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ABSTRACT

A multivariate analysis of the backbone and sugar
torsion angles of dinucleotide fragments was used
to construct a 3D principal conformational subspace
(PCS) of DNA duplex crystal structures. The potential
energy surface (PES) within the PCS was mapped fora
single-strand dinucleotide model using an empirical
energy function. The low energy regions of the sur-
face encompass known DNA forms and also identify
previously unclassified conformers. The physical
determinants of the conformational landscape are
found to be predominantly steric interactions within
the dinucleotide backbone, with medium-dependent
backbone-base electrostatic interactions serving to
tune the relative stability of the different local energy
minima. The fidelity of the PES to duplex DNA prop-
erties is validated through a correspondence to the
conformational distribution of duplex DNA crystal
structures and the reproduction of observed
sequence specific propensities for the formation of
A-form DNA. The utility of the PES is demonstrated
through its succinct and accurate description of com-
plex conformational processes in simulations of
duplex DNA. The study suggests that stereochemical
considerations of the nucleic acid backbone play a
role in determining conformational preferences of
DNA which is analogous to the role of local steric
interactions in determining polypeptide secondary
structure.

INTRODUCTION

The DNA double helix is the central icon of molecular
biology: the combination of simplicity, beauty and profound

explanatory power of a single molecular structure will likely
never be surpassed. For over 50 years, the structure and con-
formation of DNA have been the subject of extensive studies
which have fed into considerations of stability, mechanics,
dynamics and specificity in the myriad processes in which
DNA plays a vital role (1).

The observed structures of right-handed double helical
DNA can be classified into two major families known as
A-DNA and B-DNA (2). Watson and Crick’s original
model of DNA, based upon fibre diffraction data, confirmed
by the single crystal X-ray structure of Drew et al. (3), is now
referred to as the B-form. Later, another crystal structure with
a distinctively different backbone conformation was dis-
covered (4), which is now termed A-form DNA. For reference,
the canonical structures of A and B-form duplex DNA are
those derived from fibre diffraction analysis (5).

Single crystal X-ray diffraction analyses have revealed sig-
nificant variation in the conformation of the phosphodiester
backbone within duplex DNA. For example, within the
B-DNA family, there exist the BI- and BII-forms (or states)
which show differences in the two torsions € (C4'-C3'-03'-P)
and { (C3'-03'-P-05") (5). Within A-DNA, the A-form and
the Crankshaft-forms differ in the torsions o (O3'-P-05'-C5’)
and y (O5'-C5'-C4'-C3’) (6,7).

The variety of DNA conformation has been studied in stat-
istical analyses of the backbone torsion angle distributions of
the observed crystal structures. For B-DNA, significant cor-
relations have been observed in dodecamer structures between
x—90,x—C, 80—, e—L{, e—P and {—P pairs of torsion angles (8).
In A-DNA, correlations have been found between x—90, x—¢,
x—0o, e—a, {—a, {—y, 0o—P and a—7 torsion angles pairs in
tetramer structures (9). In both studies the number of data
points used was limited and the focus was restricted to bivari-
ate relationships. In an explicitly multivariate approach, a
principal component analysis (PCA) of nine backbone torsion
angles of dinucleotide monophosphates (DMs) fragments from
duplex DNA crystal structures resulted in a 3D conformational
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space which exhibited a separation of an A-DNA class, two
different B-DNA classes and one so-called Crankshaft class
(7). This representation was considered by the authors as a
multidimensional analogue to the Ramachandran plot used in
protein analysis (10). Separation of the Z-DNA structures was
observed in a subsequent study (11) where the conformational
subspace accommodated nine clusters corresponding to the A,
B and Z-DNA substates.

Moving beyond statistical considerations, there have been
several attempts to explore the conformation and energetics of
DNA, using a variety of both backbone torsion angles and
helicoidal parameters as effective degrees of freedom (12—15).
For example, a study of the energetics of base stacking
(16) replaced the backbone with methyl groups at the C1’
atoms. Using this model, the values of base-step parameters
were predicted accurately provided that the values of slide,
shift and propeller were assigned to observed values. In a
subsequent study (17), a C1’-C1’ virtual bond model was
combined with two helical degrees of freedom, slide and
shift, to compute the potential energy surface (PES) of an
isolated dinucleotide step. In this model, the position of the
low energy regions agreed well with the geometry of observed
crystal structures for only some of the base steps. For other
base steps, the lack of agreement of energy landscapes with the
observations was ascribed to the neglect of the effects of
conformational coupling with neighbouring steps.

Therefore, the backbone in many of DNA conformational
analysis studies is considered as a passive element that delin-
eates the boundaries of the dinucleotide step conformation
(18) such that it acts as no more than a constraint on the
range of the conformational space accessible to the bases
(19). However, for a given set of base pairs the backbone
geometry is not completely defined since there are many
ways in which a backbone can link a given arrangement of
sequential bases (19). The sugar—phosphate backbone torsion
ranges distinguish the different subclasses of DNA structures;
(A-form, Crankshaft A-form) and (BI, BII) (5,6,20). Deviation
from these canonical ranges was also observed in protein—
DNA complexes (21). The growing evidence of the biological
significance of these states (22,23) with regard to DNA pack-
aging (24), transcription (25-27), spore UV resistance (28) and
protein recognition (22,23,29-31) reaffirms the importance of
the role of the backbone conformational variability. This vari-
ability, to the best of our knowledge, is not explicitly taken into
account in any of the studies concerned with the preferential
conformations of different dinucleotide steps.

