
Plasma Leptin and Ghrelin in the Neonatal Rat: Interaction of
Dexamethasone and Hypoxia

Eric D. Bruder1, Lauren Jacobson2, and Hershel Raff1,3

1 Endocrine Research Laboratory, St. Luke’s Medical Center, Milwaukee, WI 53215

2 Center for Neuropharmacology and Neurosciences, Albany Medical College, Albany NY 12208

3 Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226

Abstract
Ghrelin, leptin, and endogenous glucocorticoids play a role in appetite regulation, energy balance,
and growth. The present study assessed the effects of dexamethasone (DEX) on these hormones, and
on ACTH and pituitary POMC and CRHR1 mRNA expression, during a common metabolic stress
– neonatal hypoxia. Newborn rats were raised in room air (21% O2) or under normobaric hypoxia
(12% O2) from birth to postnatal day (PD) 7. DEX was administered on PD3 ( 0.5 mg/kg), PD4 (0.25
mg/kg), PD5 (0.125 mg/kg), and PD6 (0.05 mg/kg). Pups were studied on PD7 (24 h after last dose
of DEX). DEX significantly increased plasma leptin and ghrelin in normoxic pups, but only increased
ghrelin in hypoxic pups. Hypoxia alone resulted in a small increase in plasma leptin. Plasma
corticosterone and pituitary POMC mRNA expression were decreased 24 h following the last dose
of DEX, whereas plasma ACTH and pituitary CRHR1 mRNA expression had already increased
(normoxia and hypoxia). Hypoxia alone increased corticosterone, but had no effect on ACTH or
pituitary POMC and CRHR1 mRNA expression. Neonatal DEX treatment, hypoxia, and the
combination of both affect hormones involved in energy homeostasis. Pituitary function in the
neonate was quickly restored following dexamethasone-induced suppression of the HPA axis. The
changes in ghrelin, leptin, and corticosterone may be beneficial to the hypoxic neonate through the
maintenance of appetite and shifts in intermediary metabolism.
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INTRODUCTION
An integrated endocrine response is a critical component of the physiological adaptation to
metabolic disturbances in the neonate (Grongnet 1984, Frankel & Stevenson 1987, Friedman
& Fahey 1993, Zayour et al. 2003). Critical hormones in the control of metabolism and appetite
are leptin, produced by adipocytes (Neary et al. 2004), ghrelin, produced primarily by the
stomach (Small & Bloom 2004), and adrenal corticosteroids (Dallman 2003). These hormones
have complex interactions ultimately controlling food intake, growth, development, and energy
balance in the neonate and adult (Meier & Gressner 2004). Of particular interest is the role that
these hormones play in the neonatal adaptation to stress and disease (Zayour et al. 2003).
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Neonatal bronchopulmonary dysplasia leads to hypoxia, and can occur in up to 23% preterm
human births in the United States (American Academy of Pediatrics 2002). Glucocorticoid
therapy is sometimes required in the treatment of neonatal respiratory distress and acts
primarily to promote lung maturation (Sinkin et al. 2000). However, glucocorticoid therapy is
associated with both short- and long-term negative consequences (Raff 2004, Yeh et al.
2004). We have examined many facets of the endocrine and metabolic adaptation to neonatal
hypoxia (Raff 1999a, 1999b, 2001a, Raff 2003) and its interaction with dexamethasone therapy
(Bruder et al. 2004a, 2004b). Of relevance to the current study is the dramatic decrease in
growth that occurs, without a change in body composition, during hypoxia (Raff et al.
2001b). Glucocorticoid therapy also decreases growth rate (He et al. 2004), and interacts with
hypoxia to lead to an almost complete cessation in neonatal growth (Bruder et al. 2004a).
Finally, both hypoxia and glucocorticoid therapy lead to dramatic disturbances in lipid
metabolism and GI function (Bruder et al. 2004a, 2004b, Lee et al. 2002, 2003).

