Skip to main content
. 2025 Oct 8;27:e71034. doi: 10.2196/71034

Table 5.

University hospital – fairness ratios (false negative rate and false discovery rate) relative to the reference groups, female for sex and 30-40 years for age, are assessed using the 80% rule, where values within (0.8-1.25) are fair. Median false negative rate and false discovery rate ratio scores and 90% CI (5th and 95th percentiles): Sex – the artificial intelligence model is fair – achieves both equal opportunity (false negative rate ratio) and predictive parity (false discovery rate ratio). Age range - the artificial intelligence model shows fairness infringements for patients aged 40-120 y for predictive parity (false discovery rate ratio) and no fairness infringements for equal opportunity (false negative rate ratio).

Feature and group FNRa ratio (90% CI) FDRb ratio (90% CI)
Sex


Male 0.957 (0.937-0.983) 1.005 (0.969-1.038)

Femalec 1.000 (1.000-1.000) 1.000 (1.000-1.000)
Age range (y)


10-20 0.849 (0.556-1.093) 0.000 (0.000-0.000)

20-30 0.964 (0.846-1.080) 0.857 (0.304-1.396)

30-40c 1.000 (1.000-1.000) 1.000 (1.000-1.000)

40-50 0.946 (0.882-1.031) 1.273 (0.654-1.527)

50-60 0.899 (0.890-0.976) 1.421 (0.959-1.544)

60-70 0.862 (0.816-0.898) 1.440 (0.961-1.607)

70-80 0.843 (0.780-0.873) 1.448 (0.931-1.686)

80-90 0.830 (0.771-0.849) 1.454 (0.947-1.630)

90-100 0.806 (0.755-0.839) 1.391 (0.957-1.585)

100-110 0.821 (0.781-0.900) 1.366 (0.954-1.582)

110-120 1.132 (1.126-1.185) 2.000 (1.319-2.280)

aFNR: false negative rate.

bFDR: false discovery rate.

cReference Group.