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Eukaryotic ribosomes are made of two components, four ribosomal RNAs, and approximately 80 ribosomal proteins
(r-proteins). The exact number of r-proteins and r-protein genes in higher plants is not known. The strong conservation in
eukaryotic r-protein primary sequence allowed us to use the well-characterized rat (Rattus norvegicus) r-protein set to
identify orthologues on the five haploid chromosomes of Arabidopsis. By use of the numerous expressed sequence tag (EST)
accessions and the complete genomic sequence of this species, we identified 249 genes (including some pseudogenes)
corresponding to 80 (32 small subunit and 48 large subunit) cytoplasmic r-protein types. None of the r-protein genes are
single copy and most are encoded by three or four expressed genes, indicative of the internal duplication of the Arabidopsis
genome. The r-proteins are distributed throughout the genome. Inspection of genes in the vicinity of r-protein gene family
members confirms extensive duplications of large chromosome fragments and sheds light on the evolutionary history of the
Arabidopsis genome. Examination of large duplicated regions indicated that a significant fraction of the r-protein genes have
been either lost from one of the duplicated fragments or inserted after the initial duplication event. Only 52 r-protein genes
lack a matching EST accession, and 19 of these contain incomplete open reading frames, confirming that most genes are
expressed. Assessment of cognate EST numbers suggests that r-protein gene family members are differentially expressed.

The eukaryotic ribosome is a complex structure
composed of four rRNAs and about 80 ribosomal
proteins (r-proteins). It represents an essential piece
of the cell machinery, responsible for protein syn-
thesis, and as such plays a major role in controlling
cell growth, division, and development. For exam-
ple, previous studies have shown that genetic de-
fects in ribosomal components, such as reduction of
the levels of individual r-proteins, can cause delete-
rious effects on the development and physiology of
an organism. In Drosophila melanogaster, mutations
in r-proteins genes cause the haplo-insufficient
Minute phenotype with reduced growth and cell
division rates, characterized by a reduced body size
and short, thin bristles (Lambertsson, 1998). In con-
trast, a conditional deletion in the gene encoding
r-protein S6 in adult mice (Mus musculus) affects cell
cycle progression but not cell growth (Volarevic et
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al.,, 2000). In humans, a quantitative reduction in
synthesis of the X-linked form of r-protein S4 is
observed in individuals with Turner syndrome
(monosomic for X) and may contribute to this com-
plex phenotype, which includes short stature and
infertility (Zinn and Ross, 1998). In plants, muta-
tions in r-protein genes affect embryo viability or
plant development (Van Lijsebettens et al., 1994;
Tsugeki et al., 1996; Revenkova et al., 1999; Ito et al.,
2000). In addition, a positive correlation was re-
ported between the level of r-protein gene transcript
accumulation and cell division in suspension cul-
ture cells (Joanin et al., 1993; Garo et al., 1994) or
tissues such as auxin-treated hypocotyls, apical
meristems, young leaves, and lateral roots (Gantt
and Key, 1985; Williams and Sussex, 1995).
Numerous analyses on prokaryotic ribosomes and
r-proteins have provided significantly to our knowl-
edge of ribosome structure and composition. Three-
dimensional structures of the 30S and 50S ribosomal
subunits of thermophilic eubacteria (30S, Thermus
thermophilus; 50S, Haloarcula marismortoui) have re-
cently been described at 5.5- and 2.5-A resolution,
respectively, from crystallographic data (Ban et al.,
1999, 2000; Clemons et al., 1999). In Escherichia coli,
55 r-proteins have been identified and their amino
acid sequences determined (Wittmann, 1982;
Wittmann-Liebold et al., 1990). The ordered assem-
bly process of eubacterial ribosomes is also reason-
ably well known (Nomura et al., 1984; Culver et al.,,
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1999). It is generally accepted that ribosomes of an
archaebacterial ancestor gave rise to the cytosolic
ribosomes of eukaryotes (Matheson et al.,, 1990;
Wittmann-Liebold et al., 1990; Wool et al., 1995). By
contrast, the r-proteins of plastids and mitochondria
show strong evolutionary similarity to those of eu-
bacteria and include organelle-specific proteins
(Graack and Wittmann-Liebold, 1998; Koc et al.,
2000; Yamaguchi and Subramanian, 2000; Yamagu-
chi et al., 2000). In eukaryotes, the protein compo-
sition of rat (Rattus norvegicus) ribosomes was de-
termined by direct protein sequencing followed by
gene cloning and a presumed complete set of 79
proteins was compiled (Wool et al., 1995). In addi-
tion, genes corresponding to 78 Saccharomyces cerevi-
siage r-proteins were identified through genome se-
quencing efforts (Goffeau et al., 1996; Planta and
Mager, 1998). Eukaryotic r-proteins can be classified
based on homology to r-proteins of archae- and
eubacteria (Wool et al., 1995). The 80S rat ribosome
contains 33 proteins for which orthologues can be
found in eubacteria, archaebacteria, and eukaryotes
(Group I); 35 proteins with orthologues in archae-
bacteria and other eukaryotes (Group II); and 21
proteins that appear to be unique to eukaryotes
(Group III). The striking evolutionary conservation
of r-proteins is not surprising given the constraints
of rRNA-protein interactions, coordinated ribosome
assembly, and ribosome function. In fact, phyloge-
netic relationships between animal, fungi, and plant
kingdoms have been inferred from comparison of
orthologous r-proteins (Veuthey and Bittar, 1998).

