Skip to main content
. 2025 Oct 10;13:e71994. doi: 10.2196/71994

Table 3.

Results of the model hyperparameter tuning.

Model Hyperparameters (lower bound-upper bound)
Logistic regression

a
Support vector machine

Gamma 0.1 (0.1-10)

Cost 7.1 (0.1-100)

Degree 3 (1-5)

Kernel Radial basis
K-nearest neighbor

K 1 (1-10)
Random forest

Number of trees 230 (10-300)

Depth 90 (10-100)

Features 3 (1-25)
Extreme gradient boosting

Number of trees 30 (10-300)

Depth 16 (10-100)

Eta 0.23 (0.01-0.4)

Gamma 0.19 (0.01-0.2)

Lambda 1.60 (0.1-2)

Alpha 0.30 (0.1-2)
Bayesian additive regression trees

Number of trees 30 (10-100)

Depth 90 (10-100)
Artificial neural network

Layers 2 (1-5)

Neurons 16. 8 (64.2-32.2)

Threshold 0.001 (0.1-0.001)

aNot available.