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Multisite protein phosphorylation makes a good
threshold but can be a poor switch
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Phosphorylation and dephosphorylation play a fundamental role
in eukaryotic signaling. Some 30% of proteins are phosphorylated
at any time, many on multiple sites, raising the question of how the
cellular phosphorylation state is regulated. Previous work for one
and two phosphorylation sites has revealed mechanisms, such as
distributive phosphorylation, for switch-like regulation of maxi-
mally phosphorylated phosphoforms. These insights have led to
the influential view that more phosphorylation sites leads to
steeper switching, as proposed for substrates like cyclin E and the
cyclin-dependent kinase inhibitor Sic1. An analytical study of the
ordered distributive case reveals a more complex story. Multisite
phosphorylation creates an efficient threshold: The proportion of
maximally phosphorylated substrate is maintained close to 0 when
the ratio of kinase to phosphatase activity lies below a suitable
threshold, and this threshold increases with increasing numbers of
sites, n. However, above the threshold, the response may not
always abruptly switch between 0 and 1, as would be the case for
an efficient switch, but may increase in a gradual manner, which
becomes more hyperbolic with increasing n. Abrupt switching
cannot be attributed merely to n being large. We point out that
conventional measures of ultrasensitivity must be modified to
discriminate between thresholding and switching; we discuss ad-
ditional factors that influence switching efficiency and suggest
new directions for experimental investigation.

cellular phosphorylation state | distributive versus processive
ultrasensitivity | multistability

hosphorylation and dephosphorylation (P&D) on serine,

threonine, and tyrosine residues are ubiquitous and funda-
mental processes in eukaryotic signaling. Some 500 protein
kinases, and perhaps half as many protein phosphatases, are
thought to be present in the human genome (1), and 30% of all
proteins in any eukaryotic cell are thought to be phosphorylated
at any time (2), many on multiple sites.

A substrate molecule with n phosphorylation sites may occupy
2" potential states. A population of such molecules contains
different proportions of molecules in each of these states; these
proportions are being determined by the competitive balance
between the relevant kinases and phosphatases. In principle, a
population of N molecules could occupy (2")V states. If it seems
unlikely that a cell would fully utilize this enormous range of
possibilities, that begs the question of how it regulates those
phosphorylation states it uses.

Early studies for n = 1 uncovered two regulatory principles.
First, P&D could integrate the contributions of multiple effec-
tors and tune the proportion of a singly phosphorylated substrate
to any point over a wide range (3). The 2V states in the
population are utilized as a discrete proxy for a continuously
tunable response. Second, P&D could also exhibit ultrasensitiv-
ity, in which a small change in kinase or phosphatase concen-
tration causes a much larger change in the proportion of
phosphorylated substrate (3, 4). This ultrasensitivity enables the
substrate population to be abruptly switched between predom-
inantly unphosphorylated and predominantly phosphorylated.

More recent studies of the mitogen-activated protein kinase
cascade have revealed the importance of distributive catalysis as
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an additional mechanism for creating ultrasensitivity. Catalytic
activity is distributive if at most one modification (phosphory-
lation or dephosphorylation) takes place before enzyme and
substrate molecules part company. It is processive if two or more
modifications take place during a single encounter. For n = 2,
Huang and Ferrell (5) showed that distributive P&D causes the
steady state proportion of doubly phosphorylated substrate to
depend ultrasensitively on kinase concentration. In vitro exper-
iments showed that Mek phosphorylation of Erk2 was distrib-
utive (6, 7), and later work found the same for the mitogen-
activated protein kinase phosphatase MKP3 (8). Ultrasensitivity
in the mitogen-activated protein kinase cascade is thought to
underlie the all-or-none maturation of Xenopus oocytes (9).

In explaining the ultrasensitive impact of distributivity, (10)
argues that, because a distributive mechanism requires two
collisions for maximal phosphorylation, “the rate of conversion
of phosphorylated MAPKK to doubly phosphorylated MAPKK
will increase as the square of the stimulus concentration ...
(which) translates into a ... Hill coefficient of 2.” By this
reasoning, if two collisions are good, more are better, so that
increasing numbers of phosphorylation sites result in even
sharper switches. The proportion of maximally phosphorylated
substrate is therefore expected to follow a Hill curve of the form
u"/(1 + u"), where u is some (unspecified) measure of kinase
activity relative to phosphatase activity and » is the number of
phosphorylation sites, as illustrated in Fig. 1.