The goal of the present study was to further evaluate the metabolic and developmental effects
of neonatal hypoxia and its interaction with dexamethasone treatment. Hypoxia and
dexamethasone may independently alter food intake and metabolism (Bruder et al. 2004a,
Kayser 1992, Raff 2003, Raff et al. 1999a, Raff et al. 2001a). We hypothesized that hypoxia
may attenuate dexamethasone-induced increases in leptin (Spinedi & Gaillard 1998), perhaps
to encourage an increase in food intake. We also wanted to explore the effect of dexamethasone
and hypoxia on ghrelin, another hormonal controller of appetite and metabolism in the neonate
(Soriano-Guillen et al. 2004). Since leptin, ghrelin, and adrenal corticosteroids have reciprocal
effects on one another (Ishida-Takahashi et al. 2004, Meier & Gressner 2004, Soriano-Guillen
et al. 2004, Spinedi & Gaillard 1998), we assessed components of the hypothalamic-pituitary-
adrenal (HPA) axis to determine if changes in leptin or ghrelin might be ascribed to altered
HPA activity.

METHODS
Animal treatment

All experimentation was approved by the Institutional Animal Care and Use Committees of
the Medical College of Wisconsin and St. Luke’s/Aurora Sinai Medical Center. Timed
pregnant Sprague Dawley rats (Harlan Sprague Dawley, Inc., Indianapolis, IN; N=16) were
obtained at 14 days gestation and maintained on a standard sodium diet (Richmond Standard
5001, Brentwood, MO) and water ad libitum in a controlled environment (lights on, 0600–
1800). Parturition usually occurred on the afternoon of gestational day 22, during which time
rats were kept under observation. After litters were completely delivered, transferring no more
than 1–2 pups from one dam to another equalized litter size. This is a standard technique to
minimize the metabolic and hormonal effects of differences in numbers of pups in each litter
(Routh et al. 1993, Young 2002). The dam and pups (~13 per litter) were then exposed to
normobaric hypoxia (12% O2) or kept in room air as control (21% O2) as described previously
(Raff & Chadwick 1986, Raff et al. 1999b). We have previously shown that this exposure leads
to arterial PO2 levels in adults of about 50–55 torr with sustained hypocapnia and alkalosis
(Raff & Chadwick 1986, Raff et al. 1986).

Lactating dams were maintained with their litters for 7 days in a hypoxic or normoxic
environment (Thomas & Marshall 1995). Dexamethasone phosphate (Sigma Chemical, St.
Louis, MO) was administered subcutaneously in a tapering regimen to normoxic and hypoxic
pups at 0800 as follows: post-natal day (PD) 3 (0.5 mg/kg), PD4 (0.25 mg/kg), PD5 (0.125
mg/kg), and PD6 (0.05 mg/kg) (Flagel et al. 2002). This tapering pattern of dexamethasone
administration was designed to mimic glucocorticoid therapy used in the clinical setting.
Control pups were injected with saline. Pups were weighed on each day of injection. At 0800
on PD7 (24 h after last dexamethasone injection), dams were removed from the chambers.
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Pups were quickly decapitated and blood from each pup was pooled (3 pups per sample) and
immediately placed on ice. Plasma was separated and frozen for subsequent analysis (N=4–10
per treatment). Pituitaries were removed and processed as described below. Samples were
obtained from pups from 4 normoxic and 4 hypoxic litters.

Plasma measurements
All measurements were performed on pooled samples from each treatment group (3 pups/
sample). Leptin was measured by enzyme-linked immunosorbent assay (Crystal Chem, Inc.,
Downers Grove, IL) with an inter- and intra-assay coefficient of variation (CV) of 7% and 5%,
respectively. Leptin measurements were verified in some samples by radioimmunoassay (RIA)
(Linco Research, Inc., St. Charles, MO) with an inter- and intra-assay CV of 6% and 5%,
respectively. Ghrelin was measured by enzyme immunoassay (Phoenix Pharmaceuticals, Inc.,
Belmont, CA) with an inter- and intra-assay CV of <14% and <5%, respectively. Corticotropin
(ACTH; inter- and intra-assay CV=11% and 7%) and corticosterone (inter- and intra-assay
CV=7% and 6%) were measured by radioimmunoassay (MP Biomedicals, Inc., Orangeburg,
NY).

