Table 5.
Summary on GdBCO performance and PLD techniques and parameters used for deposition
| Superconductor | Method | Conditions | Critical Temperature | Critical Current Density | Substrate | Reference |
|---|---|---|---|---|---|---|
| GdBa2Cu3O7-α GdBCO, (Y,Gd)BCO, and EuBCO+BHO | RACH-PLD | KrF excimer laser (LAMBDA 300 K); Oxygen partial pressure: 300∼500mTorr; Laser energy: 500∼700 mJ; Laser pulse repetition rate: 260∼280 Hz Deposition temperature: 700∼900°C; Tape traveling speed: 100–200 m/h |
NA | GdBCO 4.5∼3 MA/cm2 up to 2 μm thick film (77 K, 0 T) | CeO2 (200 nm, PLD)/LMO (20 nm, sputtering)/MgO (5 nm, IBAD)/Y2O3 (20 nm, sputtering)/Al2O3 (80 nm, sputtering)/Hastelloy (50 μm, electropolishing) | Jiang et al.180 |
| GdBa2Cu3O7; EuBCO + BaHfO3; YGdBCO |
RACH-PLD | KrF excimer laser; Oxygen partial pressure: 300–500 mTorr; Laser energy: 500–700 mJ; Laser pulse repetition rate: 260–280 Hz; Layer thickness: 1.5–2.5 μm |
NA | GdBa2Cu3O: 520 A/cm-width (77 K, self-field) EuBCO +BaHfO3 and YGdBCO: 280 A/4 mm-width (30 K, 5 T) 560 A/4 mm-width (4.2 K, 10 T) |
CeO2/LaMnO3/MgO/Y2O3/Al2O3/Hastelloy | Zhao et al.181 |
| GdBa2Cu3O7−X (GdBCO or Gd123) | Hot-wall PLD | A 180 W KrF (λ = 248 nm) excimer laser; The laser beam was scanned in the vertical direction along lanes on the target; In the hot-wall heating system, the surface of the template was heated by radiation in the heater box. Furthermore, high-speed depositions were performed by a tandem laser system with a laser power of 360 W. |
NA | 3 MA/cm2 (360 W laser power) (77 K, self-field) | CeO2/Gd2Zr2O7 (GZO)/Hastelloy | Kakimoto et al.162 |
| GdBa2Cu3O7-x (GdBCO) or EuBa2Cu3O7-x (EuBCO) + BaMO3 (M = Hf, Zr) | Hot-wall PLD | NA | NA | 77 K, self-field: GdBCO (1.9 μm) 219 A; GdBCO (1.8 μm) 5.0 mol % BZO 154 A; GdBCO (1.3 μm) 3.5 mol % BZO 91 A; EuBCO (1.1 μm) 3.5 mol % BZO 88 A; Ic decreases with increasing strain, BMO-doped REBCO is more strain-sensitive |
CeO2/MgO/Y2O3/Al2O3/Hastelloy | Fujita et al.165 |
| GdBa2Cu3Oy (GdBCO) with BaZrO3 (BZO) | In-plume (IP) PLD | KrF excimer laser; Substrate temperature: 780°C–850°C Oxygen partial pressure: and 300–500 mTorr; After deposition the films were slowly cooled down to room temperature in a chamber with pure oxygen to 600 Torr without further post-annealing. |
NA | Ic: 135 A/cm (3 T, 77.5 K); Ic: 700–1000 A/cm (self-field, 77.5 K) |
CeO2/Gd2Zr2O7/Hastelloy C-276 | Lee et al.147 |
