Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982;324:479–494.4. doi: 10.1113/jphysiol.1982.sp014125

Synaptic organization of sensory and motor neurones innervating triceps brachii muscles in the bullfrog

Eric Frank 1, Monte Westerfield 1,*
PMCID: PMC1250718  PMID: 6980276

Abstract

1. The anatomy and physiology of sensory-motor pathways were studied in the brachial spinal cord of adult bullfrogs to characterize the properties and specificity of these connexions.

2. Motoneurones innervating a given forelimb muscle are located in discrete and reproducible regions of the lateral motor column. Yet only a fraction of the motoneurones in a particular region innervates any one muscle.

3. The central projections of sensory afferent axons from the triceps muscles extend throughout the rostro-caudal length of the brachial spinal cord. Within this region these projections terminate in an area containing many motoneuronal dendrites.

4. Within the triceps motor pool sensory neurones from the triceps muscles produce monosynaptic potentials only in triceps motoneurones even though these motoneurones are mingled with motoneurones innervating other muscles.

5. Motoneurones innervating each of the three heads of the triceps muscles, medial, internal and external, receive monosynaptic input from their own, homonymous muscle head. Sensory fibres from the medial head also innervate 98% of the heteronymous motoneurones projecting to the internal or external heads, and nearly 90% of the medial triceps motoneurones are innervated by sensory axons from the other two heads.

6. Similarly, other brachial motoneurones receive monosynaptic input from sensory axons in their own muscle nerves. However, most of the synaptic potentials evoked in triceps motoneurones by stimulation of muscle nerves other than triceps are of longer latency and probably involve polysynaptic pathways.

7. Thus, the pattern of synaptic connexions between muscle sensory afferents and motoneurones in the frog's spinal cord is specific. Furthermore, comparison with homologous pathways in the cat's spinal cord suggests that the strength and pattern of these connexions are similar.

Full text

PDF
479

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Leefmans F. J., De Santis A., Miledi R. Effects of some divalent cations on synaptic transmission in frog spinal neurones. J Physiol. 1979 Sep;294:387–406. doi: 10.1113/jphysiol.1979.sp012936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown A. G., Fyffe R. E. The morphology of group Ia afferent fibre collaterals in the spinal cord of the cat. J Physiol. 1978 Jan;274:111–127. doi: 10.1113/jphysiol.1978.sp012137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burke R. E., Walmsley B., Hodgson J. A. HRP anatomy of group Ia afferent contacts on alpha motoneurones. Brain Res. 1979 Jan 12;160(2):347–352. doi: 10.1016/0006-8993(79)90430-x. [DOI] [PubMed] [Google Scholar]
  4. Cruce W. L. A supraspinal monosynaptic input to hindlimb motoneurons in lumbar spinal cord of the frog, Rana catesbiana. J Neurophysiol. 1974 Jul;37(4):691–704. doi: 10.1152/jn.1974.37.4.691. [DOI] [PubMed] [Google Scholar]
  5. Cruce W. L. The anatomical organization of hindlimb motoneurons in the lumbar spinal cord of the frog, Rana catesbiana. J Comp Neurol. 1974 Jan 1;153(1):59–76. doi: 10.1002/cne.901530106. [DOI] [PubMed] [Google Scholar]
  6. ECCLES J. C., ECCLES R. M., LUNDBERG A. The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J Physiol. 1957 Jun 18;137(1):22–50. doi: 10.1113/jphysiol.1957.sp005794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Erulkar S. D., Soller R. W. Interactions among lumbar motoneurons on opposite sides of the frog spinal cord: morphological and electrophysiological studies. J Comp Neurol. 1980 Aug 1;192(3):473–488. doi: 10.1002/cne.901920307. [DOI] [PubMed] [Google Scholar]
  8. FRANK K., FUORTES M. G. Potentials recorded from the spinal cord with microelectrodes. J Physiol. 1955 Dec 29;130(3):625–654. doi: 10.1113/jphysiol.1955.sp005432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frank E., Harris W. A., Kennedy M. B. Lysophosphatidyl choline facilitates labeling of CNS projections with horseradish peroxidase. J Neurosci Methods. 1980 Apr;2(2):183–189. doi: 10.1016/0165-0270(80)90059-x. [DOI] [PubMed] [Google Scholar]
  10. Frank E., Westerfield M. The formation of appropriate central and peripheral connexions by foreign sensory neurones of the bullfrog. J Physiol. 1982 Mar;324:495–505. doi: 10.1113/jphysiol.1982.sp014126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grinnell A. D. A study of the interaction between motoneurones in the frog spinal cord. J Physiol. 1966 Feb;182(3):612–648. doi: 10.1113/jphysiol.1966.sp007841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Joseph B. S., Whitlock D. G. Central projections of selected spinal dorsal roots in anuran amphibians. Anat Rec. 1968 Feb;160(2):279–288. doi: 10.1002/ar.1091600214. [DOI] [PubMed] [Google Scholar]
  13. Shapovalov A. I., Shiriaev B. I. Dual mode of junctional transmission at synapses between single primary afferent fibres and motoneurones in the amphibian. J Physiol. 1980 Sep;306:1–15. doi: 10.1113/jphysiol.1980.sp013381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shapovalov A. I., Shiriaev B. I. Two types of electronic EPSP evoked in amphibian motoneurons by ventral root stimulation. Exp Brain Res. 1978 Nov 15;33(3-4):313–323. doi: 10.1007/BF00235556. [DOI] [PubMed] [Google Scholar]
  15. Székely G. The morphology of motoneurons and dorsal root fibers in the frog's spinal cord. Brain Res. 1976 Feb 20;103(2):275–290. doi: 10.1016/0006-8993(76)90799-x. [DOI] [PubMed] [Google Scholar]
  16. Tamarova Z. A. Vozbuzhdaiushchie postsinapticheskie potentsialy v poiasnichnykh motoneironakh liagushki, vyzvannye razdrazheniem myshechnykh i kozhnykh nervov. Fiziol Zh SSSR Im I M Sechenova. 1977 Jun;63(6):806–813. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES