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The small number of reactant molecules involved in gene regula-
tion can lead to significant fluctuations in intracellular mRNA and
protein concentrations, and there have been numerous recent
studies devoted to the consequences of such noise at the regula-
tory level. Theoretical and computational work on stochastic gene
expression has tended to focus on instantaneous transcriptional
and translational events, whereas the role of realistic delay times
in these stochastic processes has received little attention. Here, we
explore the combined effects of time delay and intrinsic noise on
gene regulation. Beginning with a set of biochemical reactions,
some of which are delayed, we deduce a truncated master equa-
tion for the reactive system and derive an analytical expression for
the correlation function and power spectrum. We develop a gen-
eralized Gillespie algorithm that accounts for the non-Markovian
properties of random biochemical events with delay and compare
our analytical findings with simulations. We show how time delay
in gene expression can cause a system to be oscillatory even when
its deterministic counterpart exhibits no oscillations. We demon-
strate how such delay-induced instabilities can compromise the
ability of a negative feedback loop to reduce the deleterious
effects of noise. Given the prevalence of negative feedback in gene
regulation, our findings may lead to new insights related to
expression variability at the whole-genome scale.

master equation � stochastic delay equations � noise � time delay �
systems biology

There is considerable experimental evidence that noise can play
a major role in gene regulation (1–10). These fluctuations can

arise from either intrinsic sources, which are related to the small
numbers of reactant biomolecules, or extrinsic sources, which are
attributable to a noisy cellular environment. Although the impor-
tance of fluctuations in gene regulation was stressed �30 years ago
(11), recent experimental advances have renewed interest in the
stochastic modeling of the biochemical reactions that underlie gene
regulatory networks (12–16). The most typical approaches are the
utilization of the Gillespie algorithms (17–20), the direct analysis of
the master equation, or the development of simplified descriptions
based on the Fokker–Planck or Langevin equations (see ref. 21 for
a review). A common thread in many of these approaches has been
to consider intrinsic noise as the dominant source of variability in
gene expression.

One major difficulty often encountered in the analysis of gene
regulatory networks is the vast separation of time scales between
what are typically the fast reactions (dimerization, protein–DNA
binding�unbinding) and the slow reactions (transcription, transla-
tion, degradation). There have been many studies devoted to the
development of reduced descriptions of these systems using the idea
of quasiequilibrium for the fast processes compared with the slow
dynamics (cf. ref. 22 and references therein). These approaches
have thus far implicitly assumed that all of the reactions (fast and
slow) are Markovian processes obeying Poissonian statistics. In this
regard, it is important to note that the transcriptional and transla-
tional processes are not just slow but also are compound multistage
reactions involving the sequential assembly of long molecules. Thus,
by virtue of the central limit theorem, these processes should obey
Gaussian statistics with a certain characteristic mean delay time.

When delays in biochemical reactions are small compared with
other significant time scales characterizing the genetic system, one
can safely ignore them in simulations. Furthermore, time delays
usually do not affect the quasiequilibrium behavior of gene regu-
latory networks and mean values of corresponding observables, and
the conventional stochastic models without delays work properly
here (for a review, see ref. 23). However, if indeed the time delays
are of the order of other processes or longer, and the feedback loops
associated with these delays are strong, taking the delays into
account can be crucial for description of transient processes. This
finding implies that when delay times are significant, both analytical
and numerical modeling should take into account the non-
Markovian nature of gene regulation.

The fact that delayed-induced stochastic oscillations can occur
during transcriptional regulation is supported by recent studies of
circadian oscillations in Neurospora, Drosophila, and others. It is
widely accepted now that these oscillations are caused by delays in
certain elements of gene regulation networks [see recent experi-
mental (24, 25) and modeling (26–29) studies]. It is plausible that
the role of time delays in circadian rhythms has come to light
because the delays in the corresponding reactions are particularly
long (several hours) in comparison with other characteristic times
of the system. It would be logical to suppose that shorter delays
present in other systems also can have a significant impact on
dynamics; however, they may be more difficult to detect with
currently available experimental methods.

