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Recent theoretical�computational studies based on simplified pro-
tein models and experimental investigation have suggested that
the native structure of a protein plays a primary role in determining
the folding rate and mechanism of relatively small single-domain
proteins. Here, we extend the study of the relationship between
protein topology and folding mechanism to a larger protein with
complex topology, by analyzing the folding process of monomeric
lactose repressor (MLAc) computationally by using a Go� -like C�

model. Next, we combine simulation and experimental results (see
companion article in this issue) to achieve a comprehensive assess-
ment of the folding landscape of this protein. Remarkably, simu-
lated kinetic and equilibrium analyses show an excellent quanti-
tative agreement with the experimental folding data of this study.
The results of this comparison show that a simplified, completely
unfrustrated C� model correctly reproduces the complex folding
features of a large multidomain protein with complex topology.
The success of this effort underlines the importance of synergistic
experimental�theoretical approaches to achieve a broader under-
standing of the folding landscape.

free energy landscape � molecular dynamics simulation � protein folding

Understanding protein folding dynamics at the detailed
molecular level continues to challenge both theory and

experiment. From a physicochemical point of view, protein-
folding mechanisms are governed by the search for the best
‘‘compromise’’ in the delicate tradeoff between the many
contributions to the protein’s free energy. The overwhelmingly
large number of degrees of freedom, combined with the broad
range of time and length scales involved in the folding process,
make the investigation of the overall folding landscape of large
proteins and protein complexes at the atomic level computa-
tionally unfeasible. For this reason, coarse-grained (minimal-
ist) protein models, where several atoms are grouped into one
‘‘average’’ degree of freedom and an effective energy function
is defined, are oftentimes used to explore the general folding
landscape topography (1–4). In this context, one of the
prominent theoretical challenges is presented by the definition
of a reduced protein representation and average variables
amenable to modeling and simulation but at the same time
retaining the essential physicochemical ingredients of the
folding reaction. The main assumption at the base of coarse-
grained protein modeling is that the essential features of the
protein free energy can be reproduced even using a strongly
reduced number of degrees of freedom. This working hypoth-
esis is based on the evidence that the folding transition
involves the high cooperation of a large number of inter-
acting constituents, and each one singly is not of special
importance by itself. This view encourages the use of statistical
mechanics to simplify the complex scenario created by the
large number of interacting degrees of freedom and the
intricate network of molecular interaction by organizing the
multitude of the protein’s microstates in terms of a minimal

number of collective parameters. This approach is generally
referred to as the free energy landscape perspective of protein
folding (5–9).

Recent theoretical�computational studies of folding rates
and mechanisms based on minimalist models have achieved
noticeable success in reproducing, at least qualitatively, vari-
ous features of the folding mechanisms of relatively small
fast-folding proteins (see, e.g., refs. 10–21). Most of these
studies are based on the so-called Go� -like (22) model Ham-
iltonian that is generally defined by completely neglecting
interactions not present in the native state. The Go� -like
approximation is based on both theoretical and experimental
evidence. From the theoretical point of view, the commonly
accepted minimal frustration principle of protein folding
(5, 23, 24) implicitly invites one to disregard nonnative
interactions between residues as a zeroth-order level of
approximation. Moreover, members of homologous protein
families generally show a conservation of the folding mecha-
nism, even when they have little sequence identity (25–28).
Simple empirical parameters that summarize the characteris-
tics of a protein topology also are generally able to correctly
order protein-folding rates of single-domain proteins (13,
29–38).