Proopiomelanocortin (POMC) and corticotropin-releasing hormone receptor-1 (CRHR1)
mRNA expression

Northern analysis of pituitary gene expression was performed using previously published
techniques (Jacobson et al. 1997). Anterior pituitaries were dissected from the
neurointermediate lobe at death and snap-frozen in liquid nitrogen (3 pituitaries per tube). Total
RNA was isolated using the TRI Reagent procedure (Molecular Research Center, Cincinnati,
OH), fractionated on 1.4% agarose gels containing 0.6 M formaldehyde, transferred to nylon
membranes in 20x SSC, and immobilized by UV cross-linking. Antisense 32P-labeled cRNA
probes were transcribed from appropriately linearized plasmids using T3 or T7 RNA
polymerase (Stratagene, La Jolla, CA) from cDNA clones complementary to mouse POMC
(Jacobson 2000, Raff et al. 2003), rat CRHR1 (Pozzoli et al. 1996), or rat 28S mRNA. CRHR1
probes were produced from a 461 bp cDNA clone based on a previously published sequence
(Perrin et al. 1993), and generously provided by Neurocrine Biosciences (San Diego, CA).
Membranes were hybridized at 65° C in 50% formamide, 2% SDS, 0.8 M NaCl, and washed
three times in 0.1x SSC, 0.1% SDS (65° C). After washing, blots were exposed to
phosphoimager screens (GE Healthcare, Sunnyvale, CA). The resulting autoradiographic
images were analyzed using Imagequant 5.0 software (GE Healthcare, Sunnyvale, CA), with
the CRHR1 and POMC signals normalized to 28S ribosomal RNA (N=7–11).

Statistical Analyses
Results are reported as mean ± SEM. Data were analyzed by two-way analysis of variance
(ANOVA) and the Student-Newman-Keuls method for multiple comparisons (SigmaStat
2.03).

RESULTS
Average body weight at PD6 was 11.4 ± 0.2 g (N=99) in normoxic controls. Average body
weight of normoxic pups at PD6 treated with dexamethasone was 23% lower than control (8.8
± 0.2 g; N=95; P<0.05). Pups exposed to hypoxia had an average body weight that was 25%
lower than normoxic controls at PD6 (8.6 ± 0.2 g; N=104; P<0.05). Pups exposed to hypoxia
and treated with dexamethasone had an average body weight at PD6 that was 39% lower than
normoxic controls (7.0 ± 0.1 g; N=112; P<0.05). The combination of dexamethasone and
hypoxia had an additive negative effect on body weight.

Bruder et al. Page 3

J Endocrinol. Author manuscript; available in PMC 2006 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The effects of dexamethasone on plasma concentrations of leptin (upper panel) and ghrelin
(lower panel) in 7-day-old pups are shown in Figure 1. Daily dexamethasone administration
on days 3–6 in a tapering dose regimen increased plasma leptin nearly seven-fold in 7-day-old
normoxic pups (P<0.001). There was a small but significant increase in plasma leptin
concentration during hypoxia alone (P<0.02). Hypoxia attenuated the leptin response to
dexamethasone, although it was still increased compared to normoxic, vehicle-treated controls
(P<0.001). There was a significant increase in the plasma concentration of ghrelin in normoxic
pups after dexamethasone treatment (P<0.001). Hypoxia alone had no effect on plasma ghrelin
and did not modify the dexamethasone-induced increase in ghrelin (P<0.001).

Figure 2 depicts plasma ACTH (upper-left panel), plasma corticosterone (upper-right panel),
and pituitary POMC and CRHR1 mRNA expression (lower panels). Prior dexamethasone
treatment decreased subsequent plasma corticosterone concentration in 7-day-old normoxic
pups to levels nearly half that of vehicle-treated normoxic controls (P<0.001). Plasma
corticosterone concentration was nearly doubled in hypoxic pups (P<0.001), but this effect
was blocked by prior dexamethasone (P<0.001). Prior dexamethasone treatment also resulted
in a significant increase in plasma ACTH on day 7 (24 h after last dexamethasone injection)
in normoxic (P<0.02) and hypoxic (P=0.007) pups. Hypoxia alone had no effect on plasma
ACTH concentration. Prior treatment with dexamethasone decreased pituitary POMC mRNA
expression, measured 24 h after the last dexamethasone injection, over two-fold in normoxic
(P=0.002) and hypoxic (P=0.009) pups. Hypoxia had no effect on pituitary POMC mRNA
expression, and there were no differences in dexamethasone-induced decreases between
normoxic and hypoxic pups (P>0.05). Prior treatment with dexamethasone increased pituitary
CRHR1 mRNA expression (P=0.013), regardless of inspired O2, when measured 24 h after
the last dexamethasone injection (7 days of age).