The expression and distribution of r-protein genes
of both prokaryotes and eukaryotes has also been
examined. In eubacteria, most of the r-protein genes
are clustered in a few operons, which allows for
coordinated regulation (Nomura et al., 1984). Ken-
mochi et al. (1998b) recently mapped 75 human
r-protein genes and showed that they are distributed
over all chromosomes, with a bias toward chromo-
some 19. Synthesis of r-proteins in eukaryotes un-
doubtedly requires coordination of now unlinked
genes. It is striking that the regulation of r-protein
gene expression appears to occur at the transcrip-
tional level in yeast (Saccharomyces cerevisiae; Planta
and Mager, 1998) and predominantly at the transla-
tional level in animals (Meyuhas, 2000; Meyuhas and
Hornstein, 2000).

In contrast to the information available on
r-proteins and r-protein genes in prokaryotes and a
few eukaryotic models (rats and yeast), limited in-
formation is available on r-proteins and the number,
distribution, and expression of r-protein genes in
plants. Gantt and Key (1983) resolved 40 and 51
proteins of the small (40S) and large (60S) subunits
of the cytosolic ribosomes of soybean (Glycine max)
by two-dimensional gel electrophoresis. In addition,
plant genes encoding 77 orthologues to rat cytosolic
r-proteins were identified (Bailey-Serres, 1998), in-
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cluding an r-protein (P3) that is apparently limited
to plants (Szick et al., 1998). Information describing
the genomic distribution of r-protein genes in plants
is limited to the mapping of 57 loci for r-protein
genes in rice (Oryza sativa; Wu et al., 1995). How-
ever, because this study relied on RFLPs, many loci
may have been missed due to lack of polymorphism
and cross hybridization between members of gene
families. Reconstruction of full-length Arabidopsis
r-protein cDNAs from redundant overlapping ex-
pressed sequence tags (ESTs) demonstrated that the
occurrence of small gene families with several tran-
scribed genes seems to be the rule rather than an
exception (Cooke et al., 1997).

Several studies on plant r-protein genes have re-
vealed the presence of multigene families in which
members show both overlapping and differential
patterns of mRNA accumulation (Larkin et al., 1989;
Van Lijsebettens et al., 1994; Williams and Sussex,
1995; Dresselhaus et al.,, 1999; Revenkova et al.,
1999). Evidence that r-protein gene expression may
be controlled at a posttranscriptional level was ob-
served for L13 in rapeseed (Brassica napus) and Ara-
bidopsis (Saez-Vasquez et al., 2000), P2 in anoxic
roots of maize (Zea mays) seedlings (Fennoy and
Bailey-Serres, 1998), as well as 54, S6, L3, and L16
following imbibition in embryos of maize (Beltran-
Pena et al., 1995). From these analyses, it appears
that r-protein expression in plants may be regulated
at the transcriptional and posttranscriptional levels.

The international Arabidopsis Genome Initiative
(AGL Bevan et al., 1997; Lin et al., 1999; Mayer et al.,
1999; AGI, 2000) has led to the to the accumulation
of an enormous quantity of genomic sequence data,
in addition to more than 112,500 ESTs (Hofte et al.,
1993; Newman et al.,, 1994; Cooke et al., 1996;
Asamizu et al., 2000). The essentially complete ge-
nome sequence is publicly accessible through The
Arabidopsis Information Resource (TAIR) database
(http:/ /www.Arabidopsis.org/). This situation pro-
vided a unique opportunity for analyzing r-protein
gene number, chromosomal location, and expres-
sion. Here, we report the identification and map
positions of 249 r-protein genes of Arabidopsis. Lo-
cation of the genes was initially determined by
physical mapping using ESTs and subsequently
confirmed from the genomic sequence data, in some
cases of genomic regions that were not completely
annotated. Analysis of r-protein gene distribution
initially allowed us to discover duplications of sev-
eral very large DNA sequences, which shed light on
Arabidopsis genome evolution (Blanc et al., 2000).
Comparison of the distribution of these gene fami-
lies in the Arabidopsis genome and in other organ-
isms and its implications on the understanding of
multigene family organization and genome evolu-
tion are discussed. The systematic identification of
ESTs representing different gene family members as
well as reverse transcriptase (RT)-PCR on RNA ob-

399



Barakat et al.

tained from different tissues and PCR on a cDNA
library (Newman et al., 1994) revealed that levels of
r-protein pseudogenes are very low and indicated
that many of genes family members are differen-
tially expressed. Variation in r-protein gene family
member sequences and expression patterns raises
the possibility of ribosome heterogeneity at subcel-
lular and intracellular levels.