In this study, we combine both statistical and physical meth-
ods to perform a conformational analysis of DNA. At the core
of our results is the computation of the PES of a DM fragment
within the conformational space spanned by duplex DNA
crystal structures. To achieve this, we needed an appropriate
and tractable set of degrees of freedom to define the conforma-
tional space. Extending the statistical work of Becker and
Buydens (7) in a similar way to Sims and Kim (11) we gen-
erated a descriptive set of collective coordinates for a dinuc-
leotide fragment via a PCA of backbone and sugar torsion
angle parameters from a sample of duplex crystal structures.
These collective coordinates (which are linear combinations of
proper torsion angles) span the principal conformational sub-
space (PCS) of the DM. In order to investigate the physical
determinants of the statistical distributions we then mapped

the PES within the PCS for all possible base combinations of
DMs using an empirical energy function. The structural,
energetic and thermodynamic characteristics of the resulting
PESs are then discussed and compared in terms of the location
and relative stability of different local energy minima and the
relative contribution of the different components of the poten-
tial energy. Validation of the fidelity of the PES is presented in
two ways: (i) structurally—by considering the relationship of
the features of the PES with experimentally observed crystal
structure distributions and (ii) thermodynamically—by com-
puting estimates of the relative conformational propensities of
base-specific DM in comparison with observed sequence-
specific trends. Examples of the utility of the PES for the
representation of complex conformational processes in
DNA are provided through brief and illustrative analyses of
kinematic and dynamic simulations of duplex DNA.

MATERIALS AND METHODS
Multivariate analysis

Conformational descriptors. The conformational space of a
single-strand DM fragment was described by 19 variables
made up of 9 backbone torsions and 10 sugar torsions (5 for
each sugar) as depicted in Figure 1. We explicitly consider all
of the individual sugar torsion angles, rather than use the
conventional sugar pucker angle, P (32), for simplicity in
the subsequent application of restraints in subsequent energy
calculations (described below).

Data acquisition. Structural data were obtained from the Nuc-
leic Acid Database (33) (http://ndbserver.rutgers.edu). Crystal
structures of duplex A-DNA and B-DNA were selected which
met the following criteria: high resolution (dy,, < 2.5 A);
containing no base-mismatches or chemical modifications;
and those that are not in complex with drugs or proteins.
Z-DNA was not included due to the paucity of structural
data meeting the selection criteria. As in other studies (34),
we regard different crystalline environments for the same
sequence as distinct observations. From the structures meeting
these criteria (Supplementary Table 1), a data matrix was
constructed with 1178 observations (single-strand DM frag-
ments) for the 19 variables (torsion angles). Terminal dinuc-
leotides were not included in this data matrix in order to
minimize end effects. A single observation in the data matrix
is thus represented by a vector

Q= (Xl’ 8] ,€1, Cl , 0, BZ’YZ’ 82, X2,V0] s o5 V41, V02, - - "V42)i'
Principal component analysis. To avoid problems in the cal-
culation of variance for angular data (35) the data for indi-
vidual torsions were adjusted in an iterative fashion such that
differences from their mean values lie in the range —180° to
+180°. PCA was carried out via an eigenanalysis of the sample
covariance matrix (36). The principal components (or PCs) are
mutually orthogonal collective variables that maximally
describe the sample variance. The elements of the PC (eigen-
vectors) are the coefficients of the linear combinations of the
19 torsion angles from which they are derived. Thus, the PCs
[analogous to the normal coordinates derived from harmonic
vibration analysis (37)] can be considered as collective
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Figure 1. The torsion angle variables of the dinucleotide backbone fragment included in the PCA (see Table 1). The conformation of the sugar—phosphate backbone is
conventionally defined by six torsion angles labelled o to y, with 3 describing the N-C1’ glycosyl linkage to the bases. For each sugar, there are five torsion angles v, to
Vv, in the furanose ring [conventionally described via a pseudorotation phase angle (32)].

coordinates for describing the DNA conformational distribu-
tion via displacements from the mean torsion angles of the data
matrix. The corresponding eigenvalues represent the variance
of the conformational distribution along each of the collective
degrees of freedom. The extent to which a given observation
@; lies along the k™ principal component ay is given by the
projection z;; = a;-(¢;—@)’. These projections (or scores)
may be used for visualizing the distribution of observations
in the PCS.