The behavior of stochastic delay-differential equations (SDDEs)
has been extensively studied, and various approximation techniques
have been developed and utilized (30–35). For example, delayed
differential equations have been reduced to coupled map lattices
and perturbed by white noise, demonstrating how the phase space
density reaches a limit cycle in the asymptotic regime (30). The
stability of the moment equations for linear SDDEs has been
explored to elucidate the oscillatory properties of the first and
second moments (31), and the master equation approach has been
applied to a delayed random walker in an effort to demonstrate the
effects of delay in an analytically tractable system (32, 33). The limit
of short delay time has been used to show how a univariate
nondelayed stochastic differential equation can be used to approx-
imate the original system (34), and, more recently, a noise-driven
bistable system with delayed feedback was reduced to a two-state
model with delayed transition rates to demonstrate the phenome-
non of coherence resonance (35). These important studies have
provided many valuable insights, yet little work has been directed
toward realistic delay times coupled with intrinsic noise in the
context of gene regulation.

In the present work, we develop methodologies for the analysis
and simulation of delayed biochemical reactions that describe gene
regulation. Specifically, we establish a theoretical approach for
reducing and solving master equations that describe gene expres-
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sion in the presence of both delayed degradation and negative
feedback, respectively. We augment the original Gillespie simula-
tion technique to account for the non-Markovian aspects of delay
and compare the simulation results with our analysis.

Finally, given the prevalence of negative feedback in gene
regulation (36), our findings may lead to insights related to the
recently observed oscillatory behavior in numerous transcripts at
the whole-genome scale (37).

Delayed Protein Degradation
Formulation. To elucidate our approach, we begin with a model that
is relatively simple yet maintains a high degree of biological
relevance. Protein degradation often occurs through a sequence of
events that are mediated by a complex proteolytic pathway (38), and
it is thus natural to assume a delay time that takes into account the
cellular degradation machinery. In modeling the process, we use the
standard biochemical rate approach and first write the chemical
reactions describing protein production and degradation

�O¡
A

X, X ¡
B

�, Xf
C

�, [1]

where A and B are the nondelayed rates of protein production
and degradation, and C is the rate of the delayed degradation
reaction (indicated by the wide arrow). This reaction represents
the initiation of the protein degradation machine, which ulti-
mately degrades the protein at a time � after initiation. To isolate
the effects of the time delay, we simplified the system by lumping
transcription and translation into a single process. One can easily
generalize to include the multistage processes of transcription
and translation, and our findings with respect to delay will be
general. This type of delayed degradation comprises one of the
simplest forms of delay, and it is well known that it can lead to
periodic oscillations. Regarding the parameter values, we can use
recent findings on the Neurospora crassa circadian clock circuit
(see refs. 28 and 29), in which FRQ protein is produced at a rate
of �1.5 nM�h and degrades after multiple phosphorylation steps
at the rate of �1 h�1. These multiple phosphorylation steps can
significantly delay the degradation. In addition to this delayed
degradation, normal dilution leads to a nondelayed degradation
with a rate of �0.3 h�1. Similar elements with comparable
production and degradation levels can be found in the Drosoph-
ila circadian oscillator circuit (28).

Deterministic Description. The deterministic dynamics of this system
in the rate approximation are described by the following linear
delay-differential equation:

dx
dt

� A � Bx�t� � Cx�t � ��. [2]

This system has one fixed point x* � A�(B � C), whose stability
determines the transition to oscillations. By finding the eigen-
values of this linear system, we obtain the neutral curve for the
Hopf bifurcation (see Fig. 1A) in the plane (�B, �C). For large
�, this curve is nearly the straight line �B � �C, and at B � 0 the
critical value for C is given by C � ��2�. In the unstable domain,
the amplitude of the oscillations grows indefinitely without
saturation. However, in the ‘‘real’’ system with a discrete number
of molecules, saturation is provided by the fact that the number
of proteins cannot become negative.

Stochastic Description. Now we account for the fact that chemical
reactions (1) occur randomly in time according to their respective
rates. Because the number of molecules involved in intracellular
biochemical reactions is typically not large, random fluctuations are
important, and a stochastic approach should be used to describe the

behavior of such a system. Thus, in this work we concentrate our
attention on intrinsic noise only. It is worth mentioning, however,
that in many cases extrinsic sources of noise can dominate over
intrinsic ones. In such cases the extrinsic noise can be modeled with
additional stochastic reactions without any feedback from the
‘‘internal’’ degrees of freedom. These reactions can be included in
the general scheme described below, but the corresponding master
equation would become significantly more complicated.