RESULTS

Identification of 249 Cytoplasmic r-Protein
Genes in Arabidopsis

To identify r-protein genes in the Arabidopsis
genome, we chose rat as the eukaryotic model be-
cause its r-protein genes have been extensively stud-
ied and corresponding genes in plants had been
identified (Bailey-Serres, 1998). We collected all 79
rat r-protein sequences from the Swiss-PROT library
(Bairoch and Apweiler, 2000) and carried out
TBLASTN (Altschul et al., 1997) searches on Arabi-
dopsis EST and cDNA sequences in GenBank (Re-
lease 65.0, November 2000). Most of the 79 rat pro-
tein genes had several orthologues in Arabidopsis
based on high probability BLAST scores (data not
shown). An estimate of the number of expressed
genes in each family was determined by construct-
ing contigs from ESTs. The accuracy of EST contig
construction was tested as described by Cooke et al.
(1997) and redundancy within families was elimi-
nated by careful comparison of the contigs to one
another and to genomic sequences. In this manner,
we identified 200 r-protein genes. In addition,
TBLASTN alignment against Arabidopsis genomic
sequence data released through the AGI allowed us
to identify a total of 249 r-protein genes, including
101 encoding 32 putative small-subunit proteins and
148 encoding 48 putative large-subunit proteins (Ta-
ble I). Genes identified from ESTs and genomic
sequences were compared and a nonredundant set
of r-proteins was collated. A perfect match to a
genomic sequence was found for all 200 EST contigs.
Therefore, this approach revealed an additional 49
genomic sequences that were not identified by EST
contigs, including those that appear to contain an
incomplete ORF. This analysis also resulted in dis-
covery of 36 r-protein genes that were not detected
by automated annotation or in which the annotation
was incorrect (Table I, indicated with an asterisk
after the gene name). Because no orphaned EST
contigs were identified, it seems unlikely that addi-
tional r-protein genes will be identified in the cen-
tromeric regions that have not been fully sequenced.

Arabidopsis Cytoplasmic r-Proteins Are Encoded by
Small Gene Families

We identified multiple Arabidopsis r-protein
genes for all 79 r-protein types of rat. We propose a
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unifying r-protein gene nomenclature in which Ara-
bidopsis r-protein gene names contain the prefix RP
(r-protein) and the suffix S or L referring to r-protein
type (small or large) modeling that found for the
mammalian nomenclature. For example, RPL3 en-
codes r-protein L3. The one exception to this rule is
the conventional nomenclature for the acidic ribo-
somal phosphoproteins, known as the P proteins
(here, RPP2 encodes P2). For each distinct gene
family member a letter is provided (i.e. RPL3A and
RPL3B are distinct genes that encode L3). This al-
phabetic designation of gene family members is or-
dered by chromosomal location. In addition, previ-
ously published gene designations are included in
Table I in parentheses. The number of genes within
an r-protein gene family varies between two and
seven (L41), with most families containing three or
four genes (Table I and Fig. 1). In 21 instances, the
genomic sequences lacked a complete ORF (for ex-
ample, the deduced ORF encoded a truncated pro-
tein due to a premature translational stop codon, a
frameshift in the ORF, or an internal deletion) and
these were designated an incomplete ORF; in most
of these cases (19), there was no cognate EST iden-
tified for these presumed pseudogenes. The copy
number of r-protein genes is apparently random.
There was no bias based on ribosomal subunit or
r-protein group classification (see Table I).

Arabidopsis r-Protein Genes Are Not
Distributed Randomly

Database mining allowed us to identify bacterial
artificial chromosome (BAC) or phage artificial
chromosome (P1) clones carrying one or several
genes for r-proteins (Table I). In addition, existing
knowledge of the location of these clones allowed us
to identify the positions of the r-protein genes on the
AGI map (http://www.Arabidopsis.org). A com-
posite map of the 249 r-protein genes, integrating
genomic sequence information and nearest genetic
marker data available through AGI, was con-
structed (Fig. 1). Chromosome map positions are
given in centiMorgans from the top of the chromo-
some, and the nearest genetic marker to each
r-protein gene is indicated in Table I. Mapping re-
sults are also summarized in Table II. We observed
differences in the number of genes per chromosome
as the number of r-protein genes located on chro-
mosomes 1, 2, 3, 4, and 5 are 54, 45, 71, 29, and 50,
respectively. The distribution of the r-protein genes
is visible on the gene map (Fig. 1; r-protein gene
density is 538 Kb per r-protein gene for chromosome
1, 436 Kb per r-protein gene for chromosome 2, 326
Kb per r-protein gene for chromosome 3, 605 Kb per
r-protein gene for chromosome 4, and 519 Kb per
r-protein gene for chromosome 5. This situation ap-

(Continues on p.408)
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Figure 1. Genomic location of Arabidopsis r-protein genes. The 249 Arabidopsis r-protein genes are mapped by distance
(centiMorgans) to nearest genetic marker from the distal short arm on the genetic map of each chromosome (Lister et al.,
1993). Centromeres are shown as black circles. Genes listed linearly are tandemly arranged on the same chromosome and
those located on the same BAC clone are depicted in red. An asterisk indicates genes with an incomplete ORF. Duplicated
regions corresponding to numbers 1, 2, 3, 4, 5, 6, and 7 from Table Il are indicated in yellow, red, blue, green, pink, gray,
and white, respectively. Genes conserved between duplicated regions are underlined.

(Continued from p. 400)

pears to contrast with the even distribution of all
protein coding sequences observed for the five chro-
mosomes (AGI, 2000); however, statistical analysis
(g test, P value = 0.4522) indicated that these dif-
ferences are not significant. If the r-protein genes
were randomly distributed, approximately one gene
per 500 kb would be expected; however, in 29 in-
stances, two to four r-protein genes were found on a
single BAC (Table II). In eight instances, genes that
encode different r-proteins are within 5 kb. In sev-
eral additional cases, r-protein genes have been du-
plicated and found on the same BAC, and in one
instance the genes are triplicated within the same
BAC (515 on chromosome 5). In addition, there are
several examples where only one r-protein gene is
found within a BAC; nevertheless, the density of
r-protein genes within that region may still be rather
high (Fig. 1). These data indicate that localized du-
plication of these genes has occurred infrequently.

In the analysis of the distribution of r-protein
genes, we observed that RPL28A and RPS30A are on
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chromosome 2 and RPL28C and RPS30B are on chro-
mosome 4. This observation led us to compare adja-
cent genes in these two BACs (Table III, Fig. 1, genes
conserved between duplications are underlined;
about one-half of the 249 r-protein genes are in cur-
rently identified duplicated regions; in Fig. 1, large
duplicated regions are shown). However, the per-
centage of genes encoding the same type of r-protein
found in conserved positions in both copies of the
duplicated regions is 25% to 30% with a range be-
tween 0% to 66% (Table III). This observation is con-
sistent with another study that found only 28% of
genes in duplicated regions are actually present in
duplicate copies (Vision et al., 2000). The most ex-
treme situation is illustrated by two duplicated seg-
ments on chromosomes 1 (6.1-10.8 cM) and 2 (50.6—
63.9 cM), which contain two and seven r-protein
genes, respectively, of which none are paralogous
(Table III, Duplicated Region 2; Fig. 1, red colored
regions). In summary, analysis of the distribution of
the r-protein genes in the Arabidopsis genome

Plant Physiol. Vol. 127, 2001



Table 1. Arabidopsis BAC clones containing more than one r-pro-
tein gene

Chro[r\rjlc(:.some BAC Clone Genes ll;ti(:tragszs
Kb
1 F19P19 RPL23A,RPS15A 73.2
F22D16 RPL22A,RPLT9A 15.7
F14)9 RPL21A,RPL21B 44.3
F11F8 RPL35A,RPS23A 49.3
TIL6 RPL9B,RPLIC 11.1
T2P11 RPL34A,RPL10B 5.0
F2P9 RPL6B,RPL6C 1.2
2 F6F22 RPS15aB,RPL28A 0.3
RPL28A,RPL3TA 0.3
RPL31A,RPS30A 0.6
F15K20 RPP2B,RPP2A 0.7
F9C22 RPST14A,RPL40A 1.0
F12L6 RPL35B,RPL23aA 23.2
T2P4 RPS26A,RPS26B 15.5
3 F3E22 RPL29A,RPL29B 2.6
T9J14 RPS3aA,RPS24A 29.4
F18C1 RPL18B,RPL22B 6.2
FI9F8 RPL37aB,RPL41E 56.5
T15B3 RPS29A,RPS29B 20.9
T2J13 RPL13B,RPL13C 15.5
F2206 RPS14C,RPL40B 0.9
T20K12 RPS27B,RPS27C 0.6
4 F14M19 RPST0A,RPP3A 50.8
F19B15 RPS30B,RPL28C 2.5
F1715 RPS29C,RPS29D 14.5
5 T22P11 RPL35D,RPL36C 53.2
F9G14 RPS23B,RPL4D 3.2
T5E8 RPS15B,RPS15C 0.8
RPS15C,RPS15D 1.6
MRO11 RPST1C,RPL13D 54.8
T1G16 RPS21C,RPL22C 28.1
MIK19 RPS30C,RPL31C 8.0

showed no evident clustering of these genes. How-
ever, r-protein gene density in some regions of the
Arabidopsis genome is much higher than that ex-
pected for a uniform distribution.

Expression of Arabidopsis r-Protein Genes Appears to
Be Differentially Regulated

The occurrence of r-protein gene families raises the
question of whether the genes are differentially reg-
ulated. The frequency of ESTs available in GenBank
(database of expressed sequence tags) has been pro-
posed as a useful tool for preliminary analysis of
gene expression (Adams et al., 1995). Despite the
limited number of Arabidopsis ESTs (112,500; release
022301, February 2001) available in GenBank, we
used this approach to obtain a first assessment of
r-protein gene expression. All gene families have at
least one EST for at least one gene, but the frequency
of ESTs for individual genes varies greatly between
different gene family members and gene families.
Many r-protein genes (approximately 20%) appar-
ently are very highly expressed, as indicated by the
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EST number in Table I (10-40 ESTs). The frequency of
ESTs observed per gene was variable among genes
from the same family. For example, in the PO gene
family, the three genes encode complete ORFs but
were represented by 40, 6, and 0 ESTs. On the other
hand, in many cases a representative EST was ob-
served for each member of a given family. Cognate
ESTs were not found for 52 of the r-protein genes
(approximately 20%). Of these, 19 lack a complete
ORF and hence are most likely pseudogenes. Genes
with a complete deduced ORF may lack a represen-
tative EST due to low levels of mRNA accumulation
solely in specific cell types or at a specific develop-
mental stage. To examine this possibility, PCR and
RT-PCR (with gene specific primers) using a cDNA
library or RNA prepared from 3-week-old plants was
performed on a subset of r-protein genes lacking a
corresponding EST. A PCR (or RT-PCR) product was
observed for many (72%) of these genes (data not
shown), suggesting that they may be transcribed at
some stage in development. Consistent with analyses
from other groups, we observed differential levels of
expression of individual gene family members.