DISCUSSION
The present study examined the interaction of glucocorticoid therapy and a common neonatal
metabolic stress (hypoxia) on plasma leptin and ghrelin concentrations in the 7-day-old rat
pup. Dexamethasone treatment per se significantly increased plasma leptin and ghrelin
concentrations. Concomitant hypoxia attenuated the leptin, but not ghrelin, response to
dexamethasone. These findings, to the best of our knowledge, are the first to describe
dexamethasone-associated increases in plasma ghrelin in the normoxic or hypoxic neonatal
rat.

Leptin
Dexamethasone treatment in preterm infants has been shown to increase serum leptin and
insulin concentrations (Ng et al. 2002). We have previously observed significant
hyperinsulinemia in rat pups treated with the same dexamethasone regimen as the current study
(Bruder et al. 2004a). It has been suggested that there is no direct effect of dexamethasone on
leptin, but rather an indirect effect of the dexamethasone-induced inhibition of ACTH (Spinedi
& Gaillard 1998). We infer that ACTH was suppressed during dexamethasone therapy (PD3-6)
since corticosterone levels were very low (see below for discussion of ACTH). It is possible,
therefore, that dexamethasone-induced decreases in plasma ACTH may indirectly result in
increased leptin. Dexamethasone may also increase the concentration of free leptin while
having no affect on bound leptin or the soluble leptin receptor (Lewandowski et al. 2001). A
recent study found that glucocorticoids antagonize leptin action through rapid inhibition of the
signaling cascade associated with the leptin receptor (Ishida-Takahashi et al. 2004). The above
findings confirm an intimate relationship between the HPA axis and adipocyte leptin
production in the neonate.
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We have previously shown that hypoxia from birth to seven days of age in unhandled rat pups
resulted in a small but significant decrease in plasma leptin at 7 days of age (Raff et al.
2001a). This previous study used a leptin radioimmunoassay (RIA) while the present study
utilized an enzyme-immunoassay. In order to verify the present results, we re-assayed some
samples using the older RIA method and the two assay methods were in agreement. This can
be attributed to the injection, handling, and associated periods of very brief separation from
the dam, which influence endocrine responses in the pups (Salzmann et al. 2004, Walker et
al. 1991). Catecholamine release from the sympathetic nervous system (SNS) may be a
mediator of these responses (Young 2000). A previous study found that the transcription of
the human leptin gene is activated by hypoxia, via the transcription factor hypoxia-inducible
factor-1 (HIF-1) (Ambrosini et al. 2002). This lends support to the present study, but it does
not provide a complete explanation of our findings.

To our knowledge, the present study is the first to report the effects of dexamethasone on plasma
leptin in the hypoxic neonate. Interestingly, concomitant hypoxia attenuated the stimulatory
effect of dexamethasone on leptin. A previous study suggested that catecholamines directly
inhibit leptin production by binding to adipocyte adrenergic receptors (Scriba et al. 2000). It
is possible that increased SNS activity in the hypoxic pup blunted the leptin response to
dexamethasone.

