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Adult mammals cycle between periods of sleep and wakefulness.
Recent assessments of these cycles in humans and other mammals
[Lo, C. C., Amaral, L. A. N., Havlin, S., Ivanov, P. Ch., Penzel, T., Peter,
J. H. & Stanley, H. E. (2002) Europhys. Lett. 57, 625–631 and Lo, C. C.,
Chou, T., Penzel, T., Scammell, T. E., Strecker, R. E., Stanley, H. E. &
Ivanov, P. Ch. (2004) Proc. Natl. Acad. Sci. 101, 17545–17548] indi-
cate that sleep bout durations exhibit an exponential distribution,
whereas wake bout durations exhibit a power-law distribution.
Moreover, it was found that wake bout distributions, but not sleep
bout distributions, exhibit scale invariance across mammals of
different body sizes. Here we test the generalizability of these
findings by examining the distributions of sleep and wake bout
durations in infant rats between 2 and 21 days of age. In agreement
with Lo et al., we find that sleep bout durations exhibit exponential
distributions at all ages examined. In contrast, however, wake bout
durations also exhibit exponential distributions at the younger
ages, with a clear power-law distribution only emerging at the
older ages. Further analyses failed to find substantial evidence
either of short- or long-term correlations in the data, thus sug-
gesting that the durations of current sleep and wake bouts evolve
through time without memory of the durations of preceding bouts.
These findings further support the notion that bouts of sleep and
wakefulness are regulated independently. Moreover, in light of
recent evidence that developmental changes in sleep and wake
bouts can be attributed in part to increasing forebrain influences,
these findings suggest the possibility of identifying specific neural
circuits that modulate the changing complexity of sleep and wake
dynamics during development.

atonia � renewal process � Markov process � development

As members of a diurnal species, adult humans experience
sleep as a prolonged period of rest during the night;

however, sleep actually occurs as a series of discrete bouts
interrupted by bouts of wakefulness. What is perhaps most
striking during the first several months after birth, when circa-
dian influences on behavioral state are not well established, is
the brevity of these bouts of sleep and wakefulness (1). In
newborn rats at 2 days of age (P2), these cycles are astonishingly
rapid: The average bout lengths of nuchal muscle atonia (indic-
ative of sleep) and high nuchal muscle tone (indicative of
wakefulness) are only 15 s and 5 s, respectively (2). Over the next
week, bout lengths increase significantly as forebrain mecha-
nisms exert increasing modulatory control over brainstem mech-
anisms controlling sleep and wakefulness (2).

Recently, Lo et al. (3) analyzed the distributions of sleep and
wake bouts in human adults. They found that, whereas sleep
bouts exhibited an exponential distribution [such that the fre-
quency distribution f(t) of bout durations of duration t was
proportional to e(�t/�), where � is the characteristic time scale],
wake bouts exhibited a power-law distribution [such that f(t) �
t��, where � is a characteristic power-law exponent]. In a
subsequent report (4), these findings were extended to cats, rats,
and mice. From this comparative analysis, Lo and colleagues
found that the exponential time scale � for sleep bout durations
increased with body size, thus possibly implicating a constitu-
tional variable (e.g., metabolic rate) in the regulation of sleep

bouts. In contrast, the power-law exponent � for wake bout
durations did not vary across species.

Although establishing the generalizability of these results by
examining more species will be important, data from developing
animals could provide additional critical information. In partic-
ular, in analyzing the sleep and wake bout durations of P2 and
P8 rats, we found that both are better captured by exponential,
not power-law, distributions (2). If wake bout durations do not
exhibit power-law behavior in early infancy, then such behavior
may develop gradually as the neural components of sleep and
wakefulness are elaborated. In addition, because the precise
nature of these distributions critically shapes the models that we
adopt to describe the temporal dynamics of sleep and wakeful-
ness (3), establishing the statistical properties of these bout
durations across development becomes important. Therefore,
using archival and newly collected data from rats at P2, P8, P10,
P14, and P21, we assess here the statistical behavior of sleep and
wake bout durations. By demonstrating a pronounced develop-
mental transition in wake bout durations, important new infor-
mation is provided that can help shape models of sleep–wake
behavior and point to specific neural processes responsible for
developmental shifts in the statistical properties of sleep–wake
behavior.