Global analysis of the expression of the 54, 45, 71,
29, and 50 r-protein genes located on chromosomes 1,
2, 3, 4, and 5, respectively, showed that the percent-
age of these r-protein genes for which an EST is
available is 74.1%, 80%, 77.4%, 79.3%, and 84%, re-
spectively. The average numbers of ESTs per mapped
r-protein gene per chromosome are 7.8, 5.3, 5.4, 5.3,
and 6.1 (chromosomes 1, 2, 3, 4, and 5, respectively).
These results suggest a positive bias in favor of chro-
mosome 1 and 5: The r-protein genes on the two
chromosomes, in average, seemed to be more abun-
dantly expressed. However, statistical analysis using
a non-parametric ANOVA (Kruskal-Wallis test, per-
formed because the data failed to meet the assump-
tion of normality [data not shown] for a standard
ANOVA) indicates that there is no significant differ-
ence (P value = 0.6087) in the expression of the
r-protein genes, among the five chromosomes, based
on EST frequency (SAS Institute Inc., 1989).

Biochemical Characteristics of Deduced
Arabidopsis r-Proteins

The deduced amino acid sequence for each of the
80 types of r-proteins was determined. In addition,
for each r-protein, the predicted molecular mass and
pl was calculated, and the percent identity to the rat
ortholgue was determined. The deduced Arabidopsis
r-proteins range in size from 44.7 (L4) to 3.4 (L31) kD.
Of the deduced proteins, Sa, PO, P1, P2, P3, and S12
were acidic (pI 4.0-5.8) and the remainder were basic,
ranging in pl from 8.1 (527) to 12.8 (S30 and L39). The
positive charge of the majority of r-proteins is con-
sistent with their interaction with rRNA. The identity
between Arabidopsis and rat orthologues averaged
66% and ranged from 96% for L41% to 35% for L28.
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Table Ill. Large duplicated regions of the Arabidopsis genome-containing r-protein genes

Duplicated Regions

No. of Genes

No. of Genes Conserved % Genes Conserved

Duleicate D wilt.hir; d between Duplicated between Duplicated
o Chromosome Border BAC clones Position op I-Ca ¢ Regions Regions
Regions
M
1 1 F20D23-T7N9 23.6-41.1 6 3 50
1 T6C23-F18B13 110.7-123.8 8 - 38
2 1 F19P19-F22013 6.1-10.8 2 0 0
2 T22013-F4P9 50.6-63.9 7 - 0
3 2 F16F14-T19L18 30.9-50.6 10 6 60
4 T13J8-T5)17 76.8-108.5 12 - 50
4 1 F27)15-T6H22 73.5-83.8 3 2 66
3 MBK21-MOE17 16.2-28.1 8 - 25
5 3 T6H20-F24M12 60.5-68.2 7 2 29
5 K19M22-K1L20 113.7-128 8 - 25
6 4 FCA8-T13K14 57.6-65.4 3 2 66
5 K23L20-MNJ7 94.1-99.4 4 - 50
7 4 F22K18-T27E11 72.4-76.8 4 3 50
5 K215-MJB24 105.4-113.7 4 - 50

It is interesting that an L28 orthologue was not iden-
tified in the genomic sequence of S. cerevisiae (Planta
and Mager, 1998), indicating that it is a rather diver-
gent r-protein. A final observation was that the iden-
tity between rat and individual Arabidopsis ortho-
logues (deduced proteins from the same gene family)
were usually within 0% to 5.0% of one another, indi-
cating that members of individual r-protein families
are highly conserved. However, there were a few
exceptions where the identities within an r-protein
family varied 14.1%, 24.0%, and 30.1%, correspond-
ing to the r-proteins P2, L7, and S15a, respectively.
These distinctions in proteins encoded by these
classes could result in ribosomal heterogeneity or
may reflect the evolution of proteins with extra-
ribosomal function.