Despite the success and popularity of Go� -models, recent work
has shown that the complete removal of frustration can signif-
icantly distort the representation of the folding landscape, even
if its overall topography is qualitatively preserved (39–42).
Moreover, the relationship between protein topology and fold-
ing mechanisms may not hold for larger proteins with more
complex folding mechanisms. From one perspective, single
atomic details may become even less important in the overall
balance of the cooperative folding transition of larger system,
where many more degrees of freedom orchestrate together.
Conversely, nonnative interactions and sequence dependence
may more strongly modulate the free energy landscape associ-
ated with complex folding reactions, and their contributions can
accumulate to produce larger distortions in the approximated
landscape obtained from unfrustrated minimalist models. Un-
derstanding the interplay of configurational entropy (i.e., topo-
logical factors) and energetic details in the dynamics of large
protein systems is an important issue. The possibility to use
simplified models to quantitatively characterize large and com-
plex systems is even more crucial than for small proteins, because
the study of the protein dynamics over the folding time scale
becomes more unapproachable by all-atom computations as the
system sizes increases. Previous work on large protein systems
has already provided evidence that simple coarse-grained mod-
els are able to describe the short time-scale fluctuation dynamics
of large proteins (43, 44).
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We present here a first step in assessing the applicability of a
simplified model to study the folding of a large protein. We show
that a completely unfrustrated C� model reproduces remarkably
well the complex folding process of a monomeric variant of the
lactose repressor protein (MLAc). The analysis of the simulated
folding process is carried out by means of kinetics and equilib-
rium studies and quantitatively compared with the experimental
measurements of MLAc folding behavior [see companion article
by Wilson et al. (45) in this issue].

Model and Methods
Coarse-Grained Protein Model. MLAc was modeled by using an
off-lattice simplified representation of the protein, where each
amino acid is described by a single bead on a polymer chain
located on the C� position. The energy of a protein
configuration is approximated by a homogeneous Go� -like
Hamiltonian that takes into account native interactions only
and considers each interaction contributing with the same
weight
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Local interactions Vlocal comprise standard bond, angle, and
dihedral terms (see ref. 46 for details). Nonlocal terms represent
noncovalent attractive native interactions and repulsive nonna-
tive interactions, respectively. The energy parameters are set as
�ij � constant � 0 and �ij

(2) � 0 if the residue pair (i, j) forms a
native contact, whereas �ij � 0 and �ij

(2) � constant � 0 if it forms
a nonnative contact. The interaction distance 	ij between two C�

atoms is set equal to their distance in the native state if (i, j) is
a native residue pair or to a hard-core repulsive radius 	ij � 3.8 Å
if (i, j) form a nonnative pair. A pair of residues (i, j) is
considered native if a heavy atom of residue i is found �5 Å
from a heavy atom of residue j in the protein crystal structure
(Protein Data Bank ID code 1EFA). Similar energy functions
have been used in previous studies (2, 15, 18, 42, 46, 47).
Details on the choice of the parameters used can be found in
ref. 46.

The model greatly simplifies the folding free energy landscape
of the protein by completely removing energetic frustration.
Folding�unfolding molecular dynamics simulations of a large
protein such as MLAc then become possible on the artificially
smoothed landscape. We used the SANDER module (properly
adapted to deal with the minimalist protein representation) of
the simulation package AMBER (Version 6) (48) for all molecular
dynamics simulations presented in this work. Thermodynamic
(equilibrium) quantities are obtained from the analysis of folding
and unfolding constant-temperature molecular dynamics simu-
lations around the folding temperature, Tf. Simulations at dif-
ferent temperatures are combined by using the WHAM algo-
rithm (49, 50) to obtain the heat capacity as a function of
temperature and a free energy profile as a function of two
different reaction coordinates. The folding temperature Tf is

estimated as the temperature corresponding to the peak in the
heat capacity curve.

Fit of Kinetic Data. The kinetic analysis was performed on a large
(�200) set of folding simulations for each considered temper-
ature, each starting from a different unfolded configuration.
Unfolded configurations with Q � 0.1 and rms deviation, rmsd,
�30.0 were created by running short molecular dynamics
simulations at very high temperature T (
2Tf). To create
independent initial conditions, the total simulation time of
each initial unfolding simulation was set to be larger than
the average unfolding time (1�kunf) at the corresponding
temperature.