This explanation has been widely accepted. In discussing the
cyclin-dependent kinase inhibitor Sicl, Nash ez al. (11) claim that
“the requirement for six distributive phosphorylation events in
Sicl targeting creates an ultrasensitive response, as modeled by
degradation = [kinase]""/(K + [kinase]") with a Hill coeffi-
cient (nH) of six.” The same view is reiterated by Welcker et al.
(12) in their discussion of the multisite phosphorylation of cyclin
E by Cdk2 and GSK3.

We undertake here an analysis of distributive P&D for an
arbitrary number of sites. We find a more complex behavior to
that suggested by the assertions above. When the enzymes are
not saturated, if the relative enzymatic efficiencies (the ratio of
keat/ Ky for the kinase to that for the phosphatase) are similar at
each site, we find the situation depicted in Fig. 2, rather than that
in Fig. 1. We shall see that conventional measures of ultrasen-
sitivity can fail to discriminate between these pictures by con-
flating the properties of thresholding and switching. The curves
in Fig. 2 are good thresholds: The proportion of maximally
phosphorylated substrate is maintained close to 0 when the ratio
of kinase to phosphatase activity is below the threshold, and this
threshold value increases with increasing n. However, above the
threshold, the response does not switch abruptly from close to 0
to close to 1, as would be the case for an efficient switch, but
increases in a hyperbolic manner, which becomes more marked
with increasing n. Abrupt switching requires other factors:
substantial disparities in the relative enzymatic efficiencies at

Abbreviation: P&D, phosphorylation and dephosphorylation.
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Fig. 1. Hill curves hp(u) = u"/(1 + u"), for n = 1, 2, and 10, illustrating the
current view of distributive phosphorylation. The horizontal axis represents
some unspecified measure of kinase activity relative to phosphatase activity.
The bold curve is the limit as n — c: the “perfect switch.”

different sites, saturation effects, or phosphorylation-dependent
conformational change. Although the Hill curves are both good
thresholds and good switches, multisite phosphorylation is a
good threshold but can be a poor switch.

We suggest in Discussion some experimental directions that
would complement the analytical results presented here. We
hope these suggestions may stimulate more intensive study of
how kinases and phosphatases collectively regulate the cellular
phosphorylation state.

Materials and Methods

The existence of multiple steady states was pointed out to the
author by Martin Feinberg for the case n = 3 and confirmed for
n = 2 to 5 by using the Chemical Reaction Network Theory
toolbox (information available upon request). The calculations
for Figs. 1-3 were done in MATLAB 7 (Mathworks, Natick, MA).
All other conclusions were mathematically derived.
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Fig.2. Behavior of ordered distributive P&D with n sites, showing p,(u; 1), as
defined in Eq. 10, for n = 1, 2, and 10. The bold curve is p(u; 1), defined in Eq.
11 as the limit of pp(u; 1) as n — .
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Fig. 3. The Hill curves, hy(u) = u"/(1 + u") (solid line), compared with the

multisite phosphorylation curves, p,(u; §, ..., §, 8' "), defined in Eq. 13
(dashed line), for §=0.1and n = 2, 5, and 10.

Results

A Model for Ordered Distributive P&D. We consider kinase £ and
phosphatase F acting distributively on substrate S, having n
phosphorylation sites. We focus on the maximally phosphory-
lated phosphoform, which is often the one relevant to down-
stream responses (the results hold symmetrically for the maxi-
mally unphosphorylated phosphoform). We seek to calculate its
proportion in the substrate population at steady state.

Experiments suggest that approximate steady states exist
in vivo, in which concentrations of key components remain
roughly constant for a limited period (9, 13). This observation
perhaps reflects a time scale intermediate between the events at
the membrane (=10 seconds) and initiation of gene transcrip-
tion (=30 minutes). Steady states may be reproduced in vitro but
to do so requires both kinase and phosphatase to be present.
Activated kinase and phosphatase can be mixed with substrate
and supplied with the ingredients for phosphorylation, together
with an ATP regenerating mechanism to maintain a constant
ATP/ADP ratio, until the system reaches a steady state of
phosphorylation that can be measured. We note that such
experiments have not yet been undertaken.