DISCUSSION

Arabidopsis Ribosomes Contain at Least 80 r-Protein
Types, Encoded by 249 Genes

Previous work from our two groups identified 106
Arabidopsis r-protein genes by contig construction
from EST sequences coding for 50 orthologues of
yeast r-proteins (Cooke et al., 1996) and 77 Arabidop-
sis orthologues of rat r-proteins (Bailey-Serres, 1998).
This report extends the parallel analyses of our two
groups on the set of Arabidopsis r-proteins that can
be defined by homology to the 79 known eukaryotic
r-proteins. All rat r-protein genes have an orthologue
in Arabidopsis; however, plants possess an addi-
tional r-protein, P3, that appears to be limited to the
plant kingdom (Szick et al., 1998). A total of 80
r-protein types encoded by 249 genes were classified,
positioned on the AGI map, and the nearest genetic
marker identified. Based on this study, Arabidopsis
has at least 32 small ribosomal subunit proteins en-
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coded by 101 genes and 48 large ribosomal subunit
proteins encoded by 148 genes. Due to the extensive
segmental duplication of the Arabidopsis genome, all
r-protein genes have between two and several para-
logues. Our study included analysis of genomic se-
quences and ESTs encoding r-proteins. Because all
ESTs were assigned to specific genomic sequences, it
is unlikely that additional genes that encode rat
r-protein orthologues will be identified in the unse-
quenced centromeric and rDNA regions. Based on
this analysis of Arabidopsis r-protein genes, the pro-
tein composition of plant ribosomes is very similar to
that of other eukaryotes. Our study provides an entry
to several important issues such as systematic anno-
tation of r-protein genes; normalization of nomencla-
ture; evolutionary studies of gene structure; analysis
of gene expression at the transcriptional, posttran-
scriptional, and translational levels; examination of
r-protein transport to the nucleolus; and ribosome
biogenesis.

Analysis of Arabidopsis r-Protein Gene Distribution
Provides Insight into r-Protein Gene Evolution

In humans, r-protein genes are found on all chro-
mosomes but with a bias toward chromosome 19
(Kenmochi et al.,, 1998b). In prokaryotic genomes,
r-protein gene clustering is found in the form of
operons in which expression of several genes is co-
ordinately regulated under a single promoter (No-
mura et al., 1984). No obvious similar clustering has
been reported in eukaryotic genomes and recent re-
sults (Kenmochi et al., 1998a) showed only one ex-
ample of local clustering in the human genome, three
genes encoding L13A, S11, and L18 being located
within 0.6 cM. It is noteworthy that in the Arabidop-
sis genome, r-protein gene density is much higher in
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several regions than would be expected from a uni-
form distribution. For example, the chromosome 2
BAC clone F6F22 contains four different r-protein
gene types within 1.2 kb (Table II). Whether this
grouping corresponds to a fossil functional clustering
remains to be established by the analysis of different
plant genomes.

Analysis of r-protein gene organization has served
as a starting point for new insights on genome orga-
nization and dynamics in Arabidopsis. It has become
obvious that the Arabidopsis genome is a mosaic of
duplicated regions (AGI, 2000; Blanc et al., 2000;
Paterson et al., 2000; Vision et al., 2000). These data
have extended observations made by comparison of
chromosomes 2 and 4 (Lin et al., 1999; Mayer et al.,
1999). These duplications are either the result of re-
ciprocal translocations between Arabidopsis chromo-
somes or of an ancient polyploidisation event. It can
be reasonably assumed that large duplications con-
stitute one of the main factors of gene duplication in
Arabidopsis and have certainly contributed to the
increase in r-protein gene number because one-half
of the 249 mapped genes are located in duplicated
regions. However, closer examination of r-protein
genes in duplicated regions shows that considerable
rearrangements involving r-protein genes have taken
place following duplication of chromosomal seg-
ments. Genes encoding the same r-protein are found
in conserved positions in both duplicated segments
for only approximately 25% of the genes. This obser-
vation indicates that although many r-protein genes
occur in large duplicated segments, the story is much
more complex. It appears that one copy frequently
was lost for many of the pairs following duplication
of a large chromosomal region, or r-protein genes
have been inserted following duplication events.
However, the relatively low number of intron-less
genes having an intron-containing paralogue argues
against the latter mechanism (Martinez et al., 1989).

Because r-proteins form a complex macromolecule
in which coordinated regulation of protein levels as
well as steric constraints are essential, it is possible
that negative selection has led to the elimination of
duplicated copies of certain genes. However, the
Group I class of r-proteins are found to occur within
eubacteria, archaebacteria, and eukaryotes (Wool et
al., 1995), yet do not show any bias toward lower
copy number than Group II and III r-proteins. Our
analysis has shown in addition that tandem duplica-
tion, which is another mechanism to increase gene
copy number, does not appear to have been impor-
tant in the expansion of r-protein gene families. Be-
cause Arabidopsis is a model genome that will be
used to investigate the genomes of many cultivated
crops, and because r-protein genes have been con-
served throughout evolution, this work should serve
as a basis to analyze the distribution and expression
of r-protein genes in crop plant species.
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The Majority of Arabidopsis r-Protein Genes Appear to
Be Expressed

An important question raised by the occurrence of
multigene families is the regulation and level of ex-
pression of each member in the family. Assessing
r-protein gene expression by the presence of an EST
showed that at least 77% of r-protein genes (not
including the 21 genes with incomplete ORFs) are
expressed at a level detectable by an EST. Most or all
copies of genes in the individual families have been
tagged. The r-protein genes for which no EST is yet
available could correspond either to genes that are
rarely transcribed or to pseudogenes. As shown in
Table I, several r-protein genes for which an EST was
not identified have truncated ORFs or deletions
within their ORFs. Analysis of expression, PCR, or
RT-PCR indicated that many of these genes are in fact
expressed (Table I, EST column, represented with an
E or NE). Only 7% of r-protein genes were not ex-
pressed in the tissues tested. The infrequent nature
(7%) of potential r-protein pseudogenes is in agree-
ment with previous data of Lin et al. (1999), who
reported that only 10% of all the genes identified or
predicted on chromosome 2 correspond to pseudo-
genes. Our observation that the majority of r-protein
genes are expressed in plants is notably different
from the situation reported in mammals, in which
multiple pseudogenes and only one functional,
intron-containing gene was observed for most
r-proteins (Wiedemann and Perry, 1984; Wagner and
Perry, 1985; Baker and Board, 1992).

