Table 2.
Preprocessing Pipeline – algorithms, libraries, and parameter settings.
| Preprocessing stage | Method / Algorithm | Library / Tool | Parameter Settings / Values |
|---|---|---|---|
| Missing value handling | Median imputation (Numerical) | numpy.median() | Replaces missing values with column-wise median |
| Normalization | Min–max normalization | sklearn.preprocessing.MinMaxScaler | Feature range: [0, 1] |
| Noise removal | Savitzky-golay filter | scipy.signal.savgol_filter() | window_length = 11, polyorder = 3, mode = ‘interp’ |
| Data augmentation | SMOTE (Synthetic Minority Oversampling Technique) | imblearn.over_sampling.SMOTE | k_neighbors = 5, sampling_strategy = ‘auto’, random_state = 42 |