We make the assumption that P&D is ordered, which allows
the number of phosphoforms to be reduced from 2" ton + 1.
This assumption simplifies analysis, at the cost of requiring that
kinase and phosphatase cooperate to maintain the ordering.
Ordered phosphorylation by a kinase is by no means unknown;
the most vivid example being GSK3 in its mode of primed
phosphorylation (14, 15). The first phosphorylation of Erk2 by
Mek is predominantly on the tyrosine residue (6), providing
further evidence of ordered phosphorylation. However, the first
dephosphorylation of bisphosphorylated Erk2 by MKP3 is also
predominantly on the tyrosine residue (8). Hence, in vitro, this
pair of kinase and phosphatase, although individually ordered,
do not cooperate in maintaining ordering: The substrate popu-
lation will contain all four phosphoforms.

The assumption of ordered phosphorylation and dephosphor-
ylation has been commonly made in previous studies of multisite
phosphorylation, including the original studies for n = 2 (5, 6).
We continue the tradition here because the ordered case is still
instructive and allows us to understand what may happen in the
unordered case. On that basis we argue below, in respect of how
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switching efficiency changes with n, that the unordered case does
not improve over the ordered case.

The Fundamental Formulas. Ordered distributivity leads to a chain
of enzymatic reactions

E E E
So=8=--=8S,, [1]
F F F

where S; denotes the phosphoform with i sites phosphorylated.
ATP is not explicitly included here as a substrate for the kinase.
Suppose this chain is at steady state, so that the concentration of
each S; is unchanging. Let ¢; be the net flux (rate of product
formation) from S; to S; + 1 because of kinase E. Similarly, let f;
be the net flux in the opposite direction, from S; + 1 to S;, due
to F. Because the concentration of each phosphoform is un-
changing, the net flux coming to it from the left must equal the
net flux leaving it to the right. Hence,

ei—fi=er—fo="""=e, 1~ fui1 [2]

But there can be no flux entering the chain from the left at Sy
nor leaving it from the right at S,,. Hence,e; — fi = 0ande,—; —
fn—1 = 0. Either way, we see that

e, =f; [3]

for eachi. Hence, when the overall system is at steady state, each
individual loop is at steady state. We note that this observation
has been repeatedly made in different contexts.

It greatly simplifies the analysis. To exploit it, we need to make
some assumptions about the biochemical mechanism behind
P&D. We assume that both E and F subscribe to the same
enzymatic mechanism

Kon K cat
X+U—=XU—X+P, [4]
knff

where X is either E or F, whereas U and P are appropriate
phosphoforms. The rate constants are those for mass-action
kinetics assuming that the ATP/ADP ratio is held constant and
its influence absorbed into the rate constants. Once again, these
assumptions have commonly been made in previous work.
Reversibility and product inhibition can make a theoretical
difference (16-18), but their physiological relevance in P&D is
unclear. We continue to follow tradition by using Eq. 3, but this
issue needs clarification.

Eq. 4 takes place at each arrow in the enzymatic chain (Eq. 1).
These reactions collectively result in 3(n + 1) chemical species:
n + 1 phosphoforms, 2n enzyme—substrate complexes, and 2 free
enzymes. The dynamics is constrained by three mass conserva-
tion laws, because the total amounts of kinase, [E.]; phospha-
tase, [Frot]; and substrate, [St], remain constant over any time
evolution.

The net flux through Eq. 4 is k¢, [XU], where [—] denotes the
steady-state concentration. Because the concentration of XU is
unchanging at steady state, the same “rate balancing” that we did
for Eq. 1 shows that

kcat[XU] = kon[X][U] - koff[XU]- [5]

It follows that ko [XU] = (kcat/Km)[X][U], where the Michaelis-
Menten constant is given by Ky = (kcar + kofr)/kon. Using this
formula for the rates of phosphorylation and dephosphorylation
between S; and S;, which are equal according to Eq. 3, yields
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where A; is the ratio of the catalytic efficiency (kca/Knm) of the
kinase acting on §; to that of the phosphatase actingon §; + ;. We
note that E and F refer to free kinase and phosphatase,
respectively: those amounts not bound in any enzyme—substrate
complexes. Eq. 6 is central to the present paper.

We note two consequences of it in passing. First, together with
mass conservation, it shows that the steady-state concentrations
of the 3(n + 1) species in the system are determined by just three
of them: [E], [F], and [Siot]. Conversely, if these three are given
arbitrary positive values, they determine a steady state (result
omitted). Although the system grows in complexity as n in-
creases, the set of steady states remains a three-parameter
family. Second, it follows from Eq. 6 that

[Si1llSica] A
[S:T? vy

[6]

[71

which is independent of [E]/[F] and, therefore, constant across
all experiments with the same E, F, and S. This observation
provides a stringent test of assumptions. Departures from this
formula can be used to discriminate between distributive and
processive mechanisms for either kinase or phosphatase (result
omitted).