Ghrelin
Information regarding the role of ghrelin in the control of appetite and growth in the adult is
currently expanding, although less is known of its role in development (Bellone et al. 2004,
Small & Bloom 2004). Ghrelin is most notably produced by endocrine cells of the gastric
mucosa, but is also produced in the intestine, hypothalamus, and pancreas (Mozid et al.
2003, Wierup et al. 2004). We have previously shown that hypoxia does not affect total or
active ghrelin in the plasma of neonatal rats, suggesting that the anorectic effect of hypoxia
does not involve changes in ghrelin (Raff 2003). Ghrelin stimulates the HPA axis at the level
of the hypothalamus, and glucocorticoids have been shown to be permissive for ghrelin-
induced food intake and accumulation of fat mass (Tung et al. 2004). A study in humans found
that endogenous and exogenous glucocorticoids decrease plasma ghrelin (Otto et al. 2004).
The present results, to our knowledge, are the first to describe glucocorticoid-induced increases
in ghrelin. This may be an important process in the developing animal. Dexamethasone-
induced increases in plasma ghrelin in hypoxic neonates could be a mechanism by which
appetite is stimulated to overcome the direct anorectic effects of hypoxia (Kayser 1992). We
also speculate that the attenuation by hypoxia of dexamethasone-induced increases in leptin
favors this orexigenic effect. These findings may be important in understanding the control of
neonatal growth in health and disease.

ACTH/Corticosterone
We have previously shown that hypoxia from birth to seven days of age increases plasma
corticosterone without affecting plasma ACTH (Raff et al. 2003). The present study confirmed
these findings and also showed that pituitary POMC and CRHR1 mRNA expression are
unaffected by hypoxia. The mediator of this sustained increase in corticosterone has yet to be
elucidated, but our previous study indicated that it might be driven by increases in SNS activity
(Raff et al. 2004).

Prior dexamethasone treatment (PD3-6) resulted in subsequent increases in plasma ACTH in
7-day-old pups with plasma corticosterone remaining low. It is likely that dexamethasone
initially suppressed the HPA axis at the hypothalamus and pituitary, also decreasing
adrenocortical function (Ford et al. 1997). After the discontinuation of dexamethasone, plasma
corticosterone remained suppressed such that, in the absence of glucocorticoid negative
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feedback, the pituitary rapidly increased ACTH production in order to reverse the suppression
of adrenocortical function. The tapering dexamethasone regimen used in the current study
likely facilitated this quick restoration of ACTH release, a finding in the neonate not found in
the adult (Nicholson et al. 1984).

This temporal sequence of the recovery of the HPA axis is also observed clinically, albeit in a
longer time domain (Chrousos 2001). That is, dexamethasone suppresses plasma ACTH, which
results in a decrease in adrenocortical function. When exogenous corticosteroids are
discontinued, ACTH recovers first and overshoots, which is necessary to reverse the decrease
in adrenocortical function. The main difference between our results and this well-known
clinical phenomenon is the time course of the recovery in that the increase in ACTH in the
neonate occurred within 24 h of the last (and lowest) dexamethasone dose. It is likely that the
short duration and tapering regimen of glucocorticoid therapy in the current study allowed the
rapid recovery of ACTH secretion. We suspect that adrenocortical function, which normally
lags behind ACTH, would have soon followed. Although this study was not designed to
optimize dexamethasone dosing in the neonate, it appears that this regimen, which was
designed to mimic dexamethasone therapy in human neonates (Flagel et al. 2002), allows a
very rapid recovery of pituitary function.

Since pituitary POMC mRNA expression remained suppressed after the cessation of
dexamethasone treatment, the increased ACTH secretion was likely the result of increased
post-translational processing possibly driven by increased corticotropin-releasing hormone
(CRH) during recovery from dexamethasone-induced inhibition (Lim et al. 2002). Previous
studies have shown that dexamethasone treatment increases CRHR1 mRNA expression in the
adult rat pituitary (Rabadan-Diehl et al. 1997). The present study measured increased CRHR1
expression in normoxic and hypoxic 7-day-old rat pituitaries, 24 hours after the final dose of
a tapering regimen of dexamethasone. Increased CRHR1 expression may be CRH-driven and/
or the result of an intracellular feedback mechanism in the pituitary (i.e. increased CRHR1
expression to overcome dexamethasone-induced suppression of POMC mRNA). Our findings
illustrate that, following suppression with dexamethasone, the neonatal HPA axis regains
responsiveness more quickly than that of the adult (Nicholson et al. 1984), and that this may
occur predominantly at the pituitary level (Ford et al. 1997).

