Skip to main content
. 2025 Aug 5;28(9):113260. doi: 10.1016/j.isci.2025.113260

Table 5.

Summary on GdBCO performance and PLD techniques and parameters used for deposition

Superconductor Method Conditions Critical Temperature Critical Current Density Substrate Reference
GdBa2Cu3O7-α GdBCO, (Y,Gd)BCO, and EuBCO+BHO RACH-PLD KrF excimer laser (LAMBDA 300 K);
Oxygen partial pressure: 300∼500mTorr;
Laser energy: 500∼700 mJ;
Laser pulse repetition rate: 260∼280 Hz
Deposition temperature: 700∼900°C;
Tape traveling speed: 100–200 m/h
NA GdBCO 4.5∼3 MA/cm2 up to 2 μm thick film (77 K, 0 T) CeO2 (200 nm, PLD)/LMO (20 nm, sputtering)/MgO (5 nm, IBAD)/Y2O3 (20 nm, sputtering)/Al2O3 (80 nm, sputtering)/Hastelloy (50 μm, electropolishing) Jiang et al.180
GdBa2Cu3O7;
EuBCO + BaHfO3;
YGdBCO
RACH-PLD KrF excimer laser;
Oxygen partial pressure: 300–500 mTorr;
Laser energy: 500–700 mJ;
Laser pulse repetition rate: 260–280 Hz;
Layer thickness: 1.5–2.5 μm
NA GdBa2Cu3O: 520 A/cm-width (77 K, self-field)
EuBCO +BaHfO3 and YGdBCO:
280 A/4 mm-width (30 K, 5 T)
560 A/4 mm-width (4.2 K, 10 T)
CeO2/LaMnO3/MgO/Y2O3/Al2O3/Hastelloy Zhao et al.181
GdBa2Cu3O7−X (GdBCO or Gd123) Hot-wall PLD A 180 W KrF (λ = 248 nm) excimer laser; The laser beam was scanned in the vertical direction along lanes on the target;
In the hot-wall heating system, the surface of the template was heated by radiation in the heater box. Furthermore, high-speed depositions were performed by a tandem laser system with a laser power of 360 W.
NA 3 MA/cm2 (360 W laser power) (77 K, self-field) CeO2/Gd2Zr2O7 (GZO)/Hastelloy Kakimoto et al.162
GdBa2Cu3O7-x (GdBCO) or EuBa2Cu3O7-x (EuBCO) + BaMO3 (M = Hf, Zr) Hot-wall PLD NA NA 77 K, self-field:
GdBCO (1.9 μm) 219 A;
GdBCO (1.8 μm) 5.0 mol % BZO 154 A;
GdBCO (1.3 μm) 3.5 mol % BZO 91 A;
EuBCO (1.1 μm) 3.5 mol % BZO 88 A;
Ic decreases with increasing strain, BMO-doped REBCO is more strain-sensitive
CeO2/MgO/Y2O3/Al2O3/Hastelloy Fujita et al.165
GdBa2Cu3Oy (GdBCO) with BaZrO3 (BZO) In-plume (IP) PLD KrF excimer laser;
Substrate temperature: 780°C–850°C
Oxygen partial pressure: and 300–500 mTorr;
After deposition the films were slowly cooled down to room temperature in a chamber with pure oxygen to 600 Torr without further post-annealing.