Nondelayed stochastic reactions usually exhibit Poissonian sta-
tistics, with an exponential decay of their autocorrelation functions,
but time delay leads to significant differences in the stochastic
properties of the system. Specifically, we will focus on the structure
of the autocorrelation function and power spectrum for the number
of proteins for the single-gene system with delayed degradation.
Dynamical processes occurring in genetic networks operate over a
broad range of time scales, and the natural representation of these
different processes can be given by a power spectrum. In particular,
in certain cases the periodic component of protein fluctuations
caused by time-delayed reactions can be masked by broadband
stochastic fluctuations. However, power spectra of these fluctua-
tions demonstrate the presence of these periodic or quasiperiodic
oscillations quite clearly.

Let us denote by P(n, t) the probability of having n monomers at
time t. Then the master equation for the time evolution of the
probability P(n, t) can be written as

dP�n, t�
dt

� A�E�1 � 1�P�n, t� � B�E � 1�nP�n, t�

� C �
m�0

�

m�E � 1�H�n�P�n, t; m, t � ��, n � 0��, [3]

where E is the unitary shift operator, EP(n, t) � P(n � 1, t), P(n,
t; m, t � �) is the joint probability of having n molecules at time
t and m molecules at time t � �, and H(n) is the Heaviside
function [H(0) � 0, H(n � 0) � 1]. The latter is added to account
for the fact that the delayed degradation reaction cannot occur
if the number of species at time t is zero.

This set of equations is not closed because the one-point prob-
ability distribution is determined by the two-point probability
distributions on the right-hand side of the equation. We make the
assumption that the time delay � is large compared with the other
characteristic times of the system, so the events at time t and t � �
are effectively decoupled. Under this approximation, we can write

P�n, t; m, t � �� � P�n, t�P�m, t � ��. [4]

This assumption can be supported, for example, by recent results on
circadian oscillations in Neurospora and other organisms. The total

Fig. 1. Analysis of the delayed protein degradation model. (A) Neutral curve
of the Hopf bifurcation (solid line). The dashed line depicts the cross-section
of parameter space that corresponds to B Inset. (B) Comparison of correlation
functions obtained analytically (solid line) and numerically (dashed line). Fixed
parameters are � � 20, A � 100, B � 4.1, and C � 1. Inset shows the height of
the secondary negative peak of the correlation function of �C in dimensionless
units (D.U.).
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delay in that systems can lead to oscillations with a period as large
as tens of hours, and stochastic events separated by such time spans
become effectively decoupled. In other cases, however, the delay
time can be of order or smaller than other characteristic times.
Extrinsic processes that are much slower than the time-delayed
reactions can be taken into account as adiabatic change of param-
eters, and the theory developed here would still apply. If, however,
there are significant cell processes operating on the time scales of
the order of time delay, one has to resort to numerical simulations.

In fact, large � is a necessary but not a sufficient condition for this
theory to hold. We will see below that strong delayed feedback leads
to significant correlations over long periods of time, and an
additional condition for the applicability of Eq. 4 is to have relatively
weak feedback. Adopting this approximation, we obtain

dP�n, t�
dt

� A�E�1 � 1�P�n, t� � B�E � 1�nP�n, t�

� C �
m�0

�

mP�m, t � ���E � 1�H�n�P�n, t�,

� A�E�1 � 1�P�n, t� � B�E � 1�nP�n, t�

� C	n�t � ��
�E � 1�H�n�P�n, t�, n � 0��. [5]

Exploiting the same approximation, we can write the autocor-
relation function in the following form (see Supporting Text, which
is published as supporting information on the PNAS web site):

K�T� � �
n�0

�

nPs�n�	n�, T�n, 0
 � 	n
2,

where Ps(n) is the stationary probability and 	n�, T�n, 0
 is the
conditional mean number of proteins at time T, given it was n at
time 0. By using the generating function method, we can calculate
the stationary probability distribution and the conditional mean
from the master equation (5) and arrive at the autocorrelation
function (see Supporting Text for details of this calculation)

K�T� �
A
B

��T�

�1 � �e����
, [6]

where � � �B2 � C2, � � (B � �)�C, and

��T� � �e��T � �e��T���, 0 	 T 	 �

e�B�T�N�����N�� � C

N�

T ��T� � ��eB�T��N��dT��,

N� 	 T 	 �N � 1�� .