Methods
All experiments were performed under National Institutes of
Health guidelines for the care of animals in research and were
approved by the Institutional Animal Care and Use Committee
of the University of Iowa.

Subjects. Thirty P2, P8, P10, P14–15 (hereafter P14), and P20–21
(hereafter P21) male and female rats from 29 litters were used.
Six subjects were tested at each age. Weights ranged from 6.5–9.1
g at P2, 16.3–20.7 g at P8, 24.3–27.7 g at P10, 32.8–41.1 g at P14,
and 49.4–68.5 g at P21. All pups were born to Harlan Sprague–
Dawley rats housed in the animal colony at the University of
Iowa. The pups were raised in litters that were culled to eight
pups within 3 days of birth (day of birth � day 0). Litters and
mothers were raised in standard laboratory cages (48 � 20 � 26
cm), in which food and water were available ad libitum. All rats
were maintained on a 12-hr light–dark schedule with lights on at
7 a.m.

Recording of Sleep–Wake Behaviors. Some of the data from the P2
and P8 rats (2) and the P14 rats (5) have been published
previously. The P10 and P21 data were collected for this study.
The methods for recording sleep and wake behavior were similar
for all pups reported here. The basic testing method and
differences in the treatment of pups of different ages are
described below.
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Surgery. On the day of testing, a P2, P8, or P10 rat with a visible
milkband was removed from the litter, weighed, and anesthe-
tized with isoflurane. Under isoflurane anesthesia, bipolar stain-
less steel hook electrodes 50 �m in diameter (California Fine
Wire, Grover Beach, CA) were inserted bilaterally into the
nuchal muscle and secured with collodion. After surgery, the pup
recovered for at least 1 h in a humidified incubator maintained
at thermoneutrality (i.e., 35°C for P2 and P8 subjects; 32°C for
P14–15 subjects). P21 subjects were prepared identically except
that they recovered in the testing chamber maintained at ther-
moneutrality (i.e., 32°C) for at least 30 min.

P14 rats were prepared similarly to the other subjects except
that additional electrodes were implanted for the recording of
extraocular muscle activity and neocortical electroencephalo-
gram, as described in ref. 5. Bipolar stainless steel hook elec-
trodes were implanted bilaterally into the nuchal muscle and
secured with collodion. The subject was placed into the testing
chamber, which was maintained at thermoneutrality (i.e., 32°C),
for 2–4 h to recover and acclimate.

Procedure. All pups were tested unrestrained during the day
inside an electrically shielded double-walled glass chamber
(height, 17.0 cm; i.d., 12.5 cm) with a Plexiglas lid. Air temper-
ature inside the chamber was regulated at thermoneutrality for
each age using a temperature-controlled water circulator. Access
holes in the side and lid of the chamber allowed for passage of
air through the chamber as well as for the passage of electrodes.
A round platform constructed of polyethylene mesh was fitted
inside the chamber and a perforated felt pad was placed on top
of the mesh.

Nuchal electromyogram (EMG) electrodes were connected to
differential amplifiers (A-M Systems, Carlsborg, WA) and their
signals were amplified (�10,000) and filtered (300–5,000 Hz).
EMG data were visualized by the experimenter during the test
with a data acquisition system (BioPac Systems, Santa Barbara,
CA). A microcamera was placed above the chamber lid for
monitoring and recording of behavior. EMG and video data
were recorded to digital videotape with a data recorder (DV8,
WinTron Technologies, Rebersberg, PA).

All subjects acclimated to the testing chamber for at least 30
min before data recording began. For P2, P8, and P10 subjects,
data were recorded for 1 h. For P14 and P21 subjects, data were
recorded for 2 h and 6 h, respectively.