The large number of expressed genes in multigene
families in plants is probably due to the fact that
plants have evolved by polyploidy (Dornelas et al.,
1998), followed by specialization of the function or
expression patterns of gene family members, thus
allowing increased plasticity in response to non-
optimal growth conditions. The high degree of se-
quence identity between different r-proteins suggests
specialization by different temporal or spatial expres-
sion patterns to increase protein synthesis at certain
developmental times. To date, all detailed analyses of
Arabidopsis r-protein genes have illustrated distinc-
tions in regulation of expression of gene family mem-
bers. For example, high levels of expression of one
Arabidopsis L11 gene (RPL1IC, previously called
RPL16B) was observed in shoot and primary root
meristems and lateral root primordia in response to
auxin treatment, whereas expression of another L11
gene (RPL11A, previously called RPL16A) showed
more cell type-specific gene expression (Williams
and Sussex, 1995). Mutations in Arabidopsis 513 and
518 genes were shown to cause a pointed first leaf
(pfl) phenotype, remarkably indicating that muta-
tions that alter the expression of r-protein genes may
confer a similar phenotype (Van Lijsebettens et al.,
1994; Ito et al., 2000). In pfl1, a T-DNA insertion into
the S18A (RPS18A) gene results in complete abroga-
tion of gene expression (Van Lijsebettens et al., 1994).
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Although 518 is encoded by three genes that appear
to have overlapping expression, synthesis in mitoti-
cally active tissues seems to be required for normal
leaf development. In pfI2, caused by a Ds insertion
into the S13A (RPS13B) gene, a significantly reduced
number and increased size of subepidermal palisade
cells of the first leaf was observed (Ito et al., 2000).
Consistent with the apparent effects on cell division,
a conditional deletion of r-protein S6 gene in mice
does not impair the growth of liver cells following
partial hepatectomy but does block the progression
through the cell cycle (Volarevic et al., 2000). In this
example, existing levels of ribosomes are sufficient
for cell growth. In contrast, r-protein gene mutations
in Drosophila melanogaster are known to cause the
haploinsufficient Minute phenotype that shows
slower rates of cell growth and division (Lamberts-
son, 1998). Further studies using DNA microarray
studies, r-protein gene promoter fusions to a reporter
gene, and r-protein gene mutants will be necessary to
assess the regulation and role of individual r-protein
genes. These studies hopefully will shed light on the
role of r-proteins and ribosome biogenesis on regu-
lation of cell growth and proliferation in plants.
Our results show varying numbers of r-protein
genes in different families, although it is clear that
control mechanisms must exist to ensure the pres-
ence of stoichiometric levels of each protein in the
ribosomes. This could be achieved by higher expres-
sion levels of members of smaller gene families.
However, expression levels of different members de-
duced from the number of cognate ESTs show no
clear inverse relationship between the level of ex-
pression and the number of genes. Therefore, it is
likely that r-protein synthesis is also controlled at a
posttranscriptional step. It has been determined that
vertebrate r-protein levels are regulated at the trans-
lational level, possibly by sequences around a poly-
pyrimidine tract present at the 5" end of the mRNA,
through the regulation of r-protein S6 phosphoryla-
tion (Fumagalli and Thomas, 2000; Meyuhas, 2000;
Meyuhas and Hornstein, 2000). In plants, posttran-
scriptional regulation of rapeseed L13 r-protein
(Sdez-Vasquez et al., 2000), maize P2a (Fennoy et al.,
1998), and maize S6 (Sanchez de Jimenez et al., 1999)
expression was reported. Preliminary surveys sug-
gest that a number of plant r-protein mRNAs possess
5'-polypyrimidine tracts (A. Williams and J. Bailey-
Serres, unpublished data). In addition, studies with a
cell-free wheat germ translation system confirmed
that translation of an mRNA with a 5'-polypyri-
midine tract was regulated by levels of a titratable
repressor protein (Shama and Meyuhas, 1996). Fur-
thermore, the phosphorylation of r-protein S6 is reg-
ulated in plants (Turck et al., 1998; A. Williams and J.
Bailey-Serres, unpublished data). These observations
indicate that the role of translational regulation in
r-protein synthesis needs to be rigorously examined.
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The existence of differentially regulated multigene
families encoding r-proteins raises the additional
possibility of ribosomal heterogeneity and its possi-
ble functional significance. Here, we observed that
the frequency of ESTs for different r-protein gene
family members is variable (Table I). Szick-Miranda
and Bailey-Serres (2001) recently demonstrated de-
velopmentally and environmentally regulated heter-
ogeneity of the composition of the P2-type of
r-protein in ribosomes of maize. This, along with our
results, raises the intriguing possibility that micro-
heterogeneity in the protein composition of ribo-
somes may occur at the tissue or cellular level. Such
heterogeneity might be used for fine tuning of the
efficiency of the translational machinery during de-
velopment or under specific growth conditions.