This solution is defined if B � C, i.e., below the deterministic
Hopf bifurcation. It has a form of a sequence of peaks of
alternating polarity with decaying heights (Fig. 1B). By using Eq.
6 we can calculate the power spectrum S(
) (cf. ref. 35)

S�
� � 2
A
B

Re
1 � Cei
�I�
�

B � Cei
� � i

, [7]

where

I�
� �
1

1 � �e��� �1 � e��i
����

i
 � �
� �e���

1 � e��i
����

i
 � �
�.

The main difference between the deterministic and stochastic
approaches manifests itself in Fig. 2 , where the power spectra for
the latter are plotted in accordance with Eq. 7. One can see that
the stochastic model predicts quasiregular oscillations in the

parameter range where the deterministic model shows a stable
steady state. Thus, it is evident that the coupling between noise
and delay leads to the oscillatory behavior, whereas each ele-
ment separately does not.

Stochastic Simulations: Modified Gillespie Method
To test the validity of our approximations and analytical results, we
performed numerical simulations of the original system of stochas-
tic chemical reactions (1). Here we introduce modifications to the
direct Gillespie (DG) algorithm (17), which allow us to incorporate
delayed reactions. Suppose the system consists of N components Xi,
which react through M elementary reaction channels R�. According
to the DG algorithm, time is advanced from one elementary
reaction to the next. At every ‘‘stop’’ one determines the time of the
next reaction and which reaction it will be. For Markovian pro-
cesses, the distribution of times until the next reaction is exponential

P��� � �
�

a� exp� �� t �
�

a�� , [8]

where a� � c�h� is the propensity of channel R�. The choice of
the next reaction is made based upon the discrete distribution,

P�� � ��� � a����
�

a� . [9]

When some of the channels are non-Markovian, it is necessary to
modify the original version of the DG algorithm as follows. At each
stop we perform the same selection of the next reaction time
according to the distributions in Eqs. 8 and 9. If the next reaction
time is chosen to be t* but the selected reaction is delayed, it is
placed in a stack, so it will actually be completed at time t* � �. If,
however, the chosen reaction is Markovian, the time of the next
reaction t* is compared with the times of the previously scheduled
delayed reactions. If none of those scheduled reactions are to occur
before t*, the time is advanced to t*, the numbers of molecules are
updated according to the chosen nondelayed reaction, and the
process repeats. If, however, there is a delayed reaction scheduled
for completion at td � t*, the last selection is ignored, time advances
to td, the scheduled delayed reaction is performed, and the selection
process repeats. The formal steps for the algorithm execution are
as follows (see Fig. 3 for the illustration):

Fig. 2. Comparison of power spectra S(
) obtained analytically (solid line)
and numerically (dashed line) for the delayed protein degradation model (Eq.
1) with � � 20, A � 100, B � 4.1, and two values of C indicated by filled squares
in Fig. 1A, C � 1 (A) and 4 (B). Insets show the same comparison for the
correlation functions normalized by the variance. The frequency 
 and time
are plotted in arbitrary units (A.U.).
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1. Input values for initial state X � (X1, . . . , XN), set time t �
0 and reaction counter i � 1.

2. Compute propensities of M reactions a�, � � 1, . . . , M.
3. Generate uniform random numbers u1, u2 � [0, 1]
4. Compute the time interval until the next reaction �ti � �ln

u1�¥�a�.
5. Check whether there are delayed reactions scheduled within

time interval [t, t � �ti]. If YES, then steps 2–4 are ignored,
time t advances to the time td of the next scheduled delayed
reaction, X states are updated according to the delayed
reaction channel, and counter is increased i � i � 1. Proceed
to step 2. If NO, go to step 6.

6. Find the channel of the next reaction �, namely take � to be
the integer for which ¥��1

��1 � u2at 
 ¥��1
� , where at � ¥��1

M

is the total propensity.
7. If the selected reaction � is not delayed, update X according

to the R�, update time t � t � �ti and increase counter i �
i � 1. If the selected reaction is delayed, update is postponed
until time td � t � �. Go to step 2.

We note that stochastic variations of the delay time itself can be
an additional source of genetic noise. Our numerical algorithm
can easily incorporate these fluctuations; however, in the present
work for simplicity we assume that � is constant.

The comparison for the power spectra and correlation functions
obtained analytically and numerically is shown in Figs. 1B and 2 for
� � 20. The chosen delay time is large compared with the
characteristic equilibration time B�1 � 0.25, which is necessary to
justify the master Eq. 5. The first peak of the power spectrum in
both figures corresponds to the frequency 
 � 2��2� � 0.157.