The steady-state proportion of maximally phosphorylated
substrate is

_ [S,]
P ISl + [S1] + -+ + [,

(8]
which can now be determined as a function of u = [E]/[F] and
Ao, - .., Ay—1. Using Eq. 6, we find that p,(u; Ao, ..., Ay—1) IS

AOAI e )\nflu"
1+ Agu + Ao + <=+ oAy *+ = Ay qu™

[9]

Multistability. Eq. 9, although quite general, must be interpreted
with care. The quantity u is not experimentally controllable. The
amounts of free kinase and free phosphatase are set by the
dynamics of the system. They depend on the initial state in which
the system is prepared: its initial condition. In the in vitro
experiment described above, the initial condition is that all
kinase is free, all phosphatase is free, and the substrate is
completely unphosphorylated. Only 3 of the 3(n + 1) chemical
species have nonzero concentrations. The situation in vivo could
be very different. Both intermediate phosphoforms and en-
zyme-substrate complexes could be present, before activation of
the system as part of a signaling response. Moreover, an indi-
vidual cell may have a different initial state at different times,
due to protein number changes or cell growth, as may different
cells at the same time. The in vivo system is hence likely to
explore the space of initial conditions far more thoroughly than
may normally be done in vitro.

The reason this difference makes a difference is that different
initial conditions may lead to different steady states. Of course,
if the initial conditions have different total concentrations, then
mass conservation implies that the resulting steady states must
exhibit a similar difference. The problem is that initial conditions
with the same total concentrations may yield different steady
states. Multisite phosphorylation exhibits multistability.

Multistability was first shown for n = 2 (18). It continues to
occur for n = 2 (but not for n = 1). This feature greatly
complicates the analysis. The proportion of maximally phos-
phorylated substrate is determined by how u determines p,(u)
and how the initial conditions determine u. The former is
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explained by Eq. 9. The difficulty arises with the latter.
Multistability means that total concentrations cannot be used
as a convenient proxy for initial conditions. Two different
initial conditions, having the same total concentrations, may
give markedly different values of u.

We do not know whether multistability happens for all pa-
rameter values or, if not, whether it happens for physiologically
realistic ones. If it does, it is difficult to believe that evolution has
not made use of it for regulatory purposes. However, it may be
difficult to demonstrate experimentally. Broad exploration of
initial conditions, while keeping total concentrations fixed, may
be needed to find distinct steady states. Controllably preparing
such initial conditions in vitro is not straightforward. A different
problem arises in vivo. Current methods of identifying phospho-
forms are insensitive at single-cell resolution. If different cells in
a population are in markedly different steady states, then the
population average will smear out the differences.

Dose-Response of Multisite Phosphorylation. For analytical pur-
poses, multistability can be sidestepped. We show that there is
a regime (Eq. 19), in which [Sio] is low compared with [E]
and [Fo], where [E]/[F] is approximated by [Eo(]/[Fiot]- In
this regime, Eq. 9 gives an accurate picture of how the
proportion of maximally phosphorylated substrate depends on
the initial conditions. We outline what happens outside this
regime in Discussion.

The behavior of p,, as given by Eq. 9, depends in a complex
way on both the number of sites, 7, and on the relative catalytic
efficiencies at these sites, Ao, ..., A,—1. We first study how it
depends on n. To do so, we must discount any change that comes
from differences in the A;s. Accordingly, assume that the relative
catalytic efficiencies are approximately equal at all sites: A; =~ A.
The proportion of maximally phosphorylated substrate is then
given by

(Au)"
T+ A+ )+ -+ (w)™

palts A) = [10]

By analogy with the Hill curves, which approach the perfect
switch in Fig. 1 as the Hill coefficient increases, we ask what p,(u)
approaches as n increases. It is shown below that it approaches

o if \u=1
PAEN) =1 = 1/xu it A > 1.

The graph of p(u; A), shown in Fig. 2 for A = 1, is the standard
hyperbolic Michaelis-Menten response translated to the right
along the u axis by 1/A. The response does not abruptly switch
from a low value to a high value after the threshold at u = 1/A
but only attains a high value in a graded, hyperbolic manner.
Furthermore, p,(u; A) rapidly approaches p(u; A).

