Table 7: Prediction mean squared error with ten observations on test samples.
Test samples and and are treated as the response and the rest of the observations are used as the training data to estimate parameters used to predict the response. Prediction accuracy is measured by mean squared error (MSE) between simulated responses and predicted responses. Values presented are the mean MSE (Err) and standard deviation (SD) across 20 runs of each method. Standard deviation (SD) is missing for SCCA because the method is deterministic.
| BASS |
||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EM | MCMC-EM | PX-EM | sGFA | GFA | SCCA | MRD-lin | ||||||||
| Err | SD | Err | SD | Err | SD | Err | SD | Err | SD | Err | Err | SD | ||
| Sim5 | 10 | 1.01 | 0.020 | 1.00 | 0.011 | 1.00 | 0.007 | 0.99 | 0.008 | 1.00 | 0.002 | 0.99 | 1.49 | 0.001 |
| 30 | 0.88 | 0.031 | 0.86 | 0.018 | 0.87 | 0.028 | 0.89 | 0.005 | 0.90 | 0.002 | 0.99 | 1.01 | 0.035 | |
| 50 | 0.86 | 0.023 | 0.85 | <1e-3 | 0.86 | 0.022 | 0.87 | 0.003 | 0.88 | 0.001 | 0.99 | 0.97 | 0.020 | |
| 100 | 0.85 | 0.007 | 0.85 | <1e-3 | 0.85 | 0.002 | 0.86 | 0.003 | 0.87 | 0.001 | 1.01 | 0.92 | 0.039 | |
| 200 | 0.85 | 0.006 | 0.84 | <1e-3 | 0.84 | <1e-3 | 0.84 | 0.001 | 0.83 | 0.001 | 0.96 | 1.06 | 0.105 | |
|
| ||||||||||||||
| Sim6 | 10 | 0.61 | 0.164 | 0.57 | 0.116 | 0.51 | 0.031 | 0.58 | 0.012 | 0.75 | 0.011 | 0.97 | 1.00 | <1e-3 |
| 30 | 0.49 | 0.160 | 0.40 | 0.093 | 0.38 | 0.007 | 0.43 | 0.006 | 0.40 | 0.005 | 0.98 | 0.46 | 0.006 | |
| 50 | 0.44 | 0.099 | 0.39 | 0.011 | 0.39 | 0.004 | 0.41 | 0.002 | 0.40 | 0.001 | 1.01 | 0.42 | 0.009 | |
| 100 | 0.39 | 0.033 | 0.39 | 0.004 | 0.39 | 0.011 | 0.39 | 0.002 | 0.39 | 0.001 | 0.97 | 0.52 | 0.249 | |
| 200 | 0.38 | 0.003 | 0.38 | 0.001 | 0.38 | 0.001 | 0.39 | 0.001 | 0.39 | 0.001 | 1.01 | 0.40 | 0.020 | |