When the system is far away from the Hopf bifurcation, the
influence of the delay term is relatively weak, and the analytical and
numerical curves are in excellent agreement (Figs. 1B and 2A). In
Fig. 1B Inset we plot the height of the secondary peak located near
� � 20 as a function of the parameter �C. Near the Hopf bifurcation
(Fig. 2B), the agreement between our analytical approach and the
simulations becomes worse because the processes at times t and t �
� become strongly correlated (the secondary peak of the correlation
function is large).

Negative Feedback with Delayed Production
In this section we apply our approach to a system that represents
one of the most common motifs in gene regulation (36, 39). Namely,
we consider single-gene protein synthesis with negative feedback.
The dynamics of this system have been analyzed deterministically
(40) and stochastically (21), and experimental findings have dem-
onstrated how negative feedback can dampen the effects of noise
(3). Here we generalize this system by allowing for the finite delay
time necessary for protein transcription and translation. We pos-
tulate that the chemical state of the operator site Dt � {D0

t , D1
t }

determines the production of protein at time t � �. If the operator
at time t is unoccupied (D0

t ), then the protein may be produced at
time t � � with probability A per unit time. Otherwise, if the
operator is occupied (D1

t ), the production at time t � � is blocked.
The transitions between operator states, denoted as D0 (unoccu-
pied) and D1 (occupied), occur with rates k1, k�1, can be written as

D0O¡

x�t�k1

D1 , D1O¡
k�1

D0 , [10]

where x(t) represents the number of proteins at time t. The
protein production and degradation reactions can be written as

� f
AS�t�

X, X ¡

B
�. [11]

Here S(t) � 1 for unoccupied operator state D0 and 0 for
occupied state D1. Thus, the reactions have negative feedback
through the first reaction rate in Eq. 11.

Deterministic Description. We introduce continuous variables x(t)
for the average number of proteins and s(t) for the average number
of unoccupied operator sites at time t. For a single gene circuit,
s(t) 
 1, and the number of occupied sites is 1 � s(t). Exploiting the
typically large separation of time scales between protein–DNA
binding rates and the production�degradation rates, the determin-
istic rate equations for reactions 10 and 11 can be written as

dx
dt

�
A

1 � �x�t � ��
� Bx, [12]

where � � k1�k�1. This system has only a single positive
stationary solution, which is always stable, so the system does not
possess bifurcations (see Supporting Text).

Stochastic Description. We introduce two probabilities, Pn
0(t) and

Pn
1(t), for the number of proteins to be equal to n at time t, and for

the state of the operator at time t � � to be D0
t�r or D1

t�r, respectively.
Then the master equations for the reactions in Eqs. 10 and 11 have
the form

dP0�n, t�
dt

� A�E�1 � 1�P0�n, t� � B�E � 1�nP0�n, t�

� k1 �
m�0

�

m��P0�m, t � �� � P1�m, t � ���P0�n, t�

� k�1P1�n, t�,
[13]

dP1�n, t�
dt

� B�E � 1�nP1�n, t� � k�1P1�n, t�

� k1 �
m�0

�

m��P0�m, t � �� � P1�m, t � ���P0�n, t�.

We have again made the assumption that the processes at times
t and t � � are weakly correlated, and to first approximation the
two-point probability distribution function factorizes, P(n, t; m,
t � �) � P(n, t)P(m, t � �). To calculate the correlation function,
we again use generating functions (see Supporting Text)

K�T� � � A2�B � k�1�

B��B � k�1��B � �A� � k1A�

�
A�B � �A � A�

�B � �A�2 � ��T�

1 � �e��� , [14]

with the same notations as in Eq. 6.

Comparison of Analytical and Numerical Results. We performed DG
simulations of the stochastic model for the single-gene negative
feedback system. Comparison between our analytical and numer-

Fig. 3. Illustration to the modified Gillespie algorithm for normal and
delayed reactions.
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ical findings is depicted through the power spectra and correlation
functions in Fig. 4A. The first peak of the power spectra corresponds
to the frequency 
 � 2��2� � 0.063. We note that the heights of
the analytical and numerical peaks (Fig. 4B) agree well for small �A
but diverge as the parameter that controls the delay term (�A)
grows. This result is to be expected, because the condition of
applicability of our approximation was rapid decay of correlations,
which corresponds to small �.