Empirical energy calculations

Mapping the PES. The PES of a single-strand DM fragment
within the PCS was mapped via systematic energy evaluation
on a grid defined by discrete points along the first three PCs.
The coordinates of a grid point ; = (z;3, z;», z;3) correspond
to a set of torsion angles; 6, = @ + Zl,jj z; xay. Therefore, 0;
represents a structure reconstructed from the { PC1, PC2, PC3}
subspace whose projections along higher principal compon-
ents are set to zero. Cartesian coordinates for the full DM
fragment were reconstructed from these torsion angles sup-
plemented by standard internal coordinates for other geo-
metric parameters. The potential energy of structures was
calculated using the AMBER force field (38) using the Cornell
parameterization (39) implemented in the program CHARMM
(40). No non-bonded interaction truncation was performed.
The electrostatic terms used either a constant dielectric
(&, =1) or a distance-dependent dielectric constant (& = 4
14, where r;; is the interatomic distance in A) (41). The PES
was mapped in 2D slices along PC3. A grid resolution of 20° in
the {PC1, PC2, PC3} subspace was used over the range —300°

Table 1. Coefficients of the first three principal components derived from the
distribution of torsion angles in DM fragments from duplex crystal structures
(see Figure 1 for definition of torsion angles)

Torsion angle PC1 PC2 PC3 Average
structure (°)

Backbone torsions x1  —0.278 0.107 —0.121 —128.130
5, —0.255 0.044 -0.151 110.845
€ 0.002 —0.160 —0.499 —162.604
G 0260  0.094  0.632 —96.953
o, —0.178 —0.710  0.125 —67.896
B2 0.050  0.101 0.266 172.329
Y2 0.163  0.609 —0.197 56.773
5, —0.248 0.068  0.153 111.143
¥ —0277  0.032  0.170 —128.360

First sugar ring torsions Vo1 0.133 —-0.051 —-0.010 —15.888
vip —0.296  0.091 —-0.048 9.990
Vai 0.340 —0.096  0.082 —1.148
vy —0.271 0.068 —0.096 —8.222
Va1 0.088 —0.011 0.066 15.101

Second sugar ring torsions Vo, 0.126 —-0.065 —-0.095 —15.685
vip —0.288  0.112  0.189 9.948
vy, 0333 —0.117 —-0.208 —1.300
v —0.267 0.082  0.159 —7.968
Vg, 0.090 —-0.012 —0.041 14.812

Eigenvalue/10° degree” 9430 2367  1.671

% Total variance 59.53 14.94 10.55

to 300° with respect to an origin corresponding to the mean
structure (Table 1). These search limits were chosen so as to
encompass the range of scores spanned by the data. At each
grid point, the torsion angles included in the PC basis set were
restrained to the desired values using a force constant
of 500 kcalmol ' degree * and the system was energy
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minimized using 200 steps of steepest descent followed by
2000 steps of the ABNR method (40). We note that this min-
imization step serves to facilitate ring closure in the sugars
following Cartesian coordinate reconstruction from the
internal coordinates and results in very small deviations from
the desired subspace coordinate. As a consequence of the dis-
cretization, the structure and energy of any point in the PCS is
considered to be the structure and energy corresponding to
the closest grid point within the resolution limit of the grid.

Characterization of the features of the PES. The PES within
the PCS was partitioned into a set of distinct energy valleys
(42) as follows: starting from a local minimum, a set of 3D iso-
energetic contours are generated at increasing discrete energy
levels. An energy valley is defined by the isoenergetic surface
contained within the contour level preceding the one which
encapsulates another energy minimum. Thus, an energy valley
is considered to extend up to the (saddle) point which serves to
separate it from other minima. This process continues until no
further minima are detected. The volume of each energy valley
was calculated using the convex hull algorithm (43).

Thermodynamics within the PCS. The fractional population of
an energy valley v can be estimated from the ratio Q,/
28: 1 Q,, where Q, is the NVT partition function given by:

Onvr = Y gexp(—EilkgT) 1

where g; is the degeneracy of the energy level i which is
defined as the number of states with energy E; + & where 0 is
the uncertainty in energy. Q, was estimated in the subspace as
follows: energy levels, E;, within each energy valley were deli-
neated by a set of concentric isoenergetic closed surfaces in the
3D PCS corresponding to consecutive energies of 0.5 kcal
mol . The degeneracy g; of the energy level i was estimated
by the volume enclosed between the two surfaces correspond-
ing to E; — 0.25 and E; + 0.25 kcal mol ~'. Here, we use the
term ‘energy level’ in an ad hoc way since, in the classical
regime, energy is continuous and not quantized. In this spirit,
the (local) partition function for each valley (Equation 1) is
estimated via a summation over its discrete energy levels.

RESULTS AND DISCUSSION
The principal conformational subspace

Effective dimension of the PCS. The eigenvalues resulting
from diagonalization of the covariance matrix of the mean-
centred data represent the amount of variance captured along
each of the corresponding eigenvectors (or principal compon-
ents) (44). The relative contribution of the (sorted) eigenvalues
to the total variance levels off after the third or the fourth
principal component and the distributions of scores along
the fourth, fifth and six principal components are unimodal
and therefore do not contribute significantly to additional clus-
tering of the data (data not shown). As the first three principal
components capture almost 85% of the variance (Table 1),
further analysis was restricted to this subset, which effectively
describes the Principal Conformational Subspace of the
Dinucleotide Monophosphate (PCSDM) system.

Geometric character of the collective coordinates. In the aver-
age structure (the mean of the conformational distribution) the
torsion angles are distributed symmetrically between the two
nucleotides such that ¥; & %2, 8;~ 3, and also the sugar
puckers of the two sugar rings assume virtually the same
conformation. Each of the principal components is a linear
combination of 19 torsion angles and may be considered as a
collective coordinate representing a set of concerted displace-
ments away from the mean structure @. The geometric char-
acter of each principal component is determined by the
magnitude and sign of its coefficients (loadings), relating
to the size and phase of its torsion angle displacements,
respectively (Table 1).

