Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 May;314:343–357. doi: 10.1113/jphysiol.1981.sp013712

Mechanism of the effect of cyanide on cell membrane potentials in Necturus gall-bladder epithelium.

E Bello-Reuss, T P Grady, L Reuss
PMCID: PMC1249438  PMID: 6796674

Abstract

1. Addition of sodium cyanide to the mucosal or the serosal medium bathing the isolated gall-bladder of Necturus maculosus causes hyperpolarization of both apical and basolateral membrane of the epithelial cells. The effect of cyanide is practically immediate, reversible (if exposure is brief), and long-lasting (greater than 30 min). 2. The hyperpolarization is accompanied by: (a) reduction of the equivalent resistance of the cell membranes, as shown by cable analysis and input resistance measurements, and (b) increase of the potassium selectivity of both cell membranes, as evidenced by the effects of external substitutions of potassium for sodium on cell membrane potentials. We conclude that the cyanide-induced hyperpolarization is caused mainly or exclusively by an increase of the potassium permeability of the cell membranes. 3. Addition of the calcium ionophore A23187 (5 microM) to the mucosal medium in the presence of 1 mM-calcium caused similar effects to those produced by cyanide. After either cyanide or A23187, addition of the other agent did not cause further membrane potential changes. 4. Quinine (100 microM, mucosal medium) reduced the potassium permeability of the apical membrane both under control conditions and during exposure to cyanide. 5. We suggest that the cyanide-induced increase of the potassium permeability of the cell membrane is mediated by an elevation of intracellular calcium ion activity, attributable to release from mitochondrial sources.

