Skip to main content
. 2025 Oct 1;15:34170. doi: 10.1038/s41598-025-15215-1

Table 2.

Preprocessing Pipeline – algorithms, libraries, and parameter settings.

Preprocessing stage Method / Algorithm Library / Tool Parameter Settings / Values
Missing value handling Median imputation (Numerical) numpy.median() Replaces missing values with column-wise median
Normalization Min–max normalization sklearn.preprocessing.MinMaxScaler Feature range: [0, 1]
Noise removal Savitzky-golay filter scipy.signal.savgol_filter() window_length = 11, polyorder = 3, mode = ‘interp’
Data augmentation SMOTE (Synthetic Minority Oversampling Technique) imblearn.over_sampling.SMOTE k_neighbors = 5, sampling_strategy = ‘auto’, random_state = 42