The average signal �X(t)	 (defined as the helical content or
the fraction of contacts formed with Trp residues as described
in Eqs. 9 and 10) obtained from kinetic simulation (see Kinetic
Analysis of MLAc Folding: Quantitative Connection Between
Theory and Experiment) was fit both to a two-phase and a
three-phase kinetic model, as described below.
Two-phase kinetic. We assume the following sequential kinetic
mechanism:

UO¡
k1

IO¡
k2

N, [2]

where U, I, and N indicate the unfolded, intermediate, and
folded states, respectively, and k1, k2 are the rate constants for
the processes U 3 I and I 3 N. The solution of the system of
differential equations associated with this kinetic model for the
relative population of the different states as a function of time
{[U](t), [I](t), and [N](t)} is in the form (using the initial
condition [U](0) � 1) (51)

�U��t� � e
k1t

�I��t� �
k1

k2 � k1
�e
k1t � e
k2t� [3]

�N��t� � 1 �
k2

k2 � k1
e
k1t �

k1

k2 � k1
e
k2t.

Normalizing the signal such that X(t � 0) � XU � 0 and
X(t3 �) � XN � 1, and letting A indicate the percentage of
signal corresponding to the state I (with XU � A � XN), the
time evolution of the observed signal for this kinetic model can
be written in the form

X�t� � 1 � A� k1

k2 � k1
�e
k1t � e
k2t��

�
k2

k2 � k1
e
k1t �

k1

k2 � k1
e
k2t. [4]

Simulation data are fit to Eq. 4 with the three independent
parameters k1, k2, and A, by using a least-squares fit algorithm
to a nonlinear function (52, 53).
Three-phase kinetic. A three-phase mechanism is modeled as

UO¡

kburst

Ib O¡
k1

I O¡
k2

N , [5]

where Ib to I proceeds by way of U [see companion article (45)].
The associated system of differential equations yields the fol-
lowing solution (51):
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�U��t� � e
kburstt

�Ib��t� �
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k1 � kburst
�e
kburstt � e
k1t�

�I��t� � kburstk1� e
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�
e
k1t
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�
e
k2t
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� [6]

�N��t� � 1 �
k1k2e
kburstt

�k1 � kburst��k2 � kburst�

�
kburstk2e
k1t

�k1 � kburst��k2 � k1�

�
kburstk1e
k2t

�k2 � kburst��k2 � k1�
.

Normalizing the signal such that X(t � 0) � XU � 0 and
X(t 3 �) � XN � 1, and using the parameters A, B to indicate
the percentage of signal in Ib and I, respectively (0 � A � 1, 0 �
B � 1), the observed signal as a function of time for this model
is given by the following expression:

X�t� � A�Ib�� t� � B�I�� t� � �N�� t� , [7]

where [Ib](t), [I](t), and [N](t) are given by Eq. 6. Simulation data
are fit to Eq. 7 with the five independent parameters kburst, k1,
k2, A, and B, by using a least-squares fit algorithm to a nonlinear
function (52, 53).

Folding Free Energy Landscape of MLAc Model
Fig. 1 represents the folding free energy of the simplified MLAc
model as a function of two reaction coordinates: the fraction of
native contacts formed, Q, and the partial contact order, pCO.
The partial contact order is defined as the average loop length
over all of the formed native contacts in a partially folded
structure � (see also ref. 54)

pCO��� �

 Qi, jLi, j


 Qi, j
, [8]

where the sum runs over all of the native contacts, Li,j is the
sequence separation (loop length) between residues (i, j), and
Qi,j � 1 (or 0) if the native pair (i, j) forms (or does not form)
a contact in the configuration �.

