Skip to main content
. Author manuscript; available in PMC: 2025 Sep 24.
Published in final edited form as: J Mach Learn Res. 2016;17:196.

Table 7: Prediction mean squared error with ten observations on ns=200 test samples.

Test samples yi(8) and yi(9) and yi(10) are treated as the response and the rest of the observations are used as the training data to estimate parameters used to predict the response. Prediction accuracy is measured by mean squared error (MSE) between simulated responses and predicted responses. Values presented are the mean MSE (Err) and standard deviation (SD) across 20 runs of each method. Standard deviation (SD) is missing for SCCA because the method is deterministic.

BASS
nt EM MCMC-EM PX-EM sGFA GFA SCCA MRD-lin
Err SD Err SD Err SD Err SD Err SD Err Err SD
Sim5 10 1.01 0.020 1.00 0.011 1.00 0.007 0.99 0.008 1.00 0.002 0.99 1.49 0.001
30 0.88 0.031 0.86 0.018 0.87 0.028 0.89 0.005 0.90 0.002 0.99 1.01 0.035
50 0.86 0.023 0.85 <1e-3 0.86 0.022 0.87 0.003 0.88 0.001 0.99 0.97 0.020
100 0.85 0.007 0.85 <1e-3 0.85 0.002 0.86 0.003 0.87 0.001 1.01 0.92 0.039
200 0.85 0.006 0.84 <1e-3 0.84 <1e-3 0.84 0.001 0.83 0.001 0.96 1.06 0.105

Sim6 10 0.61 0.164 0.57 0.116 0.51 0.031 0.58 0.012 0.75 0.011 0.97 1.00 <1e-3
30 0.49 0.160 0.40 0.093 0.38 0.007 0.43 0.006 0.40 0.005 0.98 0.46 0.006
50 0.44 0.099 0.39 0.011 0.39 0.004 0.41 0.002 0.40 0.001 1.01 0.42 0.009
100 0.39 0.033 0.39 0.004 0.39 0.011 0.39 0.002 0.39 0.001 0.97 0.52 0.249
200 0.38 0.003 0.38 0.001 0.38 0.001 0.39 0.001 0.39 0.001 1.01 0.40 0.020