Skip to main content
. 2025 Sep 8;41(37):25086–25099. doi: 10.1021/acs.langmuir.5c00853

1. Isotherm Selection Criteria Showing Isotherm Types (I–VII), Various Simplifications of eq 1, and the Resulting Relationships between the Specified, Mechanistically Based, Isotherm Models.

model isotherm types and features relationship between θ=CCSAT and a=PPV condition H
CMMS hybrid isotherm types (e.g., Figure h,i) θ=K0a1Kasa[K0a+w2(1Kasa)] with w=12{1K1a(1Kasa)+(1K1a1Kasa)2+4K0a1Kasa}    
Henry VII (linear: Figure g) θ = K 0 a a → 0  
BET II (downward concavity at low pressure: Figure b) θ=K0a[1a][1a+K0a] large K o = K 1; K as = 1 H = 1
GAB II (downward concavity at low pressure: shape of Figure b) θ=K0a[1Kasa][1+(K0Kas)a] large K o = K 1; 0 ≤ K as ≤ 1 H = 1
GAB III (upward concavity: Figure c) θ=K0a[1Kasa][1+(K0Kas)a] small K o = K 1; 0 ≤ K as ≤ 1 H = 1
Langmuir I (downward concavity: Figure a) θ=K0a[1+K0a] large K o = K 1; K as = 0 H = 1
Rectangular I (sharpened shape of Figure a) θ = 1 K o = K 1 → ∞; K as = 0 H = 1
Ising V (upward concavity at low pressures turns to downward concavity: Figure d,e) θ=K0aK0a+14{1K1a+(1K1a)2+4K0a}2 K as = 0; K 1 > 1; K o < K 1 H > 1
Ising III (upward concavity: shape of Figure c) θ=K0aK0a+14{1K1a+(1K1a)2+4K0a}2 K as = 0; K 1 < 1; K o < K 1 H > 1
Ising I (downward concavity: shape of Figure a) θ=K0aK0a+14{1K1a+(1K1a)2+4K0a}2 K as = 0; K o > K 1 H < 1
Ising VI (unimodal)/Stepwise V (Figure f) a=1K1 K as = 0; K o ≪ K 1 H → ∞