The free energy minimum corresponding to the folded state
is identified in the region (Q � 0.9–0.95; pCO � 45–50), whereas
the minimum at (Q � 0.2, pCO � 10) corresponds to the
unfolded state. An intermediate state appears as a local mini-
mum in the free energy at Q � 0.5. The broad range of values
spanned by the pCO coordinate in the unfolded state (Q � 0.2)
indicates that some of the unfolded structures may have very
long-range contacts formed, although the overall shape of the
landscape indicates that the folding reaction proceeds to later
stages mainly from configurations with a relatively low value of
pCO (i.e., only with local contacts formed). This interpretation
is fully consistent with time-resolved experimental data suggest-
ing the initial formation of long-range interactions in the burst
phase of folding, which need to unform for the folding to proceed
[see companion article (45)]. The results shown in Fig. 2 a–c
confirm this idea. The probability of finding any given native

contact formed is shown for four different regions of the folding
landscape: (a) the local free energy minimum corresponding to
the unfolded state, (b) the high pCO region accessible from the
unfolded state (pCO � 25; Q � 0.25), (c) the local free energy
minimum corresponding to the intermediate state, and (d) the
folded state. It is clear from Fig. 2 that the unfolded minimum
is mainly populated by protein configurations lacking tertiary
interactions but with secondary structures locally formed. The
fluctuations to higher pCO values on the free energy landscape
correspond to a transient formation of structures with a few
contacts between residues far apart along the chain, as, for
instance, the native contacts in the N subdomain and�or the
contacts between N and C subdomains. Because the model
considered here does not include nonnative interactions, the
temporary formation of structures that need to partially unfold
for the folding to proceed does not necessarily signal the
formation of a misfolded species. However, the tendency of the
protein to temporarily populate a partially misfolded state can be
further investigated by considering the effect of a relatively weak
amount of nonnative energy that can be introduced as a per-
turbation to the model Hamiltonian. The introduction of a
random Gaussian distribution of energy per nonnative interac-
tion (see ref. 42 for details) produces a significant increase in the
probability of visiting the high pCO region from the unfolded
state (pCO � 25, Q � 0.25): at a temperature T � 0.9Tf the
percentage P of folding trajectories (starting from a completely
open configuration, generated by a short high temperature
unfolding, see Fit of Kinetic Data) visiting this region of the
landscape before proceeding toward the folded state increases
from P � 0.4 for the plain Go� -model to P � 0.7 upon
introduction of random Gaussianly distributed nonnative inter-

Fig. 1. Folding free energy landscape of the MLAc model as a function of two
reaction coordinates: the fraction of native contacts formed, Q, and the partial
contact order, pCO (54). An intermediate state (c) appears as a local minimum
in the free energy at Q � 0.5. The fluctuations toward high values of the pCO
coordinate (b) from the unfolded minimum (a) indicates that structures with
very long-range contacts are temporarily formed in the early stages of the
folding process. The native state is labeled as d. Each contour line in the plot
marks an increase in free energy of 2kBTf, where Tf is the folding temperature.
A very small number of folding events (�1%) populated a different pathway,
involving the formation of an intermediate where the N terminus is formed
and the C terminus is unfolded (x). This alternative pathway can be an artifact
of the Go� model, but in any case this state is not significantly populated and
would not be experimentally detected.
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actions with an energy variance �
nonnat � 0.25, and to P � 0.8
for �
nonmat � 0.5. These results are in excellent agreement with
the experimental data [see companion article by Wilson et al.
(45)] that suggest the formation of temporarily populated mis-
folded intermediates in the very early stage of the folding
reaction. Consistent with experimental data, the misfolded
structures have �40–50% of the secondary structure formed, on
average. The kinetic study presented in the next section further
quantifies this point and provides a robust framework for the
interpretation of the experimental data.