Data Analysis. As described in ref. 2, the EMG signal for each
subject was dichotomized into bouts of atonia and high muscle
tone (indicative of sleep and wakefulness, respectively). EMG
signals were digitized at 1 or 2 kHz with a data acquisition system
(BioPac Systems). Digitized signals were summed (when there
were two usable EMG signals), integrated, and full-wave recti-
fied. Then the EMG signal was dichotomized into bouts of sleep
and wake as follows: The amplitude of five 1-s segments of
noise-free, uninterrupted atonia and high-tone periods was
measured for each pup and averaged, and the midpoint between
the two was calculated. A bout of sleep or wake was defined as
a period in which muscle tone was below or above, respectively,
the midpoint value for at least 1 s (see Fig. 1A). At least 50
sleep–wake cycles were analyzed from each subject.

For the analyses described above, data were imported into
STATVIEW 5.0 (SAS Institute, Cary, NC) and DELTAGRAPH 5.5
(SPSS, Chicago). Survivor distributions were produced from
each pup and from pooled data at each age. Data were plotted
by using log–log and semilog coordinates, and regression anal-
yses were performed on the data to assess the r2 values and,
therefore, the degree of fit of the data to power-law and
exponential distributions, respectively. ANOVA was used to test
for differences across age; for post hoc tests, Fisher’s protected
least significant difference was used. Paired t tests were used to

test for within-age differences. For all tests, the Type 1 error rate
(alpha) was set at 0.05. Means are presented with their standard
errors.

To examine correlations among neighboring high-tone and
atonia intervals, all data sets were truncated (when necessary) to
50 complete cycles of high muscle tone and atonia. Then, for
each subject, we computed the following four classes of corre-
lation coefficient: (i) between successive high tone intervals, (ii)
between successive atonia intervals, (iii) between each tone
interval and its succeeding (adjacent) atonia interval, and (iv)
between each tone interval and its preceding (adjacent) atonia
interval. With five age groups, six subjects at each age, and four
coefficients calculated for each subject, there were a total of 120
comparisons, thus establishing the Type 1 error rate (alpha),
after Bonferroni correction, of 1 � (1 � 0.05)(1/120) � 0.00043.

In some cases, a data set may exhibit significant correlations
that manifest only over larger numbers of bout intervals. There-
fore, in addition to the short-term correlational analysis de-
scribed above, a long-term analysis was also performed using the
same data. For this analysis, spectra were computed for the high
muscle tone and atonia intervals separately (6). Because any
long-term cross-correlations between the tone and atonia inter-
vals would appear in the spectra of these intervals individually,
we did not calculate these cross spectra.

For each subject, we began by subtracting the sample mean
from each interval and dividing by the sample standard devia-
tion. Because individual spectra exhibit large variability, we
averaged spectra over all six animals within each age group. The
null hypothesis in this case yields a �2 distribution with 12 degrees
of freedom. Because there were 25 (i.e., 50�2) values for each
averaged spectrum, 5 age groups, and 2 types of intervals (high
muscle tone and atonia), the total number of spectral values was
250, thus establishing the Type 1 error rate (alpha), after
Bonferroni correction, of 1 � (1 � 0.05)(1/250) � 0.00021.

Results
Fig. 1A illustrates the method used here to convert nuchal EMG
data to sleep and wake durations. In this 2.4-min record from a
P8 rat, two periods of high muscle tone, indicative of wakeful-

Fig. 1. Illustration of method for deriving sleep and wake bout durations
from nuchal EMG record. (A) (Upper) A 2.4-min record in a P8 rat of nuchal
EMG showing two brief periods of high muscle tone indicative of wakefulness
separated by a longer period of muscle atonia indicative of sleep. (Lower)
These dichotomous states are also depicted. (B) Cycling between sleep and
wakefulness in a P2 (Upper) and P21 (Lower) rat. Note the different time scales
in the two traces.
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ness, are shown, as is one period of muscle atonia, indicative of
sleep. (The spikes in the EMG record during sleep indicate
myoclonic twitches.) Fig. 1B depicts rapid cycling between sleep
and wakefulness over a 300-s period in a P2 rat and the slower
cycling over a 1,200-s period in a P21 rat. Each bout of sleep and
wakefulness is used to generate mean sleep and wake bout
durations and contributes to the production of survivor data (see
below).