We now consider how p,(u; Ao, . .., A,—1) depends on the A;s
while keeping n fixed. A full treatment is beyond the scope of this
paper, but the following calculation is instructive. To create
abrupt switching, we can try to make p, () close to the Hill curve
hn(u) = u*/(1 + u") by appropriate choice of A;. One way to do
this approximation is to choose a small positive number 6 and set

[11]

A=A =+ =N2=8 A1=8"7", [12]

so that p,(u;5, ..., 8, 87") becomes

n

u
1T+ (8u) + (Bu)* + -+ -+ ()" ' +u”

[13]

The effect is to ensure that the denominator of p, is dominated
by 1 + u” (at least for éu << 1). Fig. 3 compares &, with p, for
6 =0.1and n = 2,5, and 10. The approximation is good and
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becomes even better with increasing n. We see that multisite
phosphorylation is capable of producing high levels of conven-
tional ultrasensitivity (we thank one of the reviewers for helping
clarify this point). However, the cost of achieving this ultrasen-
sitivity is substantial: A Hill coefficient of n requires a disparity
in relative catalytic efficiencies of n orders of magnitude.

Measures of Switching and Thresholding. The above discussion has
been qualitative. Quantitative measures of switching efficiency
have been introduced, but care is needed in interpreting them.
The Hill coefficient (19) is ruled out for curves like those in Fig.
2, which are not well approximated by Hill curves. The coop-
erativity index (4, 19) is f~1(0.9)/f~1(0.1), where y = f(u) is a
normalized dose-response curve and u = f~!(y) is the inverse
function. For the hyperbolic curve, hi(u) = u/(1 + u),
(h1)~1(0.1) = 1/9 and (h1)~1(0.9) = 9, giving a cooperativity
index of 81. A cooperativity index of <81 is interpreted as
switching efficiency that is higher than hyperbolic, or, in Gold-
beter and Koshland’s definition, ultrasensitivity. However, if the
curve f(u) is translated to the right by 7' > 0, giving fr(u) = f(u —
T), then the cooperativity index changes to (T + f~1(0.9)) /(T +
£71(0.1)), which is easily seen to be a decreasing function of 7.
The switching efficiency of any dose-response curve, as mea-
sured by the cooperativity index, increases to its limiting value
merely by right translation.

This behavior is not the intuition we wish to convey. Right
translation of 41(u) = u/(1 + u) gives the limiting curves for
multisite phosphorylation in Eq. 11. If 0 < T} < T5, we would say
that (h1)r, is a better threshold than (h)7,, because it maintains
the response at a low level for a larger dose range, but both are
equally poor at switching between low and high.

The control curve of the dose—response curvey = f(u) is given
by (u/y)(dy/du) (20). When evaluated at a steady state of a
metabolic system, this quantity is the control coefficient of
Metabolic Control Analysis (19). The control curve has the merit
of being a function, rather than a number, and, thereby, being
sensitive to local nuances of curve shape. However, it is also
sensitive to translation and can give rise to striking contradic-
tions when used in conjunction with the cooperativity index.
Consider the Hill curve, A4, and the multisite phosphorylation
curve, pio(u;1). Which is the better switch? The control curves
for both may be readily calculated, and it is easily seen that the
control curve of pyo is greater than that of 44 for allu = 0. Hence,
according to the control curve, pjo is a better switch than /4.
However, the cooperativity index of 44 is 8174 = 3, whereas that
of pig is 9.81. Hence, according to the cooperativity index, A4 is
a better switch than pyo.

Existing quantitative measures must be used with caution.
They capture different qualities, which coexist uncomfortably
under the banner of “ultrasensitivity.” The intuition we want to
convey in the previous example is that pjo is a better threshold
than /4 but that A4 is a better switch than p;o. Existing measures
fail to discriminate between thresholds and switches. To arrive
at measures that do, we must clarify two points.

First, in the dose-response curve (Eq. 9), the independent
variable, u = [E]/[F], is dimensionless. This feature gives us the
freedom to use additive rather than multiplicative measures in
studying multisite phosphorylation.

