Skip to main content
. 2005 Oct 12;33(18):5799–5808. doi: 10.1093/nar/gki885

Table 3.

Results of cross-validating the different SVMs by loo

Specificity of SVM Positive training points Kernel type Leave-one-out cross-validation Quality of SVM
Error Sn Sp MCC
Large clusters 282 Labeled and 664 unlabeled data points (18 + 646)
    Dhb=Sal 11 l 0.4 100 92 96 ++
    Asp=Asn=Glu=Gln=Aad 43 r 1.4 100 91 95 ++
    Pro=Pip 20 r 0.7 90 100 95 ++
    Cys 17 r 0.7 100 89 94 ++
    Ser=Thr=Dhpg=Dpg=Hpg 50 r 2.5 96 91 92 ++
    Gly=Ala=Val=Leu=Ile=Abu=Iva 92 r 4.3 95 93 90 +
    Orn=Lys=Arg 16 l 0.7 88 88 87 +
    Phe=Trp=Phg=Tyr=Bht 33 r 3.2 88 85 85 0
Small clusters 273 Labeled and 673 unlabeled data points (27 + 646)
    Dhb=Sal 11 l 0 100 100 100 ++
    Aad 7 l 0 100 100 100 ++
    Glu=Gln 15 l 0 100 100 100 ++
    Dhpg=Dpg=Hpg 20 l 0.4 100 95 97 ++
    Ser 13 l 0.4 92 100 96 ++
    Cys 17 l 0.7 100 89 94 ++
    Thr 16 l 0.7 94 94 93 ++
    Pro 16 r 0.7 94 94 93 ++
    Asp=Asn 21 l 1.1 90 95 92 ++
    Val=Leu=Ile=Abu=Iva 60 l 2.9 92 95 91 +
    Orn 8 l 0.7 88 88 87 +
    Gly=Ala 32 l 3.3 81 90 84 0
    Tyr 18 r 2.2 94 77 84 0
    Arg 5 l 0.7 80 80 80 0
    Phe=Trp 14 l 3.7 57 67 60 0

The more training data that are available the more reliable the trained predictive models are. The ‘quality of SVM’ in the last column, therefore, is a qualitative measure for the MCC. Kernel type l stands for linear kernel and r stands for radial basis function kernel. Error rate, sensitivity (Sn), specificity (Sp) and Mathews correlation coefficient (MCC) are given in percentage.