As shown in Fig. 2, mean sleep bout durations increased
significantly with age (F4,25 � 21.2, P � 0.0001), as did mean

wake durations (F4,25 � 12.3, P � 0.0001). Post hoc tests revealed
that, for both sleep and wake durations, values at P2 were
significantly less than those at P8 and P10 and that values at P8
and P10 were significantly less than those at P14 and P21.
Interestingly, despite these developmental changes in both sleep
and wake durations, the percentage of time asleep stayed within
a narrow range of values (from 67% and 74%) across the ages
examined here (F4,25 � 0.6, not significant).

Survivor distributions for data at P2 and P21 are presented in
Fig. 3 for pooled data (solid lines) as well as for representative
subjects (dotted lines). Survival data that follow an exponential
distribution fall on a straight line in a semilog plot (Fig. 3 Left)
and those that follow a power-law distribution fall on a straight
line in a log–log plot (Fig. 3 Right). For sleep durations, it can be
seen that the data for the P2 and P21 rats are best described by
an exponential function because they follow a straight line on the
semilog plot. This function also describes the data for the wake
durations at P2; in contrast, by P21, these data are now linearly
distributed on a log–log plot, thus indicating a shift from an
exponential distribution at P2 to a power-law distribution at P21.

To assess whether the survivor functions of the sleep and wake
bout durations are best described as exponential or power-law
distributions at each age, regression analyses were performed for
each pup when data were plotted using semilog and log–log
coordinates. For sleep bout durations (Fig. 4A), ANOVA re-
vealed a significant main effect of distribution (F1,50 � 180.1, P �
0.0001), but neither the main effect of age (F4,50 � 0.6) nor the
age � distribution interaction (F4,50 � 1.9) was significant.
Paired t tests revealed that an exponential distribution provided
a significantly better fit to the data than did a power-law
distribution at each of the five ages examined.

Fig. 2. Mean sleep (filled bars) and wake (open bars) bout durations for pups
at the five ages examined here. The horizontal lines indicate that, for sleep
and wake durations, the values at P2 were significantly lower than those at P8
and P10, which were in turn significantly lower than those at P14 and P21.
Data are expressed as means � SE.

Fig. 3. Survivor plots of sleep (A) and wake (B) bout durations for rats at P2 and P21. Each plot was constructed using pooled data at each age (solid lines) and
data from one representative pup at each age (dotted lines). (Left) The plots were constructed using semilog coordinates; straight lines on these plots indicate
that the data follow an exponential distribution. (Right) The plots were constructed using log–log coordinates; straight lines on these plots indicate that the data
follow a power-law distribution.
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Because of the uniform exponential behavior for sleep dura-
tions across age, it was possible to document the evolution of the
time constant, �, in the equation f(t) � e(�t/�). Values for � were
derived by curve-fitting individual data at each age. (As expected
for data that distribute exponentially, the calculation of � using
this method produces values that are close to the mean durations
depicted in Fig. 2.) There was a main effect of age on � (F4,25 �
36.1, P � 0.0001); at P2, the mean value of � was 12.1 � 1.6 s;
it increased to 45.4 � 9.0 s and 45.6 � 6.5 s at P8 and P10,
respectively; it peaked at 96.6 � 6.9 s at P14 and dipped to 69.5 �
2.7 s at P21. For their 2- to 3-month-old rats, Lo et al. (4) report
a value for � of 372 s (6.2 min). This quintupling of the value of
� between P21 and 2–3 months of age likely reflects continued
developmental change as sleep bouts consolidate further after
weaning, especially during the lights-on period in this nocturnal
species; it should be noted, however, that methodological dif-
ferences between the two studies may also account for some of
this age-related disparity.

Only at P21 was it valid to compute the value of the charac-
teristic power-law exponent, �. As with �, values of � were
derived by curve-fitting individual data, yielding a mean value of
0.765 � 0.034. Converting from a survivor function to a prob-
ability density function, this value for � becomes 1.765, which
compares with a value of 2.3 reported by Lo et al. (4) for 2- to

3-month-old rats. As discussed for � above, the disparity in the
value of � between P21 and 2–3 months of age could reflect a
true developmental difference, methodological differences be-
tween the two studies, or a combination of the two.