Second, there has been persistent confusion in the literature
over what it means for a dose-response curve to be ultrasensi-
tive, which is sometimes equated with being sigmoidal, or “S
shaped.” This approach has the merit of admitting a precise
definition: A (normalized) sigmoidal curve is one which in-
creases from 0, approaches 1 asymptotically, and whose deriv-
ative first increases and then decreases. Equivalently, sigmoidal
curves are the cumulative functions of unimodal probability
distributions on [0, %) with positive modes. (Some care is
required to make this definition precise, if limiting curves like
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those in Figs. 1 and 2 are to be admitted as sigmoidal functions.)
This definition makes it clear that the class of sigmoidal functions
is extremely broad. In particular, sigmoidal does not mean
ultrasensitive. It can be shown (result not shown) that there are
sigmoidal curves whose cooperativity index is any positive
number, so that a curve may be sigmoidal yet have a cooperat-
ivity index arbitrarily >81 (negative cooperativity). Further-
more, it is unlikely that any single measure will work satisfac-
torily for all curves. Indeed, it is well known that a probability
distribution cannot be captured in any single number such as a
mean or mode, and no less should be expected of its cumulative
function. This caveat should be borne in mind in respect of the
measures below.

Suppose now thaty = f(u) is a sigmoidal dose-response curve,
which we assume to be normalized, with both y and u dimen-
sionless. Let € < 1 be a small positive number. Define the lower
and upper & thresholds of f to be, respectively, 7.(f) = (&) and
O.(f) =f1(1 — ¢). Let the & switch value of fbe o.(f) = O(f) —
7e(f). The cooperativity index may be recovered as 1 + o91(f)/
70.1(f). 7= and o, separate the contributions arising from thresh-
olding and switching that are conflated in the cooperativity
index.

If fand g are two sigmoidal dose—response curves, we shall say
that f is a better e threshold than g if 7,(f) > 7.(g), so that f
maintains its response at 0 (to within ¢), for a larger dose range
than g. We shall say that f is a better ¢ switch than g if o.(f) <
0:(g), so that f requires less change in dose than g to switch
between being 0 and 1 (to within &). To avoid ad hoc choices of
any particular e, bearing in mind the diversity of sigmoidal
functions, we shall drop the e qualification if the conditions hold
for all sufficiently small e> 0. These properties are invariant
under translation to the right by any amount. Provided transla-
tion to the left does not destroy sigmoidality and the amount of
translation is less than any lower e threshold, they are also
invariant under left translation.

Let p, = p.(u;1) be the dose—response for multisite phosphor-
ylation in Eq. 10. It can be shown (result not shown) that both
h, and p, are sigmoidal, as defined above, for n > 1. Although
the standard hyperbolic response, ; = py, is not sigmoidal, it is
convenient, following ref. 4, to use the corresponding ¢ switch
value, s, = e71 — (1— &)1, as the demarcation point for abrupt
switching. Simple arguments show the following. As expected,
the Hill curves are increasingly good thresholds and switches as
n increases. Multisite phosphorylation also creates an increas-
ingly good threshold and is a better threshold than the Hill curve
with the same n. Multisite phosphorylation also enables a higher
threshold to be sustained than the Hill curves: for all sufficiently
small & > 0, 75(h,) < 1 for all n, whereas 7,(p,) > 1 if n is large
enough. As for switching efficiency, multisite phosphorylation is
worse than hyperbolic for any n > 1 and is thus less efficient at
switching than any Hill curve: If nyn > 1, then, for all sufficiently
small g, 0o(py) > 5. > oe(hm)-

The Unordered Case. Having worked out the ordered case, Eq. 9
suggests what will happen in the unordered case. Eq. 9 is a
fraction in which the denominator contains a term for each
phosphoform S§; and the numerator contains only a term for S,,.
It is the additional terms in the denominator, representing the
intermediate phosphoforms Sy, . . ., S,—1, that cause the depar-
ture from a perfect switch. If they were absent, the response
would be a Hill function, as suggested in ref. 10. Although the
individual contribution from each §; may be small compared with
that from S, when u is large, the contributions add up as n gets
large and causes the overall hyperbolic response seen in Eq. 11.

In the unordered case, a structurally similar fraction would be
expected. It is not straightforward to write this fraction down
explicitly because Eq. 3 no longer holds. However, we would
expect the number of terms in the denominator to grow as 27,
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instead of n + 1. The number of terms in the numerator would
also increase because the maximally phosphorylated phospho-
form can now be generated in n different ways, corresponding to
the n precursor phosphoforms with just one site unphosphory-
lated. Because the number of terms of the numerator increases
linearly, whereas that of the denominator increases exponen-
tially, the proportion of maximally phosphorylated substrate is
likely to increase far more slowly with z than in the ordered case.
Although this argument is not rigorous, it suggests that unor-
dered phosphorylation and dephosphorylation will not do any
better, in respect of switching efficiency, than the ordered case
discussed here.