The loadings of the first principal component (PC1) are
evenly distributed and, apart from that of €,, are not negligible
in magnitude (Table 1). This implies that upon displacement
along PCl1, €, is essentially stationary while all the other
torsions are changing; the sugar puckers of both rings change
almost in phase (see Figure 2a).

Figure 2. Stereo (wall-eyed) diagrams showing the geometric character of the
principal components. The individual panels show sequential displacements
along each of the first three principal components with respect to the average
structure (Table 2) over the range —200° to 200° at 20° increments for (a) PC1
and (b) PC2 and from —100° to 100° at 20° increments for (¢) PC3. The colour
of the lines changes from light grey to black moving from negative to positive
displacements.



For PC2, the o, and 7, torsions are dominant while their
different signs reflect anti-correlated behaviour (7,9,19). The
loadings of the torsions of the two sugar rings are much smal-
ler than in PC1. Therefore, displacement along PC2 essentially
involves opposing changes in 0, and 7y, with little change to
the sugar puckers of both rings: the rest of the backbone
torsions do not change significantly (see Figure 2b).

For PC3, €, and {; torsions dominate; however, the loadings
of the rest of the torsions are not negligible. Furthermore, the
loadings of the two sugar rings no longer show the symmet-
rical pattern observed in the case of PC1 and PC2. Apart from
V41 and Vg, the comparative loadings of corresponding tor-
sions of the sugar rings are smaller in magnitude in the first
ring than the second. Significantly, unlike PC1 and PC2, PC3
exhibits anti-correlated behaviour between the two sets of ring
torsions. Thus, displacement along PC3 involves counterpoise
changes in €; and {; and in the sugar puckers of the two rings
(see Figure 2c¢).

Given the character of the displacements, we can deduce
that in reference to the mean structure: displacement along
PC1 spans the changes in sugar puckers associated with A and
B-form DNA; displacement along PC2 for a structure in A-
form would transform it to a crankshaft-A-like structure; dis-
placement along PC3 is more subtle, e.g. for a structure in the
BI-form, it is expected to transform it to the BII-form due to
the anti-correlated changes of €; and ;.

The PES within the PCS

The PES of a GC DM within the PCS, computed with the
RDIE model, is presented as an example in Figure 3. Six low
energy regions are readily apparent. The PES was partitioned
into distinct energy valleys (see Materials and Methods) that
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were then characterized individually in terms of their structure
and energy.

Structural characterization of the low energy regions of the
PES. Profiles of the structural parameters of each of the energy
valleys are shown in Figure 4. The sugar pucker distribution of
valleys 1, 2 and 3 corresponds to the B-DNA family as their
pucker ranges encompass the C2'-endo range, while those of
valleys 4, 5 and 6 corresponds to the A-DNA family as their
pucker ranges are encompass the C3’-endo range. Comparison
of the o and 7y distributions reveals that valley 4 corresponds to
the A-DNA family, valley 5 corresponds to the Crank A-form
(CrA) and valley 6 corresponds to A-form structures whose o
and vy ranges lie between those of known A and Crank A forms
(by its geometrical relation to the CrA form we name this form
‘—CrA’).

Similarly, the €—C torsion ranges of valleys 1, 2 and 3
suggest that they all correspond to the known BI-form
(Figure 4). Inspection of their o0 and 7y torsion distributions
indicates that valley 2, although classified as B-form, has a
Crankshaft character similar to that of valley 5. In the context
of the conformational landscape of the DM (Figure 3) we name
structures corresponding to valley 2 as Crank B-form (CrB).

B-form conformations with o and 7y torsion ranges, such as
those found in valley 2, are not observed in isolated duplex
DNA structures, but have been observed in B-DNA-protein
complexes (21). Interestingly, the dataset we used to construct
the PCS excludes complexes and yet the PES clearly suggests
the existence and location of their distinctive, non-canonical
conformations. Thus, the conformational state corresponding
to the CrB form of the DNA backbone, while not significantly
populated in isolated structures, becomes populated in
response to complex formation and therefore provides a

O = MNWeaEOO -~ 0

Figure 3. Total potential energy slices in the principal conformational plane spanned by PC1 and PC2 for a GC dinucleotide monophosphate fragment using a radius-
dependent dielectric model (RDIE) for the electrostatic term of the potential energy function. Low energy regions are labelled from 1 to 6 on the lowest energy slice.
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Figure 4. Distributions of the sugar psuedorotation angles P1, P2 and backbone torsion pairs; (€—7), (0.,y) in each energy valley. P1 and o are shown in green while
P2 and v are in red. Positions of corresponding minima are indicated by dotted lines. Densities are based on a GC subspace PES.



clear physical interpretation of previous statistical observa-
tions (11).

The values of e—{ torsion differences (Figure 4) suggest that
valley 1, which is almost centred at —90°, corresponds to the
well-known BI-form; valley 3, which shows e—{ shifted by
60° from valley 1, corresponds to B-DNA structures that are
intermediate between BI- and BII-forms (by its geometrical
relation to the CrB form we name this form ‘—CrB’).