For wake bout durations (Fig. 4B), ANOVA revealed a
significant main effect of age (F4,50 � 6.7, P � 0.0005) but not
distribution (F1,50 � 1.4) and a significant age � distribution
interaction (F4,50 � 32.3, P � 0.0001). The interaction was due
to the fact that these durations were increasingly better fit by a
power-law distribution between P10 and P21. Indeed, at P8 and
P10, paired t tests revealed that an exponential distribution
provided a significantly better fit to the data than did a power-
law distribution, whereas, by P21, the reverse was true.

Analysis of the short-term correlations in the data for each
subject yielded only one significant result (i.e., for the high
muscle tone interval autocorrelation for one P21 subject), and
only four other correlations approached statistical significance.
Furthermore, none of the spectral values computed to detect
possible long-term correlations in the data even approached
statistical significance.

Discussion
Although sleep studies in adults traditionally rely upon multiple
electrographic criteria for defining sleep and wake states, recent
work in adult rats indicates that neocortical electroencephalogram
measures alone are sufficient to distinguish the primary behavioral
states (7). In contrast with adults, the neocortical electroencepha-
logram in infant rats before the age of P11 does not provide useful
information for distinguishing sleep–wake states (8, 9). We have
found, however, that nuchal muscle tone alone provides a reliable
indicator of sleep and wakefulness in infants (5, 10, 11). Moreover,
this single measure of state has been used in week-old rats to
identify medullary and mesopontine regions involved in the regu-
lation of sleep and wakefulness (12, 13). Therefore, the sleep–wake
durations and transitions reported here using nuchal EMG likely
reflect the same neural activity within the brainstem that gives rise
to sleep–wake cycles as defined by using electroencephalogram and
EMG measures in adults.

A variety of approaches have been adopted to model sleep–wake
behavior in infants (14) and adults (15, 16). Only rarely, however,
have investigators focused on the fine structure of the bout dura-
tions of sleep and wakefulness (17). Such a focus is warranted given
that conventional measures of total time asleep and awake must, by
necessity, be derived from the accumulation of much smaller bouts
of sleep and wakefulness. In other words, an understanding of the
dynamics and, therefore, the underlying mechanisms of sleep–wake
behavior requires attention to the fine temporal structure of bout
activity. On this basis, Lo et al. (3) examined the temporal dynamics
of sleep and wake bouts in adult humans. Using conventional
electrographic criteria of sleep and wakefulness to categorize
behavior in 30-s bins (as in the present study, the different stages of
sleep were not considered in their analysis), they demonstrated that
sleep bouts follow an exponential distribution, whereas wake bouts
follow a power-law distribution. Based on their findings, Lo et al.
devised a computational model to capture these statistical proper-
ties of sleep and wake durations. In a subsequent report in which the
sleep–wake bouts of adult humans, cats, rats, and mice were
examined, Lo and colleagues replicated their earlier findings (4).
Moreover, they reported that the wake-related power-law exponent
(�) was the same across the four species, whereas the sleep-related
time constant (�) increased with increasing body size.

The present findings support the conclusions of Lo and
colleagues in some respects but not in others. First, by showing
at all ages tested here that sleep bout durations are best described
as following an exponential distribution, our results support
those of Lo and colleagues and extend them to the neonatal
period of an altricial species. This general statistical feature of
sleep bout durations remains constant despite significant in-

Fig. 4. Values of r2 produced using regression analysis of survivor data at five
postnatal ages in infant rats. For each individual pup, the degree of fit of the
data to power-law and exponential distributions was determined, yielding a
value of r2 that was then averaged across subjects at each age. (A) Values of
r2 for sleep bout durations showing that the data are consistently best de-
scribed by an exponential distribution. (B) Values of r2 for wake bout durations
showing that the data are best described by an exponential distribution at P8
and P10 and by a power-law distribution at P21. Data are expressed as
means � SE. *, significant within-age difference.
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creases in mean sleep bout duration over this period (see Fig. 2)
and, therefore, sizable increases in �. Thus, � not only varies
across species but across age as well.