The Remaining Details. Calculation of p(u). Using the formula for the
sum of a geometric progression we may rewrite Eq. 10 as

A = ()

()\u)n+1 _ 1 [14]

pa(u) =

If Au < 1, then (Au)* — 0 as n — o, so that p(u) = 0. If A\u >
1, then (Au)" — = as n — . Rewriting Eq. 14 so that

(-l )
pa() = 1= 1_W ) [15]

we see that p(u) = 1 — 1/Au, which proves Eq. 11.
Condition for [Eot]/[Fot] to approximate [E]/[F]. Eq. 6 and the three
mass conservation laws can be used to write

[Ewd =[E] + [SwP(E], [F])
[Fiod = [F1 + [SdQUE] [F]),

where P and Q are certain rational functions of [E] and [F]
satisfying 0 = P, Q = 1. Suppose that [Stot] << [Fiot), sO that
[Stot]/[F1ot] is negligible to the first order. The same is then true
of ([Stot]Q)/[Fiot] and ([Stot]P)/[Fiot]. Therefore,

w ,1< ) [smt]Q> o
[F] = ([Ewd [SwdP)[F ol 1 [Fiof

[16]

17
(] 17l

- ([Fl N ”)“ -

where ¢ denotes quantities negligible to the first order. Using the
binomial theorem and neglecting terms of higher order in &,

[E] _ <[Etot] 3 [E o] 8( [E o]
[F1  \[Fidl [Fiod [F o]

Hence, [E]/[F] = [Ewt]/[Fiot] to the first order, provided that

e)(l%—e)z —1). [18]

[Sior] < [Fiodl and [Eo] = 2[Fo- [19]

Discussion

We have determined a general formula, Eq. 9, for the proportion
of maximally phosphorylated substrate in ordered, distributive,
multisite phosphorylation, as a function of [E]/[F] and the
relative catalytic efficiencies, kcar/Knm, at each site. When the
enzymes are not saturated (Eq. 19), [E]/[F] = [Eot)/[Fiot), and
this formula gives an accurate picture of the behavior of multisite
phosphorylation. We have shown that when the relative catalytic
efficiencies are similar at each site, the dose-response of mul-
tisite phosphorylation makes a good threshold but a poor switch,
as in Fig. 2. Conventional measures of ultrasensitivity, intro-
duced for enzyme and metabolic regulation, have to be adjusted
to distinguish these properties in phosphorylation regulation.
Although abrupt switching is feasible, it requires substantial
disparities between the relative catalytic efficiencies at different
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sites: to approximate a Hill curve with coefficient n requires a
disparity of n orders of magnitude, as in Fig. 3. It remains to be
seen to what extent nature has taken advantage of this mecha-
nism, which seems an unwieldy way to make a good switch. We
conclude that abrupt switching cannot be attributed merely to
there being many phosphorylation sites. These results shed a
different light on the regulation of phosphorylation to the
comments cited in the Introduction.

They leave open the possibility of other mechanisms for
abrupt switching. We discuss two such mechanisms, of which the
last is interesting as a plausible general alternative.

Zero-Order Ultrasensitivity. In the Michaelis-Menten approxima-
tion for n = 1, increasing saturation of the enzymes by the
substrate (the zero-order regime) leads to increasing ultrasen-
sitivity (4). Yet, in the nonapproximate model discussed here,
p1(u; X)) = Aou/(1 + Aou) is hyperbolic. We see that zero-order
ultrasensitivity arises solely in how the initial conditions
determine u and not in how u determines p;(u;\). Enzyme
saturation lies at the opposite extreme to the regime (Eq. 19)
used above, where the initial conditions are irrelevant. This
regime is substantially more difficult to analyze. Preliminary
calculations indicate that zero-order ultrasensitivity continues
to hold outside the Michaelis-Menten approximation and that
its effectiveness remains the same as n increases: it is as
effective in improving abrupt switching for n = 1 as for n =
20. Although this behavior suggests it may be relevant for
heavily phosphorylated substrates, evidence for its in vivo role
has so far been limited (21, 22).