In conclusion, this work reports a number of orig-
inal findings: (a) 249 r-protein genes encoding 79 rat
orthologues, and one plant-specific r-protein (P3),
were identified and mapped in Arabidopsis; (b) the
analysis revealed that r-protein genes are distributed
over all Arabidopsis chromosomes; (c) the examina-
tion of frequency of ESTs for the different r-proteins
gene family members and RT-PCR analysis of a sev-
eral r-protein genes families demonstrated differen-
tial patterns of gene expression with no clear rela-
tionship between expression levels and gene number;
(d) the expression analysis utilizing the number of
ESTs suggest that there is no significant bias in the
expression of the r-protein genes among the five
chromosomes; and (e) large duplications of chromo-
somal segments have contributed to the increase in
gene copy number but is insufficient to account for
all copies because it seems that many duplicated
genes have been eliminated during evolution. The
identification of the r-protein genes and the determi-
nation of their primary structure and organization
constitutes a first step to determine their biological
role, mechanisms controlling their expression, and
modeling of ribosome structure and function in
plants.

MATERIALS AND METHODS

Identification and Mapping of ESTs Corresponding to
r-Protein Genes

The 79 rat (Rattus norvegicus) r-protein sequences were
obtained from Swiss-PROT (Bairoch and Apweiler, 2000)
and the corresponding Arabidopsis ESTs were identified
by TBLASTN alignment (Altschul et al., 1997) against all
Arabidopsis sequences available in the database of
expressed sequence tags and GenBank (http://www.ncbi.
nlm.nih.gov). Sequences whose putative translation product
showed significant similarity to the rat sequence were col-
lected using the Query server at NCBI (http://www.ncbi.
nlm.nih.gov/GenBank/GenBankEmail.html), imported into
Sequencher (Gene Codes Corp. Ann Arbor, MI), trimmed at
the 3’ end to remove ambiguous sequences, and contigs
were constructed with 90% identity in 30-nucleotide steps.
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Assembled contigs were manually adjusted to identify
members of the same gene family as described by Cooke et
al. (1997). ESTs were also compared with genomic sequences
to confirm identity. From this analysis, the minimal number
of genes expressed in each r-protein gene family was deter-
mined. The sequence of each identified contig is available on
request.

At the beginning of this work, the easiest strategy to map
available EST contigs was by PCR on yeast artificial chro-
mosome (YAC) DNA pools using gene-specific primers
(Camilleri et al., 1998). Because most of the YACs in the
library have been progressively anchored with respect to
the genetic map (Lister and Dean, 1993), positioning of an
EST on a YAC immediately gave an approximate map
position.

Identification of r-Protein Genes and Mapping by
Genomic Sequencing

Arabidopsis r-protein genes were identified in the
genomic sequence using the same approach as for ESTs
using TBLASTN of rat r-proteins against Arabidopsis
genomic sequences. Despite the fact that gene annotation
lagged behind sequencing, it became easiest to retrieve
r-protein genes from the genomic sequence. Careful atten-
tion was paid to identify gene exons based on perfect
match to ESTs (so that the same gene was not counted
twice). Genes encoding plastidic or mitochondrial
r-proteins were frequently identified by similarity to
known chloroplast or mitochondiral proteins. These genes
usually possessed targeting sequences and had higher
identity to Escherichia coli r-protein genes than those of rat,
and were excluded. Identification of a gene by genomic
sequence mining allowed for positioning the gene on the
AGI map. The percent identity to rat r-protein genes was
determined by BESTFIT algorithm available through GCG
(University of Wisconsin Genetics Computer Group, Mad-
ison, WI). The predicted molecular mass and pl of deduced
r-proteins was determined by use of PEPTIDESORT (Uni-
versity of Wisconsin Genetics Computer Group). Genes
that were not annotated or were annotated incorrectly
were translated using MBS Translator (available at http://
mbshortcuts.com/translator/) and intron/exon bound-
aries were determined by visual inspection of translated
sequences comparing genes within a given family that
were correctly annotated.

Expression Analysis of r-Protein Genes

Expression levels were estimated based on the number
of ESTs in contigs, constructed as described by Cooke et al.
(1997), corresponding to individual r-protein genes. Ex-
pression analysis of r-protein genes lacking a correspond-
ing EST was examined using PCR or RT-PCR, with gene-
specific primers. PCR analysis was performed on an
Arabidopsis cDNA library (Newman et al., 1994). RT-PCR
was performed on RNA extracted from 3-week-old Arabi-
dopsis ecotype Col 0 plants. Total RNA extraction was
performed as previously described (Raynal et al., 1999).
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Amplification products were resolved on agarose gels and
visualized by staining with ethidium bromide. Specific
primers for Arabidopsis r-protein genes were designed
using regions presenting a sequence polymorphism.
Primer sequences are available on request.
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