Skip to main content
. 2025 Jul 25;11:e3051. doi: 10.7717/peerj-cs.3051

Table 1. Summary of related works based on opcode based Android malware detection.

Article Year Features Dataset (Platform) Classification algorithm Reported performance
Jiang et al. (2019) 2019 Opcode, Sensitive API, STR, actions Drebin (Android) KNN, DT, GB 99.5% (AUC)
Sung et al. (2020) 2020 Opcode sequence as text BIG 2015 (Windows) Bi-LSTM, fastText 96.7%
Zou et al. (2020) 2020 ByteCode Drebin (Android) CNN 97%
Jeon & Moon (2020) 2020 Opcode sequence Windows hybrid own dataset (Windows) C-Autoenconder+RNN 96%
Singh et al. (2020) 2020 Opcode, Permissions, Intents, LSI CICInvesAndMal2019 (Android) RF 93.92%
Niu et al. (2020) 2020 Opcode, CFG Hybrid own dataset (Android) LSTM 97%
Bai et al. (2020) 2020 Opcode, N-gram (N = 5), permissions Drebin (Android) CatBoost 96.21%
Zhang et al. (2019) 2020 Opcode- Bi-gram, API Calls Hybrid own dataset (Windows) CNN, BPNN 95%
Parildi, Hatzinakos & Lawryshyn (2021) 2021 OpCode, Word2Vec Hybrid own dataset (Windows) 1-Katman: CNN, LSTM 95%
2-Katman: LR, SVM, KNN, RF, GB
Bhat & Dutta (2021) 2021 Opcode-Ngram PRAGuard+Google play store (Android) Algoritmic solution 96.22%
Sihag, Vardhan & Singh (2021) 2021 Opcode sequence Drebin+Genome+Contagio+AndroAutopssy+AndroDracker (Android) KNN, J48, RF 98.18%
Darem et al. (2021) 2021 Opcode, N-gram(1, 2, 3), Image conversion Microsoft malware dataset (Windows) XGBoost and CNN (Ensemble) 99.12%
Zhang et al. (2021) 2021 Opcode sequence, System call, Text Drebin (Android) CNN-BiLSTM, NLP 97.6%
Khan et al. (2022) 2022 Opcode, Skip-gram Own hybrid dataset (Android) Op2Vec, DNN, 97.47%
Wang & Qian (2022) 2022 Opcode, Word2Vec SOREL-20M (Windows) TextCNN 98.66%
Jeon et al. (2022) 2022 Opcode sequence, API calls, RGB Images (Hybrid) HyMalD (Android) HyMaID (Bi-LSTM, SPP-NET) 92.5%
Tang et al. (2023) 2023 Bytecode, Hex, N-gram BIG 2015 and Malimg (Windows) LightGBM 99.70%
Xie, Qin & Di (2023) 2023 Dalvik opcode, Permissions, API calls CIC-AndMal2017 and CICMalDroid2020 (Android) Stacking Model 96.77%
Wu et al. (2023) 2023 Opcode, Function-calls, graph2vec Own hybrid dataset (IOT) SVM 98.88%
Lee et al. (2023) 2023 Opcode Own hybrid dataset (Android) Multilayer perceptron (MLP) 98.0%