NA Ic: 135 A/cm (3 T, 77.5 K);
Ic: 700–1000 A/cm (self-field, 77.5 K)
CeO2/Gd2Zr2O7/Hastelloy C-276 Lee et al.147
GdBa2Cu3Oy (GdBCO)with BaZrO3 (BZO) In- plume (IP)-PLD KrF excimer laser;
Repetition rate: 40 Hz;
Laser energy density: 0.02–0.04 J/mm2
Substrate-target distance: 50–90 mm;
Substrate temperature: ∼1073 K;
Oxygen partial pressure: ∼46.7 Pa;
After the deposition, the samples were oxygen annealed in situ, slowly cooled down to room temperature in pure oxygen
∼93.5 K Average ∼1.5 MA/cm2 (77.5 K, self-field) PLD-CeO2/IBAD-Gd2Zr2O7/Hastelloy Chikumoto et al.148
GdBa2Cu3Oy (GdBCO) In-plume (IP) MPMT-PLD A 200 W industrial XeCl excimer laser (λ = 308 nm);
Pulse repetition rate: 300 Hz;
Pulse energy: >600 mJ;
The laser repetition rate: 300 Hz was divided into 18 plumes (multi plume). Commercial sintered off-stoichiometric GdBa1.8Cu3O7-x targets with a diameter of 6 inch were used.
NA In plume, 77 K, self-field: (0.45 μm, 60 m/h) ∼5.6 MA/cm2;
(0.9 μm, 30 m/h) ∼4.2 MA/cm2;
CeO2/LaMnO3/IBAD-MgO/Gd2Zr2O7/Hastelloy C-276 substrates Ibi et al.149
GdBa2Cu3O7 (GdBCO) In-plume (IP) reel-to-reel PLD 80 W KrF excimer laser with a single-turn and four-plume;
Deposition area: 1 cm × 6.5 cm;
Target: GdBa2CuzOy (z = 3.0, 3.2, 3.4);
Substrate temperature: 800°C;
Oxygen pressure: 400 mTorr;
Target-substrate distance (Dts): 5.5, 7.0, 9.0 cm;
Traveling speed: 10, 20 m/h
NA 77 K, self-field:
5.5 cm (Dts) ∼1.4 MA/cm2;
7 cm (Dts) ∼2.6 MA/cm2;
9 cm (Dts) ∼2.8 MA/cm2;
PLD-CeO2/IBAD-Gd2Zr2O7 (GZO)/Hastelloy C276™ Miura et al.150
GdBa2Cu3O7-α (GdBCO) with BaZrO3 (BZO) MPMT-PLD MPMT-PLD with multi-layer deposition was used with 4 laser plumes;
Deposition temperature: 850°C–900°C;
Oxygen partial pressure: 600 mTorr; Energy of laser beam: 500 mJ;
Repetition rate of laser pulse: 160 Hz,
NA 51.4 m–204 A (77 K and self-field) and ∼21.6 A (77 K and 3 T) CeO2 (cap)/Gd2Zr2O7 (GZO) buffered Hastelloy C-276 tape Ibi et al.145
GdBa2Cu3O7 with BaSnO3 (BSO) or BaZrO3 (BZO) Reel-to-reel PLD Layer growth rate of 750 nm/min was used, which is typical for the pilot-scale equipment at SuperOx. BSO ∼91.9 K
BZO ∼91 K
77 K, self-field, (A/12 mm):
BSO ∼140 A
BZO ∼120 A
CeO2/LaMnO3/IBAD-MgO/Y2O3/Al2O3/Hastelloy Ovcharov et al.168
GdBa2Cu3O7 (GdBCO) with 6 mol % BaSnO3 (BSO) nanoparticles PLD Dual chamber PLD system with a 130 W LEAP excimer laser;
Repetition rate:100–200 Hz;
Pulse energy: 500–650 mJ;
Oxygen partial pressure: 10–60 Pa
Temperature: 600°C–850°C.72
∼92 K 77 K, self-field:
141 A (375 nm/min
125 A (560 nm/min)
CeO2/LaMnO3/IBAD-MgO/LaMnO3/Y2O3 or Al2O3/Hastelloy Lao et al.167
GdBa2Cu3O7-δ with BaHfO3 (BHO) PLD KrF excimer laser (λ = 248 nm);
Laser energy: 280–330 mJ;
Frequency: 120 Hz (two plumes at 60 Hz);
Oxygen pressure: 53–80 Pa;
Target–substrate distance: 86–94 mm;
Deposition temperature: 1123 K;
Tape traveling rate: 20 m/h
NA 0.3 MA/cm2 (77 K, 3 T) CeO2/LaMnO3/IBAD-MgO/IBS- Gd2Zr2O7/Hastelloy Maeda et al.170
GdBa2Cu3O7−δ (GdBCO) Dual-Chamber PLD LEAP excimer;
Deposition rate: 15–30 m/h;
Laser energy: 500–650 mJ;
Repetition rate: 100–200 Hz;
Oxygen partial pressure of 10–60 Pa;
Temperature: 600°C–850°C
NA Ic at 77 K, self-field: 300–500 A (/12 mm wide tape) CeO2/LaMnO3/IBAD-MgO//LaMnO3/Y2O3 or Al2O3/Hastelloy C276™ Lee et al.72
GdBa2Cu3O7−δ (GdBCO) with BaSnO3 (BSO) or BaZrO3 (BZO) PLD Xe-Cl excimer laser (λ = 308 nm);
Pulse energy: 700 mJ;
Repetition rate: 100, 150 and 200 Hz, which corresponded to 375, 560, and 750 nm/min;
Oxygen pressure: 70 Pa;
In the deposition zone, the buffered substrate tape was heated by making mechanical contact with a hot Inconel plate kept at a controlled temperature reaching up to 1000°C.
