| Jiang et al. (2019) | 2019 | Opcode, Sensitive API, STR, actions | Drebin (Android) | KNN, DT, GB | 99.5% (AUC) | 
| Sung et al. (2020) | 2020 | Opcode sequence as text | BIG 2015 (Windows) | Bi-LSTM, fastText | 96.7% | 
| Zou et al. (2020) | 2020 | ByteCode | Drebin (Android) | CNN | 97% | 
| Jeon & Moon (2020) | 2020 | Opcode sequence | Windows hybrid own dataset (Windows) | C-Autoenconder+RNN | 96% | 
| Singh et al. (2020) | 2020 | Opcode, Permissions, Intents, LSI | CICInvesAndMal2019 (Android) | RF | 93.92% | 
| Niu et al. (2020) | 2020 | Opcode, CFG | Hybrid own dataset (Android) | LSTM | 97% | 
| Bai et al. (2020) | 2020 | Opcode, N-gram (N = 5), permissions | Drebin (Android) | CatBoost | 96.21% | 
| Zhang et al. (2019) | 2020 | Opcode- Bi-gram, API Calls | Hybrid own dataset (Windows) | CNN, BPNN | 95% | 
| Parildi, Hatzinakos & Lawryshyn (2021) | 2021 | OpCode, Word2Vec | Hybrid own dataset (Windows) | 1-Katman: CNN, LSTM | 95% | 
| 2-Katman: LR, SVM, KNN, RF, GB | 
| Bhat & Dutta (2021) | 2021 | Opcode-Ngram | PRAGuard+Google play store (Android) | Algoritmic solution | 96.22% | 
| Sihag, Vardhan & Singh (2021) | 2021 | Opcode sequence | Drebin+Genome+Contagio+AndroAutopssy+AndroDracker (Android) | KNN, J48, RF | 98.18% | 
| Darem et al. (2021) | 2021 | Opcode, N-gram(1, 2, 3), Image conversion | Microsoft malware dataset (Windows) | XGBoost and CNN (Ensemble) | 99.12% | 
| Zhang et al. (2021) | 2021 | Opcode sequence, System call, Text | Drebin (Android) | CNN-BiLSTM, NLP | 97.6% | 
| Khan et al. (2022) | 2022 | Opcode, Skip-gram | Own hybrid dataset (Android) | Op2Vec, DNN, | 97.47% | 
| Wang & Qian (2022) | 2022 | Opcode, Word2Vec | SOREL-20M (Windows) | TextCNN | 98.66% | 
| Jeon et al. (2022) | 2022 | Opcode sequence, API calls, RGB Images (Hybrid) | HyMalD (Android) | HyMaID (Bi-LSTM, SPP-NET) | 92.5% | 
| Tang et al. (2023) | 2023 | Bytecode, Hex, N-gram | BIG 2015 and Malimg (Windows) | LightGBM | 99.70% | 
| Xie, Qin & Di (2023) | 2023 | Dalvik opcode, Permissions, API calls | CIC-AndMal2017 and CICMalDroid2020 (Android) | Stacking Model | 96.77% | 
| Wu et al. (2023) | 2023 | Opcode, Function-calls, graph2vec | Own hybrid dataset (IOT) | SVM | 98.88% | 
| Lee et al. (2023) | 2023 | Opcode | Own hybrid dataset (Android) | Multilayer perceptron (MLP) | 98.0% |