Second, we found that wake bout durations early in ontogeny
are best described as following an exponential distribution and
that it is only after P14 that they begin to follow a power-law
distribution. Interestingly, this dramatic transition in the statis-
tical distribution of wake bout durations occurs despite the
relatively small increases in mean wake bout duration over this
period (see Fig. 2). One implication of this transition from
exponential to power-law behavior is that the scale invariance
reported by Lo and colleagues (4) for wake bout durations is
perhaps only applicable to adult mammals. Moreover, this
developmental transition in the statistical distribution of wake
bout durations implies that their model, which accurately de-
scribes sleep–wake transitions in adults, must be modified to
account for the lack of power-law behavior for wake bout
durations in early infancy.

Another feature of the model proposed by Lo et al. (3) that is
supported here in infants concerns a lack of short-term autocor-
relations and cross-correlations for neighboring sleep–wake states
(with one minor exception). In addition, our assessment of com-
puted spectral values also indicated a lack of long-term correlations
in the data. Taken together, these results suggest that as infants
cycle between sleep and wakefulness, there is no memory for the
duration of previous intervals. Thus, the available evidence leads us
to conclude that transitions between sleep and wakefulness most
closely resemble an alternating renewal process (18, 19); at the
youngest ages tested here, for which both sleep and wake durations
distribute exponentially, the sleep–wake state model further spe-
cializes to a two-state Markov process.

The alternating renewal process means that the system resets
every time the animal wakes up or goes to sleep; no memory of
the past persists beyond these events. However, some memory
can exist within intervals, particularly for those that exhibit a
power-law distribution. For example, a wake time that has
already persisted for a long time is likely to last even longer,
producing a relative lack of intermediate-duration wake times. In
contrast, for a Markov process (a subset of alternating renewal
processes), as with the youngest subjects tested here, the time
remaining in any interval is independent of how long it has
persisted so far: a total lack of memory.

Recent evidence suggests that the developmental elongation
of sleep and wake bout durations during ontogeny (see Fig. 2)
reflects increasing forebrain modulation of brainstem neural
circuits. For example, transections located between the midbrain
and anterior hypothalamus of P8 rats (2), as well as combined

lesions of the preoptic area and basal forebrain (E. J. Mohns,
K.Æ.K., and M.S.B., unpublished data), cause a reversion to
sleep–wake cycles typical at P2. The present results further
suggest that this ontogenetic elaboration of brainstem and
forebrain neural circuits may also be related to the shift in the
statistical distribution of wake bout durations that occurs during
that period. For example, the exponential distribution of wake
bout durations in early ontogeny may reflect the primary con-
tribution of brainstem neural circuits, whereas the gradual
emergence of the power-law distribution may reflect the devel-
oping influence of more rostral structures. It must be stressed,
however, that the different developmental time courses for
increases in bout durations and changes in the statistical distri-
butions of those durations (compare Figs. 2 and 4) may reflect
the influences of nonidentical neural processes.

In relating the current findings to developmental changes at
the neural level, there are several issues that should not be
ignored. For example, the onset of the power-law distribution of
wake durations around P14 could be associated with the onset of
eye opening and the subsequent development of circadian sleep
rhythmicity (20). A link between these two processes would then
implicate the developing influence of the suprachiasmatic nu-
cleus and its connectivity with well established hypothalamic and
brainstem nuclei involved in the control of sleep and wakefulness
(21). Another important issue concerns the postnatal develop-
ment of sleep homeostasis (22, 23), including sleep pressure and
rebound, and its relationship to the findings reported here.
Although here we recorded sleep–wake activity for relatively
brief periods during the lights-on period, longer-term recordings
throughout the day and night and at different ages will be
necessary to reveal circadian and homeostatic influences on the
statistical properties of sleep–wake bouts.

In summary, the present study and those of Lo and colleagues
(3, 4) indicate lawful statistical behavior of sleep and wake bout
durations. By focusing on the temporal dynamics of these
transitions, we move closer to the actual dynamics that govern
this fundamental biological rhythm. The present study demon-
strates the additional promise of developmental assessments of
sleep and wakefulness for revealing basic biological mechanisms.
Thus, by combining temporal precision, across-species compar-
ison, developmental analysis, and assessment of neural sub-
strates, we should be able to make progress toward the devel-
opment of computational models that fully capture the dynamics
and mechanisms of sleep–wake behavior across the life span.

We thank Carl Anderson for many helpful ideas. This work was
supported by National Institute of Mental Health Grants MH50701 and
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