Energetic determinants of the PES. To gain insight into the
determinants of the general landscape of the PES, we
examined the relative contributions arising from different
decompositions of the empirical potential energy: The poten-
tial energy was considered in terms of steric (van der
Waals + torsion angle) and electrostatic components; spa-
tially, the interactions of the backbone and bases moieties
of the DM system were considered (see Figure 1). The dif-
ferent contributions to the lowest energy slice of the PES in
both the vacuum (CDIE) and in a distance-dependent dielec-
tric (RDIE) models are shown in Figure 5.

Clearly, the steric interactions within the DM backbone
determine the general topography of the PES supporting
prior notions of their importance in determining the range
of DNA conformation (45). In the RDIE model, the steric
term favours the B-form over the A-form but there is little
discrimination in the case of the CDIE model. This is qualit-
atively in agreement with the observation (46) that intra-
molecular interactions (van der Waals and internal
energies) favour B-DNA in MD simulations of poly(G)-
poly(C) DNA duplexes.

The global potential energy minimum (within the PCS) on
the CDIE model PES is the A-form whereas for the RDIE
model it is the BI-form (Table 2). The effect of the electrostatic
component on the PES can be understood by comparing the
backbone-bases and bases—bases interaction slices of the two
models. The major stabilization of the A-form in the case of
CDIE results from the electrostatic component of the
backbone-bases interaction, which is much flatter and less
discriminative in the case of RDIE. On the other hand, the
bases—bases interaction in either model is rather featureless
and does not serve to discriminate between the A- and
B-forms.

Thermodynamics based on the PES: A- and B-form
conformational equilibria. Having obtained the PES of a
GC DM, an estimate was made for the equilibrium distribution
of different conformational forms within the PCS at room
temperature (298 K). The equilibrium thermodynamic prop-
erties depend on the relative potential energies of the local
minima and the relative volumes of their associated energy
valleys (47). Consideration of the potential energy difference
gives an indication of the relative stability of different species
but does not necessarily indicate the direction of the under-
going equilibrium process: the entropic contribution (which is
estimated from the density of states of each energy valley) has
an important contribution to the corresponding free-energy
difference (48).

Table 2 shows the relative energetics of the minima and
the relative population of the corresponding valleys. On the
PES of the RDIE model (Figure 3) there exist six minima
[see Table 2, using radius-dependent dielectric model
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(RDIE)]: the global minimum corresponds to the BI-form
(within region 1 in Figure 3) while the second lowest energy
minimum corresponds to A-form (region 4). The potential
energy difference between the BI-form and A-form minima
is 1.88 kcal/mol; however, the volume of the BI-form valley is
almost twice that of the A-form. Accounting for the energy
valley volume, as a measure of its entropy, the relative popu-
lation of the different forms at room temperature was estim-
ated (see Materials and Methods). The BI-form dominates the
equilibrium distribution (~96%) with only a minor contribu-
tion from the A-form [Table 2, using radius-dependent dielec-
tric model (RDIE)]. Since the RDIE model is usually
considered to be a (crude) mimic of the screening effect of
an aqueous environment over short ranges (41), the relative
proportions of the BI- and A-forms is in accord with the well-
established preference of DNA structures to be in the BI-form
in a water-rich environment (2). The populations of the other
energy valleys are negligible.

It is interesting to see how changes to the electrostatic
environment (i.e. the dielectric model) affect the PES and
the corresponding conformational distributions. In the CDIE
model [Table 2, in vacuum (CDIE)], the global energy min-
imum corresponds to the A-form and the next lowest minimum
corresponds to the BI-form. In this case, the A-form popula-
tion is dominant (~95%) over the BI-form. This reversal of
stability in the two (albeit crude) dielectric models reflects the
observation that at low levels of hydration, DNA structures
prefer to be in the A-form (2,49,50). Also, it is noted that
changing the dielectric model not only changes the relative
energetics of the local minima corresponding to the A- and B-
forms but it also affects the depth and volume of the corres-
ponding valleys. In the CDIE model, the depth of the BI-form
energy valley decreases relative to its value in the RDIE
model. This is not true for the A-form valley which gets deeper
by almost 13% relative to the RDIE case. This indicates that
the preference of DNA to be in either an A- or B-form con-
formation is not only driven by enthalpic stabilization (which
is related to the potential energy difference of respective min-
ima) but it is also influenced by entopic contributions which
stem from the different number of states available to either
forms (which is reflected in the change in the valley volume
upon changing the dielectric model). Consideration of the
energy valley volume has also been highlighted as important
in understanding the driving forces of folding in a small poly-
peptide system (42).

Switching from RDIE to the CDIE dielectric model has a
significant impact on the potential energy landscape: the valley
corresponding to Crank A is no longer present (or very shallow
at <0.5 kcal/mol deep) while that corresponding to Crank B
(valley 3) becomes very high in energy (~15 kcal/mol). The
disappearance of Crank A from the GC PES in vacuum is of
interest as a GC dinucleotide step appears only once in the data
matrix of crystal structure observations (Supplementary
Table 2).

It is interesting to note that in both electrostatic models,
the A- and Bl-forms correspond to two distinctive energy
valleys as a consequence of the existence of an energy barrier
between them. This can be contrasted with the results of a
computational study of the free-energy landscape of the A- to
B-form conversion in aqueous solution which noted ‘the
presence of a wide energy well representing the global
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Figure 5. Decomposition of the PES of a GC dinucleotide monophosphate in the principal conformational plane (PC1-PC2) for the slice containing the lowest energy
structure: for the vacuum model (CDIE top panel) and for the distance dependent dielectric model (RDIE bottom panel). Row-wise are the component energy terms
while column-wise are the interactions between substructures of the system (see Figure 1): 1st column: all atoms, 2nd column: backbone self-interactions, 3rd

column: backbone—base interactions, 4th column: base self-interactions.