Negative Feedback with Dimerization
Most transcription factors form higher-order multimers before
regulating their target genes. Thus, a natural generalization of the
previous model is to account for protein homodimers that down-
regulate monomer production. Suppose that the protein can exist
both in the form of isolated monomers X and dimers X2 with the
dimerization reactions given by

X � XO¡
k2

X2 , X2O¡
k�2

X � X. [15]

Incorporating these new reactions, the reactions of the previous
section (Eq. 10) should be rewritten as

D0 � X2O¡
k1

D1 , D1O¡
k�1

D0 � X2 . [16]

Production–degradation reactions are given by

D0f
A

D0 � X, X ¡

B
�. [17]

As before, protein production occurs with a time lag � and can
only occur if the operator is unoccupied at time t.

Deterministic Description. Assuming that the production and deg-
radation of proteins are slow compared with dimerization and
protein–DNA reactions, we can eliminate the fast variables and
reduce the system of deterministic rate equations to just one
equation for the number of monomers x1 (D.V., unpublished data).

�1 � 4�x1 �
4��x1

�1 � ��x1
2�2� dx1

dt
�

A
1 � ��x1

2�t � ��
� Bx1. [18]

Protein dimerization plays an important role in the system dynam-
ics. In comparison with the model of the previous section (Eq. 12),
the delay term in Eq. 18 is quadratic. It can be shown that the system
can now possess a Hopf bifurcation for sufficiently strong negative
feedback. The neutral curve is plotted in Fig. 5A, where the
oscillatory instability domain is above the curve.

Stochastic Simulations. We performed a series of numerical simu-
lations of Eqs. 15–17 based on the modified DG method for the
parameters shown in Fig. 5A along the dashed vertical line. Al-
though the linear analysis within the deterministic model predicts
the onset of oscillations above the point A* � 57.85, no such clear
boundary appears to occur in the stochastic model. In Fig. 5B, we
plot the coefficient of variation CV � �K(0)�	x1
 vs. delay time �
for A � 40. This quantity characterizes the relative magnitude of the
fluctuations in the system. Three cases can be identified here. If
there is no negative feedback, i.e., � � 0, then the noise effect is
maximal (filled circle in Fig. 5B). Negative feedback leads to a sharp
decrease of fluctuations (open circle, � � 0). If the feedback is
delayed, the fluctuations are enhanced because the delay makes the
system more sensitive to disturbances and thus works against the
premise that negative feedback dampens fluctuations.

Fig. 6. Power spectra and correlation functions (A and C) and sample trajec-
tories (B and D) obtained in stochastic simulations with � � 20 and the values of
B, k1, k�1, k2, k�2 the same as in Fig. 5 for two values of production rate: A � 20
(belowHopfbifurcation) (AandB) andA�70 (aboveHopfbifurcation) (CandD).

Fig. 4. Analysis of the negative feedback model. (A) Comparison of power
spectra and correlation functions (Inset) obtained analytically (solid line) and
numerically (dashed line). A � 100, k1�k�1 � 0.002, � � 50, B � 1. (B) The height
of the secondary peak of the correlation function as a function of �A; other
parameters are the same as in A.

Fig. 5. Analysis of the negative feedback model with dimerization. (A)
Neutral curve of the Hopf bifurcation for negative feedback model with
dimerization (Eqs. 15–17) The fixed parameters are � � 0.1, � � 0.2. (B)
Coefficient of variation as a function of delay time � for A � 40 (indicated by
the open square in A). (C) Decay rate of secondary peaks of the correlation
function as a function of A. (D) CV as a function of production rate A. The fixed
parameters are B � 4, k1 � 100, k�1 � 1,000, k2 � 200, k�2 � 1,000.
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The power spectrum, correlation function, and the time series for
two particular parameter sets are shown in Fig. 6. One can see that
even far below the Hopf bifurcation (Fig. 6 A and B), the correlation
function has a remarkably narrow peak, indicating that some
periodicity in the stochastic signal exists (Fig. 6A Inset). The first
peak of the power spectrum corresponds to the frequency 
 �
2��2� � 0.159 (� � 20). As the system approaches the bifurcation
point A*, the peaks become wider and higher. Above the bifurca-
tion the power spectrum and correlation function are depicted in
Fig. 6C. They correspond to periodic oscillations above the bifur-
cation threshold with a period slightly higher than 2� (Fig. 6D).

