3, CNN2, HGD, HOG, DeCAF, and Hcfeats |
Mass malignancy Binary (Benign and malign) |
|
Lévy & Jain (2016)
|
DDSM/(Heath et al., 1998) |
ShallowCNN (the baseline model), AlexNet, and GoogLeNet |
Binary (Benign and malign) BI-RADS 0, 1, 2, 3 as benign and BI-RADS 4,5 |