Summary
The present study demonstrated that a tapering dose regimen of dexamethasone in the neonatal
rat modulates hormones involved in appetite and energy balance. Of great interest is the
attenuation of the leptin response to dexamethasone in hypoxic pups. This may be a beneficial
mechanism by which the developing animal attempts to maintain appetite in the face of the
anorectic effect of hypoxia (Kayser 1992). Dexamethasone-induced ghrelin production, which
was not inhibited by hypoxia, may produce a similar effect. The insulin-resistant state produced
by hypoxia (Bruder et al. 2004a) serves to divert energy substrates away from peripheral tissues
(i.e. adipose and muscle). Dexamethasone therapy is likely to augment this effect. This would
allow critical tissues such as the brain to preserve function during the hypoxic insult, and would
also explain growth failure (Bruder et al. 2004a). Hypoxia-induced increases in corticosterone
(Raff et al. 1999b) are also likely to contribute to the insulin resistance and possibly play a role
in maintaining appetite.

These findings have implications in short-term metabolic and endocrine control in the neonate.
We also speculate that there may be long-term consequences of these short-term adaptations
(Bruder et al. 2004a). Increases in leptin during development may permanently alter the neural
mechanisms controlling food intake and energy balance (Bouret et al. 2004, Pinto et al.
2004). Likewise, neonatal hyperinsulinemia is also suspected of causing metabolic
disturbances in the adult (e.g. insulin resistance and obesity) (Dorner & Plagemann 1994, Petry
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et al. 2001). Growth failure, and associated periods of catch-up growth, may also lead to
subsequent metabolic disease (De Souza & Moura 2000, Hales & Ozanne 2003). Increased
concentrations of endogenous or exogenous glucocorticoids in the neonate have also been
implicated in subsequent HPA axis dysfunction (Flagel et al. 2002), and may be detrimental
to brain development (Lindahl et al. 1988, Yeh et al. 2004). Neonatal hypoxia also leads to
long-term changes in sympathoadrenal function (Soulier et al. 1997). Therefore, it is important
not only to understand the acute responses to neonatal hypoxia and dexamethasone treatment,
but also to relate these responses to long-term maintenance of health.
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Figure 1. Effects of dexamethasone and/or hypoxia on plasma leptin and ghrelin concentrations in
the neonatal rat.
Rats were exposed to hypoxia from birth to seven days of age and treated with a tapering dose
regimen of dexamethasone (or vehicle) from postnatal day 3 to postnatal day 6. Plasma from
3 pups was pooled to create one sample. * Indicates a significant difference from Normoxia-
Vehicle with P<0.05. # Indicates a significant difference from Hypoxia-Vehicle with
P<0.05. + Indicates a significant difference from Normoxia-Dex with P<0.05. N values for
leptin measurements were: Normoxia-Vehicle (11), Normoxia-Dex (7), Hypoxia-Vehicle (9),
Hypoxia-Dex (7). N values for ghrelin measurements were: Normoxia-Vehicle (8), Normoxia-
Dex (4), Hypoxia-Vehicle (8), Hypoxia-Dex (4).
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Figure 2. Effects of dexamethasone and/or hypoxia on plasma corticosterone, plasma ACTH, and
pituitary POMC and CRHR1 mRNA expression in the neonatal rat.
Rats were exposed to hypoxia from birth to seven days of age and treated with a tapering dose
regimen of dexamethasone (or vehicle) from postnatal day 3 to postnatal day 6. Plasma from
3 pups was pooled to create one sample. Pituitary POMC and CRHR1 expression was measured
using a Northern blot technique. * Indicates a significant difference from Normoxia-Vehicle
with P<0.05. # Indicates a significant difference from Hypoxia-Vehicle with P<0.05. N values
for plasma corticosterone and ACTH measurements were: Normoxia-Vehicle (10), Normoxia-
Dex (6), Hypoxia-Vehicle (10), Hypoxia-Dex (8). N values for POMC measurements were:
Normoxia-Vehicle (11), Normoxia-Dex (7), Hypoxia-Vehicle (9), Hypoxia-Dex (7). N values
for pituitary CRHR1 measurements were: Normoxia-Vehicle (5), Normoxia-Dex (6).
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