Kinetic Analysis of MLAc Folding: Quantitative Connection
Between Theory and Experiment
The stopped-flow analysis of the kinetic folding process of MLAc
suggests a three-phase folding mechanism for this protein. The

experimental study [see companion article (45)] indicates a
mechanism consisting of a burst phase intermediate (with �40–
50% secondary structure formed and involving the formation of
partially misfolded structures) populated in the dead time of the
experiment, followed by the population of an on-pathway inter-
mediate (with about the same amount of secondary structure
formed) before the native state is reached. To quantitatively
compare the folding of MLAc as obtained in simulations with the
results from the experimental kinetic study, it is necessary to
define average quantities that can be computed in simulations
and can be closely compared with the ones that are experimen-
tally monitored. Because the experimental kinetic analysis is
based on the time relaxation of far-UV CD and Trp fluorescence
signals, we define the following two quantities:

Y Helicity content as a function of time, H(t)

Fig. 2. The probability of native contact formations in different regions of the folding landscape. (a) The local free energy minimum corresponding to the
unfolded state. (b) The high pCO region accessible from the unfolded state (pCO � 25; Q � 0.25). The blue circle highlights the long-range native interactions
that are temporarily formed in the high-pCO region. (c) The local free energy minimum corresponding to the intermediate state. (d) The folded state. A
representative configuration is shown for each state. Corresponding states in Fig. 1 are labeled with the same letters as in this figure.
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H�t� � �
i�all helices

��� i� t� � � i
0�2	 , [9]

where �i(t) is the value at time t of the dihedral angle centered
at residue i in a helical structure, and �i

0 is the value of �i(t)
in the native state.

Y Fraction of contacts formed by the Trp residues as a function
of time, Qtrp(t)

Qtrp� t� � �
ij

i� �W201,W220�

�Qij� t�	 , [10]

where Qij(t) � 1 if the residue pair (i, j) forms a native contact
at time t, and Qij(t) � 0 otherwise.

The kinetic signals H(t) and Qtrp(t) are computed as averages
over a large number (�200) of folding trajectories at a fixed
temperature T � Tf, each starting from a completely unfolded
configuration (with Q � 0.1 and rmsd � 30.0; see Fit of Kinetic
Data). The initial configurations are obtained from independent,
short high-temperature simulations, T �� Tf (see Fit of Kinetic
Data for details). The relaxation of both H(t) and Qtrp(t) to their
equilibrium value (corresponding to the folded state) exhibits
distinct three-phase behavior for all values of temperature
considered (0.8 � T�Tf � 0.9). Fig. 3 shows the relaxation to
equilibrium of H(t) (normalized such that H (0) � 0 and H(t3
�) � 1), as obtained from kinetic simulations at T � 0.9Tf. A
burst phase is clearly detected as a sudden increase of the signal
up to �45% of its final value, within the first 0.1% of the total
relaxation time. Both the fit to a two-phase (Eq. 4) and to a
three-phase (Eq. 7) kinetic model are shown in Fig. 3: Whereas
the agreement with a two-phase kinetic model is poor, the
simulation data are fully consistent with a three-phase kinetic
model. The parameters A and B extracted from the fit (see Fit
of Kinetic Data) estimate that, on average, the helicity signal is

�40–45% in Ib, with a minimal increase to 50% in I, whereas the
signal Qtrp is only �10% in Ib and increases to 40–50% in I.
Experimental analysis confirms that the folding kinetics of
MLAc conform to a three-phase model [see companion article
(45)]. Moreover, the parameters A and B obtained in the fit of
the far-UV CD and fluorescence signals in the experiments are
in remarkable agreement with the values obtained from the
theoretical analysis here. Taken together, both experiment and
simulation suggest a folding mechanism for MLAc (at least for
refolding from completely denaturated condition) consisting of
two intermediates, the first of which is populated in the burst
phase and involves partially misfolded structures.