B-form structure and the absence of a high-energy barrier
separating the A- and B-forms’ (51). We anticipate that the
incorporation of terms relating to the free energy is likely to
result in a general flattening of the PES (52). However,
a detailed comparison of the topography of the potential

and free-energy surfaces within the DNA conformational sub-
space will require more sophisticated models of the important
electrostatic effects [e.g. Poisson—-Boltzmann (53)] and the
incorporation of conformational sampling (54), which are
the subject of on-going work.



Table 2. Location, relative energetics and population of the energy valleys on the PESs of a GC dinucleotide monophosphate in the PCS derived from duplex DNA

crystal structures
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Minimum Location of minima in Energy of Valley depth® Valley volume % Population Classification
PC subspace the minimum® (kcal mol™1) 10° degree3) at 298 K (DNA form)
(kcal mol™")
PCI PC2 PC3
(a) Using radius-dependent dielectric model (RDIE)*
1 —80 20 40 0.00 5.50 4.60 96.01 BI
4 100 -20 20 1.88 4.12 2.06 397 A
2 -20 220 -20 5.03 5.97 6.07 0.02 CrB
5 140 160 —40 6.82 4.18 3.18 0.00 Crank A
6 40 —240 80 15.49 1.01 0.280 0.00 —CrA
3 —160 —140 40 16.02 1.48 0.913 0.00 —CrB
(b) In vacuum (CDIE)*
1 —-80 20 20 2.11 35 2.55 5.18 BI
4 100 -20 0 0.00 5.5 2.85 94.82 A
2d -20 200 -20 14.72 1.5 0.83 0.00 CrB
o - - = = - - .
3 —160 —140 60 16.56 4.5 1.32 0.00 —CrB

*Minima corresponding to valleys <0.5 kcal mol ' deep were ignored.
"Energies are relative to the global energy minimum on the respective PES.

“The valley depth is calculated relative to the lowest energy saddle point connecting it to neighbouring valleys.

“YNot observed as an energy minimum.

Validation of the PES

An important step in validating the computed PES is to com-
pare its fidelity with respect to certain observed structural and
thermodynamic properties of DNA.

Distribution of observed structures on the subspace PES.
Each observation in the data matrix (containing sample DM
fragments from crystal structures of the A-DNA and B-DNA
families) was pre-classified into known DNA conformational
forms A, Crank A, BI and BII using relevant backbone
torsion angle ranges (5-7). Projection of the data matrix
into the PCS results in pronounced clustering into the low
energy regions on the PES (Figure 6). Thus, the A-form exists
mainly in region 4 (for region definitions see Figure 3) while
Crank A-form exclusively occupies region 5. Few observa-
tions in our data matrix corresponding to A-DNA are found
in region 6.

The distribution of the B-DNA observations in the PCS is a
little more complicated. The BI-form lies in region 1 in slices
at 80° > PC3 > —40°: the density of observations is maximal
at PC3 = 20° and declines towards PC3 = —40° where it
virtually vanishes. Interestingly, the BII-form also starts
to appear in region 1, but at slices corresponding to PC3 <
—40°. It is evident that the BII-form exists in a twilight region
between region 1, where the BI form is centred, and a very
shallow region connected to the tail of region 1 along negative
PC3 (Figure 6 lower panel and Figure 3). This rather anom-
alous location may be the result of deficiencies in our model:
either in the force field, or the representation of the environ-
ment. For example, the BII-form may be a meta-stable struc-
ture in a single strand, but becomes stable in a duplex
environment. Alternatively, the BII-form may only be stable
as a result of crystal packing effects (55,56). We must also not
rule out artefacts in our PCS representation as a result of the
loss of ~15% variance by restricting our consideration to only
three PCs.

The issue of gauging the fidelity of the force field in
biomolecular simulations is fraught with difficulties as it is
intimately connected with the extent of sampling of the con-
formational space. In an extensive molecular dynamics study
of tetranucleotides (57), even multi-nanosecond simulations
on multiple systems were suggested to be insufficient to fully
sample the conformational space of DNA. We note that our
static approach, which systematically samples (by interpola-
tion) the conformational space spanning an existing confor-
mational distribution (in our case derived from, but not
necessarily limited to, X-ray crystal structures), is comple-
mentary to the dynamical approaches.

The substantial agreement of the features of the PES with
the distribution of observed conformations validates its phys-
ical fidelity and relevance. What is remarkable is that the
energetics of a single-strand DM model provides such a
good representation of the distribution of conformers from
duplex crystal structures. This agreement can be rationalized
by the insight that the locations of the minima on the PES are
substantially determined by steric interactions within the back-
bone of the single strand. This observation requires further
work in terms of an equivalent treatment of the energetics of
the DNA duplex, but it does suggest that the predominant
focus on base—base interactions in studies of DNA energetics
does not fully acknowledge the importance of local backbone
stereochemical effects. In this respect, we support an analogy
(7) of this (multivariate) conformational analysis of DNA with
the stereochemical analysis of polypeptides (10), where local
steric interactions determine the conformations observed in
secondary structure. Significantly, our work goes beyond an
analysis of the statistical distribution of conformers, to com-
puting and characterizing the underlying PES from which
those distributions have arisen.