At first glance, one might expect that within the stochastic
approach the bifurcation-like transition from the steady state to a
limit cycle is not observed, and the point of such a transition cannot
be clearly determined. However, Fig. 5C shows that this hypothesis
is not the case. If the decay rate of the correlation function peaks
as a function of A is plotted on a logarithmic scale, the curve can
be approximated well by two lines that intersect at A � 56. Thus,
stochastic fluctuations shift the bifurcation point by �5 with respect
to the deterministic value for A (A* � 57.85). This result appears
particularly important from an experimental point of view, because
frequently an experimenter needs to define a bifurcation occurring
in a stochastic system. As we have shown, relatively simple manip-
ulations with the autocorrelation function can help in defining this
bifurcation.

Fig. 5D illustrates how the coefficient of variation (CV) changes
with transcription rate A in two cases: with (open circles) and
without (filled circles) time delay in protein production. If in the
former case CV decreases monotonically with transcription rate
because the number of molecules increases, in the latter case as the
system crosses the bifurcation point the CV increases again and
tends to some limiting level.

Finally, delayed feedback strongly affects transient behavior of
genetic networks. Unlike nondelayed system, the transition to a new
fixed point in the delayed system is accompanied by significant
stochastic oscillations (see Fig. 7, which is published as supporting
information on the PNAS web site).

Discussion
We have developed both deterministic and stochastic models for
transcriptional regulation with delayed feedback and have explored
these models both analytically and numerically. Problems with
delay are generally difficult because of the non-Markovian nature
of the dynamics, yet we have demonstrated that the main features
of such systems can be understood using relatively simple models.
Assuming significant decorrelation on the time scale of gene
transcription, we have deduced a truncated master equation of the
reactive system and derived analytical expressions for the correla-
tion function and power spectrum. In addition, we have developed
a generalization of the Gillespie algorithm that accounts for delay

and have demonstrated how numerical simulations can be per-
formed and compared with analytical findings. Within the context
of negative autoregulation, which is one of the most commonly
occurring regulatory motifs (36), we have shown how oscillations
can arise from the coupling of noise and delay.

The likely importance of fluctuations arising from the small
number of reactant molecules in gene expression was noted by
Stuart and Branscomb in 1971 (11). In this prescient work, analyt-
ical techniques were applied to a model for the lac operon to show
how fluctuations could play an important role in gene regulation.
Owing mainly to the lack of experimental assays capable of resolv-
ing fluctuations at the single-cell level, this work went largely
unnoticed, and the role of noise in gene expression received little
attention until the late 1990s. More recently, the predicted role of
intrinsic noise in the context of developmental pathways ignited
widespread interest (12), and there have been numerous subse-
quent experimental studies that empirically demonstrate the im-
portance of such fluctuations (1–10).

As in the case of intrinsic noise, the generic origin of delay implies
a high likelihood that it plays an important role in gene regulation
(cf. ref. 41 and references therein). It could be a dominant source
of large deterministic variability, as in the case of circadian rhythms
(26, 27), or it can play a supportive role as a mechanism that
amplifies the effects of random fluctuations. Along these lines, it is
interesting to note that our model can be used to demonstrate that
the ‘‘noise signature’’ of a system dominated by delay can be similar
to a system dominated by intrinsic noise (Fig. 5D). This result
implies that care must taken in attributing variability to purely
stochastic sources, because delay-induced variability can appear
empirically similar to fluctuations arising from intrinsic noise.

Pragmatically, models that use delay could be essential in un-
derstanding whole-genome regulation, because it is unrealistic to
construct models that incorporate the numerous sequences of
biochemical reactions that underlie the complexities of transcribing
and translating a single gene. Time-delayed reactions have long
been utilized as a natural approximation for the modeling of such
a complex sequence of events. This reduction comes at a high cost,
because analytical and numerical techniques are more difficult, and
there has been little work addressing the coupling of intrinsic noise
in biochemical reactions with delay. In this regard, our results
provide a framework for analyzing and simulating the interplay of
noise and delay. Along the same lines, the generalization of the
Gillespie algorithm provided in our work should prove highly useful
because large-scale simulation techniques that incorporate time
delays should lead to new insights in describing the dynamics of
complex gene regulatory networks.
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