An overall folding rate for MLAc can be estimated from
equilibrium simulations (at the folding temperature, Tf) by using
the correlation observed between experimentally measured fold-
ing rates and folding rates obtained by simulating a large set of
proteins with a similar coarse-grained model (53). The folding
rate so obtained is log(kf) � 
1.6 � 0.4 [or log(kf) � 
1.3 � 0.3
if also the correction on the energy scale as discussed in ref. 54
is taken into account]. These values are in excellent agreement
with the experimental value of log(kf) � 
1.5 � 0.2 in water [see
companion article (45)]. The detailed kinetic analysis becomes
prohibitively slow for simulations close to the folding tempera-
ture, and the rate constants k1 and k2 cannot be reliably
estimated at the transition midpoint, as needed for a direct
comparison with experimental values. However, a more quan-
titative comparison of the detailed folding mechanism as ob-

Fig. 4. Normalized helicity as obtained in kinetic simulation is plotted as a
function of the Qtrp(t) signal detected at the same time. Blue dots correspond
to the signal measured in the burst-phase time scale (t � 1�kburst); green dots
correspond to the signal detected in the time scale of the accumulation of the
intermediate state, after the burst phase (1�kburst � t � 1�kburst � 1�k1 � 1�k1);
and dark blue dots correspond to the final folding phase (1�k1 � t). The folding
constants kburst and k1 are obtained by fitting simulation data to a three-phase
kinetic model (see text for details). The far-UV CD signals measured in the
kinetic experiments also are plotted as a function of the Trp fluorescence
signal. Analogously, different colors highlight different phases of the folding
process: light pink squares correspond to events detected within the time scale
associated with the formation of an intermediate state (1�kburst � t � 1�k1),
and dark brown squares correspond to the relaxation to the completely folded
state (1�k1 � t). Rate constant k1 is measured from fits to the experimental
data [see companion article (45)], whereas the time 1�kburst falls within the
stopped-flow mixing dead time. Simulation data were obtained at a temper-
ature T � 0.9Tf, and experimental data correspond to a concentration of
[Urea] � 1 M (pH 7, 20°C).

Fig. 3. Relaxation to equilibrium of helicity content H(t) as obtained from
kinetic simulations at T � 0.9Tf. The signal is normalized such that H(0) � 0 and
H(t3�) � 1. A burst phase is clearly detected as a sudden increase of the signal
up to �45% of its final value, within the first 0.1% of the total relaxation time.
Both the fit to a two-phase kinetic model (green curve) and to a three-phase
kinetic model (red curve) are overlapped to the actual simulation data (blue
points). Inset zooms in on the evolution of the signal in the burst phase. The
residuals from the fit are plotted in the bottom part of the figure, with colors
matching the corresponding fit.
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tained in simulation and experiment can be obtained by moni-
toring the increase of the two kinetic signals [H(t) and Qtrp(t) in
simulation, or CD and fluorescence signals in experiment]
relative to each other. This analysis is based on the observation
that when the normalized value of H(t) at a given time is plotted
against the corresponding value of Qtrp(t) at the same time, data
corresponding to simulations at different temperatures collapse
into the same curve (shown in Fig. 4). Similarly, the plot of
far-UV CD vs. f luorescence signal recorded in the experiments
is found to be essentially independent of denaturant concentra-
tion (data not shown). These curves obtained from simulation
and experimental data can be used to quantitatively compare the
folding mechanisms. The remarkable agreement illustrated in
Fig. 4 provides a strong evidence that, despite the simplicity of
the model, the folding mechanism predicted by simulation is fully
consistent with the mechanism emerging from experiment.

Conclusion
The complex folding process of MLAc was investigated by means
of a minimalist unfrustrated model. The results of kinetic and
equilibrium analysis are in excellent quantitative agreement with
the experimental counterpart of this study [see the companion

article by Wilson et al. (45)]. The compounding of simulation and
experimental results allows a synoptic understanding of the
folding mechanism of MLAc at a level of detail that could not
be achieved solely by experiments and could not be a priori
considered sufficiently accurate�realistic if obtained solely by
simulation. The lactose repressor protein is a paradigmatic
system for studies of gene regulation and allosteric response. The
results presented here provide a solid starting point for studies
of direct biomedical relevance, including the characterization of
the assembly of lactose repressor into the functional homotet-
ramer form and the folding�binding�function relationship in its
protein–DNA complex.
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