Sequence dependence of the relative conformational
propensities. Other combinations of DMs (16 in total) show
similar topographical features to those exhibited by the GC
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Figure 6. Selected total potential energy slices in PC1-PC2, PC1-PC3 and PC2-PC3 planes of a GC dinucleotide monophosphate fragment, with the distribution of
conformers from duplex crystal structures superposed; A-form in black, Crankshaft A-form in blue, BI-form in green while BII in red.

PES. The difference between the 16 PESs can be described in
terms of topographical features (relative energetics of the
energy minima, the volume of the corresponding valleys)
and topological features (connectivity of the energy minima).
The former affect the thermodynamic properties of the system
while the latter affects its kinetic behaviour (47). In the fol-
lowing, we will discuss the thermodynamic features, while
consideration of dynamics is the subject of further work.

Inspection of the equilibrium ratio of the A-form and BI-
form conformations for the RDIE model (Table 3) shows that
the Bl-form is dominant for all DM sequences. Notably,
energy states other than the energy minimum have con-
siderable contribution to the equilibrium ratio (Supplementary
Figure 1). It is evident that the X-Pyrimidine diuncleotides
X =A, T, C or G) show the highest ratios of A-form (yet
still minor with respect to Bl-form). The existence of A-form
is thus not entirely precluded in a water-rich medium and
the BI-A form equilibrium ratio is sequence specific. The
larger proportion of A-form in d(AT) DM (~9%) relative
to its very tiny proportion in the d(AA) DM (~1%)
(Table 3) indicates that the shift of the A-B equilibrium
towards the A-form (e.g. by formation of an A-form
DNA-protein complex) is more probable for d(AT) than
d(AA). This is in accord with the observation that runs of
adenine bases are reluctant to switch to A-form while a
d(AT)g tract at the 3’ end of the 5 S gene undergoes the B
to A transition readily (27,58).

Table 3. The percentage equilibrium ratio of the A-form relative to the BI-form
derived from the PES of the 16 possible DMs (using the RDIE model for
electrostatics)

A G C T
A 0.9 0.7 3.6 8.9
G 1.3 0.4 4.0 79
C 0.8 0.4 52 8.6
T 0.5 0.1 2.3 44

Utility of the PES: analysis of transition pathways and
dynamical processes in duplex DNA

Thus far, we have established the fidelity of the subspace PES
in representing the structural and thermodynamic properties of
DNA—we now turn our attention to the utility of the PES in
two illustrative applications addressing conformational inter-
conversion processes in DNA: a computation of the pathway
between A- and BI-forms of DNA and an analysis of con-
formational sampling in molecular dynamics simulations
of DNA.

BI-to-A conformational transition. The BI-to-A interconver-
sion pathway of a duplex d(AT), step was generated by use of
the conjugate peak refinement method (59) in the TRAVEL
module of CHARMM. Using local energy minima within the
valleys corresponding to the BI- and A-forms as initial and final
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Figure 7. Trajectories of the steepest descent path of the BI-to-A interconversion computed for a duplex d(AT), step (shown in magenta) projected onto the PES of a
single-strand AT dinucleotide. (a) In a plane containing the two minima and the saddle points. (b) Alternative view of the trajectory in the PCS with the PES shown in
the slice of the PC1-PC2 plane containing the transition states. The trajectories of the two individual strands of the duplex are very similar and not distinguishable at

the resolution presented.

(@) (b)
SN
pc3 g i NN N L

100
1
3
1
.|, i

0
T
s
-

2m 1 1 1 1 1
100 s F
pc2’ b "
=100 N . )
200 e i
g 8 °© g gv T U
l‘ij ‘T ~— o -
PC ] L L 1 1 L

Figure 8. Visualization of a room temperature solvated molecular dynamics simulation of the duplex hexamer d(ATATAT), initiated from the canonical B-form.
Projection of the trajectory of the middle base step of ‘strand a’ into the PCS derived from duplex DNA crystal structures. (a) A scatter plot of the trajectory projection
within the PCS. Bl state is shown in green, A-form in black, BII-form in orange; BII-form is in red. Conformations with mixed sugar puckers (i.e. Po- Pg or Pg - P) in
yellow. (b) Density plot of the trajectory projection shown in three perpendicular planes: from top to bottom; PC1-PC2 plane at PC3 = 40, PC1-PC3 plane at
PC2 = 0and PC2-PC3 plane at PC1 = —100. In each plane, the axes extend from —300 to 300 and the tick marks are placed at 20° increments. Relative densities are
indicated by gradual change from black (high density) to white (zero density). The trajectory boundary (almost zero density) is indicated by a dashed line. (¢) d(AT)
PES slices in the planes indicated in (b) with the conformational states indicated in (a) superposed. The colour ramp is similar to that used in Figure 3.

structures, respectively, two intermediate saddle points were
found and refined to a gradient norm of 10~* kcal mol ' A™".