| GdBa2Cu3Oy (GdBCO)with BaZrO3 (BZO) | In- plume (IP)-PLD | KrF excimer laser; Repetition rate: 40 Hz; Laser energy density: 0.02–0.04 J/mm2 Substrate-target distance: 50–90 mm; Substrate temperature: ∼1073 K; Oxygen partial pressure: ∼46.7 Pa; After the deposition, the samples were oxygen annealed in situ, slowly cooled down to room temperature in pure oxygen |
∼93.5 K | Average ∼1.5 MA/cm2 (77.5 K, self-field) | PLD-CeO2/IBAD-Gd2Zr2O7/Hastelloy | Chikumoto et al.148 |
| GdBa2Cu3Oy (GdBCO) | In-plume (IP) MPMT-PLD | A 200 W industrial XeCl excimer laser (λ = 308 nm); Pulse repetition rate: 300 Hz; Pulse energy: >600 mJ; The laser repetition rate: 300 Hz was divided into 18 plumes (multi plume). Commercial sintered off-stoichiometric GdBa1.8Cu3O7-x targets with a diameter of 6 inch were used. |
NA | In plume, 77 K, self-field: (0.45 μm, 60 m/h) ∼5.6 MA/cm2; (0.9 μm, 30 m/h) ∼4.2 MA/cm2; |
CeO2/LaMnO3/IBAD-MgO/Gd2Zr2O7/Hastelloy C-276 substrates | Ibi et al.149 |
| GdBa2Cu3O7 (GdBCO) | In-plume (IP) reel-to-reel PLD | 80 W KrF excimer laser with a single-turn and four-plume; Deposition area: 1 cm × 6.5 cm; Target: GdBa2CuzOy (z = 3.0, 3.2, 3.4); Substrate temperature: 800°C; Oxygen pressure: 400 mTorr; Target-substrate distance (Dts): 5.5, 7.0, 9.0 cm; Traveling speed: 10, 20 m/h |
NA | 77 K, self-field: 5.5 cm (Dts) ∼1.4 MA/cm2; 7 cm (Dts) ∼2.6 MA/cm2; 9 cm (Dts) ∼2.8 MA/cm2; |
PLD-CeO2/IBAD-Gd2Zr2O7 (GZO)/Hastelloy C276™ | Miura et al.150 |
| GdBa2Cu3O7-α (GdBCO) with BaZrO3 (BZO) | MPMT-PLD | MPMT-PLD with multi-layer deposition was used with 4 laser plumes; Deposition temperature: 850°C–900°C; Oxygen partial pressure: 600 mTorr; Energy of laser beam: 500 mJ; Repetition rate of laser pulse: 160 Hz, |
NA | 51.4 m–204 A (77 K and self-field) and ∼21.6 A (77 K and 3 T) | CeO2 (cap)/Gd2Zr2O7 (GZO) buffered Hastelloy C-276 tape | Ibi et al.145 |
| GdBa2Cu3O7 with BaSnO3 (BSO) or BaZrO3 (BZO) | Reel-to-reel PLD | Layer growth rate of 750 nm/min was used, which is typical for the pilot-scale equipment at SuperOx. | BSO ∼91.9 K BZO ∼91 K |
77 K, self-field, (A/12 mm): BSO ∼140 A BZO ∼120 A |
CeO2/LaMnO3/IBAD-MgO/Y2O3/Al2O3/Hastelloy | Ovcharov et al.168 |
| GdBa2Cu3O7 (GdBCO) with 6 mol % BaSnO3 (BSO) nanoparticles | PLD | Dual chamber PLD system with a 130 W LEAP excimer laser; Repetition rate:100–200 Hz; Pulse energy: 500–650 mJ; Oxygen partial pressure: 10–60 Pa Temperature: 600°C–850°C.72 |
∼92 K | 77 K, self-field: 141 A (375 nm/min 125 A (560 nm/min) |
CeO2/LaMnO3/IBAD-MgO/LaMnO3/Y2O3 or Al2O3/Hastelloy | Lao et al.167 |
| GdBa2Cu3O7-δ with BaHfO3 (BHO) | PLD | KrF excimer laser (λ = 248 nm); Laser energy: 280–330 mJ; Frequency: 120 Hz (two plumes at 60 Hz); Oxygen pressure: 53–80 Pa; Target–substrate distance: 86–94 mm; Deposition temperature: 1123 K; Tape traveling rate: 20 m/h |
