Table 1. Algorithm performance.
ML | Accuracy (%) | Precision (%) | Recall (%) | F1-score (%) | AUC (%) | p-value (vs Stacking) | 95% CI of F1 difference |
---|---|---|---|---|---|---|---|
DT | 99.93 | 89.89 | 81.63 | 85.56 | 90.80 | 0.2027 | [−0.0161 to 0.0550] |
RF | 99.96 | 97.40 | 76.53 | 85.71 | 97.25 | 0.0199 | [−0.0450 to −0.0067] |
SVM | 99.94 | 97.02 | 66.33 | 78.79 | 95.13 | 0.0225 | [0.0083–0.0635] |
XGBoost | 99.95 | 95.00 | 77.55 | 85.39 | 97.83 | 0.0628 | [−0.0261 to 0.0011] |
CatBoost | 99.96 | 97.44 | 77.55 | 86.36 | 98.37 | 0.0315 | [−0.0423 to −0.0033] |
LR | 99.92 | 88.06 | 60.20 | 71.52 | 97.01 | 0.0047 | [0.0593–0.1727] |