The steepest descent path (SDP) of the duplex BI-to-A form
pathway, from the perspective of the individual strand

conformations, is well described in the PCS with 71.4 and
78.0% of ‘strand a’ and ‘strand b’ displacements, respectively.
As expected, the best single descriptor for this BI-to-A-DNA
process is PC1 which accounts for 64.3% of the displacements
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for ‘strand a’ and 70.0% for ‘strand b’. PC1 is a complex
delocalized displacement (Table 1) in accord with the notion,
developed in other simulation studies, that the BI-A trans-
formation takes place over many degrees of freedom (60,61).
Projection of the trajectories of the individual strands of the
SDP of the duplex onto the PES of the single-strand DM
suggests that the energy landscape is both representative and
descriptive of the process (Figure 7a and b). For each individual
strand, the interconversion pathways are almost identical and
pass through the same saddle point location located midway
between the A- and BI-forms (Figure 7a and b): at this location
the topography of the PES is suggestive of a first order
saddle point and this was confirmed by examination of the
eigen spectrum of the Hessian matrix of the duplex system
corresponding to the transition state (data not shown).

Molecular dynamics trajectories. The conformational space
sampled in six illustrative 1.0 ns solvated room temperature
MD simulations of the duplex hexamer d(ATATAT), is well
described in the PCS derived from duplex crystal structures,
with an average of 60.2% of the total variance captured over
DM fragments from the individual strands. The trajectory of
one of these simulations, which was initiated from a canonical
B-form conformation, is projected into the PCS as shown in
Figure 8. The sampling of the conformational space by the
trajectory corresponds remarkably well to the energy valleys
of the subspace PES; transient structures corresponding to
BI-form project into valley 1 and those for the A-form project
into valley 4. It is noted that the transient structures corres-
ponding to the BII-form project into the twilight region
between the BI valley and its neighbouring shallow valley
(see Figure 6). Interestingly, DM conformational states with
mixed A/B-form sugar puckers (i.e. Po- Pg or Pg-P,) lie mid-
way between A- and Bl-form regions and their structure and
location on the PES are reminiscent of the location of the
transition states of the BI-to-A interconversion pathway dis-
cussed above. This again illustrates the descriptive capacity of
the subspace PES to both dynamical and kinematic behaviour
and reinforces its utility as a tool for understanding complex
conformational processes of DNA.

CONCLUSIONS

PCA of torsion angles of single-strand DM fragments derived
from the A- and B-family duplex DNA crystal structures con-
firmed that only three collective degrees of freedom, of a
nominally high-dimensional space, are sufficient to describe
a PCS that accounts for ~85% of the total variance of the con-
formational distribution in accord with previous studies (7,11).

In this work, we have demonstrated how such collective
coordinates can be employed to map the underlying PES within
the PCS to provide an underlying physical framework—a
conformational energy landscape—in which to interpret the
observed structural distributions.

The topography of the PES of single-strand DMs in the
subspace spanned by the first three principal components
(derived from duplex crystal structures) reveals a set of low
energy regions which correspond to different known confor-
mations of duplex DNA namely A, Crankshaft A-, BI- and
BII-forms. The PES suggests the possibility of a previously
unidentified B-form structure with o, Y ranges corresponding

to Crankshaft A-form, which we term the Crankshaft B-form
(CrB). Such conformations are not observed in isolated duplex
crystal structures, but can be found in the crystal structures of
protein complexes with B-DNA (21).

An analysis of the components of the PES suggests that the
conformational states observed in duplex DNA are predom-
inantly determined by steric interactions within the backbone
of a single-strand DM, with electrostatic interactions serving
to fine-tune the relative stability of the different forms.

The PES was constructed using two different dielectric
models namely, a distance-dependent dielectric (RDIE) which
crudely mimics the screening of charges in a water-rich
medium and a constant dielectric (CDIE) which represents
vacuum. The different models exhibit extensive changes to
the PES and result in relative preferences for the A- and B-
forms in accord with the observed preference for DNA to be in
the B-form in a water-rich medium, and in the A-form when
under low hydration conditions (2). Furthermore, a thermo-
dynamic analysis revealed that the preference for the B-form
in a water-rich medium is not only driven by enthalpic dif-
ferences, but also entropic contributions relating to the relative
volumes of the different energy valleys of the PES.

A thermodynamic analysis of all 16 possible DM PESs
reveals that the conformation of the BI-form is dominant
for all pairs of sequences. However, the sequence-specific
trends for the relative proportion of the A-form suggest that
d(AT) is more A-philic than d(AA) which is in accord with
experimental observation (27,58).

The PES of a single-strand DM provides a good description
of conformational processes in duplex DNA. For example, the
pathways of BI-to-A form conformational transitions are well
described by the topography of the PES. Furthermore, the
features of the coarse-grained, subspace PES are remarkably
faithful to the fine details of conformational processes in the
duplex, such as the location of the transition states.

The representative nature of the PCS and the descriptive
power of the PES suggest that they will be useful in the
development and comparison of interaction potentials for
DNA (39) and for the evaluation of conformational sampling
in molecular simulations (57,62).

In conclusion, the work presented here provides a powerful
and coherent framework for the analysis of DNA structure,
energetics and dynamics. Further work is aimed at applying
the approach to mapping the PES of duplex DNA as well as in
developing the underlying methodology and extending its
reach to other biomolecular systems.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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