Substrate tape speed: 45–60 m/h. After deposition the films were annealed in pure oxygen (420°C, 7 h)
GdBCO+BSO (6%):
375 nm/min ∼91.9 K;
560 nm/min ∼91.9 K
GdBCO+BZO (6%):
750 nm/min ∼92 K
77 K, self-field:
GdBCO+BSO (6%),
375 nm/min ∼250 A/12 mm;
560 nm/min ∼203 A/12 mm
GdBCO+BZO (6%):
750 nm/min ∼140 A/12 mm
CeO2/LaMnO3/IBAD-MgO/a-Y2O3/a-Al2O3/Hastelloy Chepikov et al.182
GdBa2Cu3O7−δ (GdBCO) PLD 1.3 μm thick, 3.9 mm wide REBCO layer NA 155 A (77 K in self-field) Hastelloy with IBAD-MgO buffer layer Seiler et al.184
GdBa2Cu3Oy (GdBCO) PLD NA Not specified 5.5 μm, 110 m:
937 A/cm-width at 77 K, self-field;
637 A/cm-width at 50 K, 5T;
976 A/cm-width at 40 K, 5T
2.4 μm, 500 m:
600 A/cm-width (77 K, self-field);
CeO2 (400 nm)/MgO (5 nm)/Y2O3 (20 nm)/Al2O3 (150 nm)/Hastelloy (100 μm or 75 μm) Fujita et al.185
GdBa2Cu3Oy (GdBCO) + BaHfO3 (BHO) PLD alternating target Substrate temperature: 780°C;
Oxygen pressure: 53 Pa;
Target-substrate distance: 70 mm;
Laser frequency: 1–10 Hz;
Laser energy density: 1.5 J/cm2;
Film deposition rates of GdBCO and BHO were 0.027 nm/pulse and 0.012 nm/pulse.
GdBCO to BHO ablation samples:
Pure: 90.7 K
25:1: 90.6 K
20:1: 89.7 K
39:2: 88.7 K
78:4: 89.3 K
15:1: 88.9 K
39:4: 87.8 K
78:8: 88.2 K
77 K, 0 T:
Pure: 3 MA/cm2
25:1: 4 MA/cm2
20:1: 6 MA/cm2
78:8: 0.8 MA/cm2
77 K, 5 T:
Pure: 0.08 MA/cm2
25:1: 0.1 MA/cm2
20:1: 0.3 MA/cm2
65 K, 0 T:
Pure: 7 MA/cm2
25:1: 9 MA/cm2
20:1: 10.5 MA/cm2
39:4: 2 MA/cm2
65 K, 5 T:
Pure: 0.5 MA/cm2
25:1: 1 MA/cm2
20:1: 1.5 MA/cm2
39:4: 0.3 MA/cm2
LaAlO3 Matsumoto et al.160