Skip to main content
[Preprint]. 2025 Sep 28:2025.09.27.678967. [Version 1] doi: 10.1101/2025.09.27.678967

Table 3:

List of autoregressive dynamical models used for s-step ahead prediction of iEEG features in Eq. (2).

Model Equation
Linear xˆi[t+s]=n=0l-1αnxi[t-n]
Quadratic xˆi[t+s]=m,n=0l-1βm,nxi[t-m]xi[t-n]
KNN xˆi[t+s]=1Kn=0K-1xitraintn+s where t0,,tK-1 are time indices of the K-nearest neighbors among training data to xi[t-l+1],,xi[t]. We used K=5 for all patients.
MLP xˆi[t+s]=σW2σW1xil[t] where σ=tanh is the activation function, W1RH×l,W2R1×H are weight matrices, and xil[t]=xi[t-l+1],,xi[t]. We used H=50 for all patients.
Koopman autoencoder74 xˆi[t+s]=Exil[t]θ+b and xil[t+1]=DKExil[t], where the encoder is E(x)=We2σWe1x with We1Rp×l,We2Rp×p, and the decoder is D(z)=Wd2σWd1z with Wd1Rp×p,Wd2Rl×p. Here, σ=ReLU,p is the latent dimension (set to 64), and KRp×p is the learnable Koopman operator that evolves the latent state forward by one step. θRp×1 and bR.

KNN: k-nearest neighbor; MLP: multi-layer perceptron.