NA | 0.3 MA/cm2 (77 K, 3 T) | CeO2/LaMnO3/IBAD-MgO/IBS- Gd2Zr2O7/Hastelloy | Maeda et al.170 |
| GdBa2Cu3O7−δ (GdBCO) | Dual-Chamber PLD | LEAP excimer; Deposition rate: 15–30 m/h; Laser energy: 500–650 mJ; Repetition rate: 100–200 Hz; Oxygen partial pressure of 10–60 Pa; Temperature: 600°C–850°C |
NA | Ic at 77 K, self-field: 300–500 A (/12 mm wide tape) | CeO2/LaMnO3/IBAD-MgO//LaMnO3/Y2O3 or Al2O3/Hastelloy C276™ | Lee et al.72 |
| GdBa2Cu3O7−δ (GdBCO) with BaSnO3 (BSO) or BaZrO3 (BZO) | PLD | Xe-Cl excimer laser (λ = 308 nm); Pulse energy: 700 mJ; Repetition rate: 100, 150 and 200 Hz, which corresponded to 375, 560, and 750 nm/min; Oxygen pressure: 70 Pa; In the deposition zone, the buffered substrate tape was heated by making mechanical contact with a hot Inconel plate kept at a controlled temperature reaching up to 1000°C. Substrate tape speed: 45–60 m/h. After deposition the films were annealed in pure oxygen (420°C, 7 h) |
GdBCO+BSO (6%): 375 nm/min ∼91.9 K; 560 nm/min ∼91.9 K GdBCO+BZO (6%): 750 nm/min ∼92 K |
77 K, self-field: GdBCO+BSO (6%), 375 nm/min ∼250 A/12 mm; 560 nm/min ∼203 A/12 mm GdBCO+BZO (6%): 750 nm/min ∼140 A/12 mm |
CeO2/LaMnO3/IBAD-MgO/a-Y2O3/a-Al2O3/Hastelloy | Chepikov et al.182 |
| GdBa2Cu3O7−δ (GdBCO) | PLD | 1.3 μm thick, 3.9 mm wide REBCO layer | NA | 155 A (77 K in self-field) | Hastelloy with IBAD-MgO buffer layer | Seiler et al.184 |
| GdBa2Cu3Oy (GdBCO) | PLD | NA | Not specified | 5.5 μm, 110 m: 937 A/cm-width at 77 K, self-field; 637 A/cm-width at 50 K, 5T; 976 A/cm-width at 40 K, 5T 2.4 μm, 500 m: 600 A/cm-width (77 K, self-field); |
CeO2 (400 nm)/MgO (5 nm)/Y2O3 (20 nm)/Al2O3 (150 nm)/Hastelloy (100 μm or 75 μm) | Fujita et al.185 |
| GdBa2Cu3Oy (GdBCO) + BaHfO3 (BHO) | PLD alternating target | Substrate temperature: 780°C; Oxygen pressure: 53 Pa; Target-substrate distance: 70 mm; Laser frequency: 1–10 Hz; Laser energy density: 1.5 J/cm2; Film deposition rates of GdBCO and BHO were 0.027 nm/pulse and 0.012 nm/pulse. |
GdBCO to BHO ablation samples: Pure: 90.7 K 25:1: 90.6 K 20:1: 89.7 K 39:2: 88.7 K 78:4: 89.3 K 15:1: 88.9 K 39:4: 87.8 K 78:8: 88.2 K |
77 K, 0 T: Pure: 3 MA/cm2 25:1: 4 MA/cm2 20:1: 6 MA/cm2 78:8: 0.8 MA/cm2 77 K, 5 T: Pure: 0.08 MA/cm2 25:1: 0.1 MA/cm2 20:1: 0.3 MA/cm2 65 K, 0 T: Pure: 7 MA/cm2 25:1: 9 MA/cm2 20:1: 10.5 MA/cm2 39:4: 2 MA/cm2 65 K, 5 T: Pure: 0.5 MA/cm2 25:1: 1 MA/cm2 20:1: 1.5 MA/cm2 39:4: 0.3 MA/cm2 |
LaAlO3 | Matsumoto et al.160 |