Conformational Change Linked to Phosphorylation. The transcrip-
tion factor NFAT1 (23) is heavily phosphorylated in the cyto-
plasm of resting cells but translocates upon dephosphorylation of
13 sites by calcineurin. Anecdotal evidence suggests that trans-
location is decisive, indicating that dephosphorylation may be
switch-like. NFAT1 undergoes a conformational change upon
dephosphorylation with one conformation favoring retention in
the cytoplasm and the other favoring translocation (24). If
phosphorylation alters the equilibrium between the conforma-
tions, then a linear analysis following the Monod-Wyman-
Changeux model of allostery (25) shows that the proportion of
translocatable NFAT1 approximates a Hill curve whose coeffi-
cient is the number of phosphorylation sites (26). Conforma-
tional change linked to phosphorylation may therefore rescue

1. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. (2002)
Science 298, 1912-1934.
2. Mann, M., Ong, S.-E., Grgnberg, M., Steen, H., Jensen, O. N. & Pandey, A.
(2002) Trends Biotechnol. 20, 261-268.
3. Shacter-Noiman, E., Chock, P. B. & Stadtman, E. R. (1983) Philos. Trans. R.
Soc. London B 302, 157-166.
4. Goldbeter, A. & Koshland, D. E. (1981) Proc. Natl. Acad. Sci. USA 78,
6840-6844.
5. Huang, C.-Y. F. & Ferrell, J. E., Jr. (1996) Proc. Natl. Acad. Sci. USA 93,
10078-10083.
. Ferrell, J. E. & Bhatt, R. R. (1997) J. Biol. Chem. 272, 19008-19016.
. Burack, W. R. & Sturgill, T. W. (1997) Biochemistry 36, 5929-5933.
. Zhao, Y. & Zhang, Z.-Y. (2001) J. Biol. Chem. 276, 32382-32391.
. Ferrell, J. E. & Machleder, E. M. (1998) Science 280, 895-898.
10. Ferrell, J. E. (1996) Trends Biochem. Sci. 21, 460-466.
11. Nash, P., Tang, X., Orlicky, S., Chen, Q., Gertier, F. B., Mendenhall, M. D.,
Sicheri, F., Pawson, T. & Tyers, M. (2001) Nature 414, 514-521.
12. Welcker, M., Singer, J., Loeb, K. R., Grim, J., Bloecher, A., Gurien-West, M.,
Clurman, B. E. & Roberts, J. M. (2003) Mol. Cell 12, 381-392.
13. Bhalla, U. & Iyengar, R. (1999) Science 283, 381-387.
14. Cohen, P. & Frame, S. (2001) Nat. Rev. Mol. Cell. Biol. 2, 769-776.

14622 | www.pnas.org/cgi/doi/10.1073/pnas.0507322102

heavily phosphorylated substrates from the increasing hyperbo-
licity of Fig. 2, allowing them the increasing ultrasensitivity of
Fig. 1.

Quantitative studies of phosphorylation regulation have been
limited, despite the pioneering work of Chock, Stadtman, and
Ferrell. Much is known about kinases and phosphatases sepa-
rately, and more about the former than the latter, yet both are
collectively responsible for the phosphorylation state. In vivo
measurements can only rarely be carried out at single cell
resolution, the choice of Xenopus oocytes for the mitogen-
activated protein kinase studies was not fortuitous, and popu-
lation averages necessarily obscure the true responses, irrespec-
tive of any concerns about multistability. The main difficulty,
however, both in vivo and in vitro, lies in distinguishing different
phosphoforms. Although techniques for determining phosphor-
ylation sites have advanced rapidly (2), the general problem
faced in studying phosphorylation from the perspective of this
paper is that of counting, say, of a protein with five phosphor-
ylation sites, those molecules with only sites 1, 2, and 5 phos-
phorylated amidst a background of other phosphoforms. The
mass spectrum from peptide dissociation in tandem mass spec-
trometry should uniquely identify each phosphopeptide, but
deconvoluting the phosphoprotein mixture from that data is not
straightforward (27).

The particular problem of determining the proportion of
maximally phosphorylated substrate may be easier. An in vitro
study with a synthetic substrate would be the best option for
testing the results shown in Fig. 2, because the substrate could be
made with varying numbers of a single phosphorylation motif.
GSK3 is an interesting candidate kinase. In its primed phos-
phorylation mode, it creates its own phosphoserine-binding site
while serially phosphorylating SXXXS repeat motifs (14, 15).
Not only does it phosphorylate in order, once it is primed, but
it must unbind from each phosphoserine to bind to the next. This
behavior is strongly suggestive of a distributive mechanism with
different kinase molecules responsible for each phosphorylation.
We lack knowledge of a partner phosphatase that is known to be
distributive, but any phosphatase that could be persuaded to
participate, PP2A, perhaps, would give us more data than we
have at present.
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