Full text

PDF
343

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos T., Planelles G. Organic anion permeation at the proximal tubule of necturus: an electrophysiological study of the peritubular membrane. Pflugers Arch. 1979 Sep;381(3):231–239. doi: 10.1007/BF00583254. [DOI] [PubMed] [Google Scholar]
  2. Armando-Hardy M., Ellory J. C., Ferreira H. G., Fleminger S., Lew V. L. Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine. J Physiol. 1975 Aug;250(1):32P–33P. [PubMed] [Google Scholar]
  3. Atwater I., Dawson C. M., Ribalet B., Rojas E. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell. J Physiol. 1979 Mar;288:575–588. [PMC free article] [PubMed] [Google Scholar]
  4. Balaban R. S., Mandel L. J. Comparison of the effects of increased intracellular calcium and antidiuretic hormone on active sodium transport in frog skin. A study with the calcium ionophore A23187. Biochim Biophys Acta. 1979 Jul 19;555(1):1–12. doi: 10.1016/0005-2736(79)90067-1. [DOI] [PubMed] [Google Scholar]
  5. Blaustein M. P. The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol. 1974;70:33–82. doi: 10.1007/BFb0034293. [DOI] [PubMed] [Google Scholar]
  6. DIAMOND J. M. TRANSPORT OF SALT AND WATER IN RABBIT AND GUINEA PIG GALL BLADDER. J Gen Physiol. 1964 Sep;48:1–14. doi: 10.1085/jgp.48.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Weer P. Cyanide-induces hyperpolarization in squid giant axons. Ann N Y Acad Sci. 1978 Apr 28;307:427–430. doi: 10.1111/j.1749-6632.1978.tb41967.x. [DOI] [PubMed] [Google Scholar]
  8. Edelman A., Curci S., Samarzija I., Frömter E. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflugers Arch. 1978 Dec 15;378(1):37–45. doi: 10.1007/BF00581956. [DOI] [PubMed] [Google Scholar]
  9. GARDOS G. The role of calcium in the potassium permeability of human erythrocytes. Acta Physiol Acad Sci Hung. 1959;15(2):121–125. [PubMed] [Google Scholar]
  10. Godfraind J. M., Krnjević K., Pumain R. Unexpected features of the action of dinitrophenol on cortical neurones. Nature. 1970 Nov 7;228(5271):562–564. doi: 10.1038/228562a0. [DOI] [PubMed] [Google Scholar]
  11. Grabowski W., Lobsiger E. A., Lüttgau H. C. The effect of repetitive stimulation at low frequencies upon the electrical and mechanical activity of single muscle fibres. Pflugers Arch. 1972;334(3):222–239. doi: 10.1007/BF00626225. [DOI] [PubMed] [Google Scholar]
  12. Graf J., Giebisch G. Intracellular sodium activity and sodium transport in necturus gallbladder epithelium. J Membr Biol. 1979 Jun 7;47(4):327–355. doi: 10.1007/BF01869743. [DOI] [PubMed] [Google Scholar]
  13. Grinstein S., Erlij D. Intracellular calcium and the regulation of sodium transport in the frog skin. Proc R Soc Lond B Biol Sci. 1978 Jul 26;202(1148):353–360. doi: 10.1098/rspb.1978.0072. [DOI] [PubMed] [Google Scholar]
  14. Haworth R. A., Hunter D. R., Berkoff H. A. Na+ releases Ca2+ from liver, kidney and lung mitochondria. FEBS Lett. 1980 Feb 11;110(2):216–218. doi: 10.1016/0014-5793(80)80076-7. [DOI] [PubMed] [Google Scholar]
  15. Iwatsuki N., Petersen O. H. Intracellular Ca2+ injection causes membrane hyperpolarization and conductance increase in lacrimal acinar cells. Pflugers Arch. 1978 Nov 14;377(2):185–187. [PubMed] [Google Scholar]
  16. Reuss L., Bello-Reuss E., Grady T. P. Effects of ouabain on fluid transport and electrical properties of Necturus gallbladder. Evidence in favor of a neutral basolateral sodium transport mechanism. J Gen Physiol. 1979 Apr;73(4):385–402. doi: 10.1085/jgp.73.4.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reuss L. Effects of amphotericin b on the electrical properties of Necturus gallbladder: intracellular microelectrode studies. J Membr Biol. 1978 Jun 22;41(1):65–86. doi: 10.1007/BF01873340. [DOI] [PubMed] [Google Scholar]
  18. Reuss L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder: III. Ionic permeability of the basolateral cell membrane. J Membr Biol. 1979 May 25;47(3):239–259. doi: 10.1007/BF01869080. [DOI] [PubMed] [Google Scholar]
  19. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions. J Membr Biol. 1975 Dec 4;25(1-2):115–139. doi: 10.1007/BF01868571. [DOI] [PubMed] [Google Scholar]
  20. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane. J Membr Biol. 1975 Dec 4;25(1-2):141–161. doi: 10.1007/BF01868572. [DOI] [PubMed] [Google Scholar]
  21. Reuss L., Grady T. P. Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium. J Membr Biol. 1979 Dec 12;51(1):15–31. doi: 10.1007/BF01869341. [DOI] [PubMed] [Google Scholar]
  22. Reuss L., Grady T. P. Triaminopyrimidinium (TAP+) blocks luminal membrane K conductance in Necturus gallbladder epithelium. J Membr Biol. 1979 Jul 31;48(3):285–298. doi: 10.1007/BF01872896. [DOI] [PubMed] [Google Scholar]
  23. Reuss L., Weinman S. A., Grady T. P. Intracellular K+ activity and its relation to basolateral membrane ion transport in Necturus gallbladder epithelium. J Gen Physiol. 1980 Jul;76(1):33–52. doi: 10.1085/jgp.76.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reuss L., Weinman S. A. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J Membr Biol. 1979 Sep 14;49(4):345–362. doi: 10.1007/BF01868991. [DOI] [PubMed] [Google Scholar]
  25. Rose B., Loewenstein W. R. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: a study with aequorin. J Membr Biol. 1976 Aug 27;28(1):87–119. doi: 10.1007/BF01869692. [DOI] [PubMed] [Google Scholar]
  26. Taylor A., Windhager E. E. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol. 1979 Jun;236(6):F505–F512. doi: 10.1152/ajprenal.1979.236.6.F505. [DOI] [PubMed] [Google Scholar]
  27. WINDHAGER E. E., GIEBISCH G. Comparison of short-circuit current and net water movement in single perfused proximal tubules of rat kidneys. Nature. 1961 Sep 16;191:1205–1207. doi: 10.1038/1911205a0. [DOI] [PubMed] [Google Scholar]
  28. van Os C. H., Slegers J. F. The electrical potential profile of gallbladder epithelium. J Membr Biol. 1975 Dec 4;24(3-4):341–363. doi: 10.1007/BF01868631. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES