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Introduction

For a long time it was believed that the nucleotide
sequence of every RNA would represent a simple copy of
its coding DNA. This axiom of molecular biology,
however, has suffered several jolts during the last 25
years. The discovery of intervening or intronic sequences
(splicing) and the ®nding that individual nucleotides can
be inserted into and deleted from RNAs (RNA editing)
demonstrated that genetic information can be changed at
the RNA level. Post-transcriptional modi®cation of indi-
vidual ribonucleotides, namely deamination of adenosines
and cytidines, can also change the readout of mRNAs
(reviewed by Maas and Rich, 2000). Stable cellular RNAs,
such as tRNAs, rRNAs and snRNAs, have long been
known to contain a large number of post-transcriptionally
synthesized irregular ribonucleotides (Limbach et al.,
1994). In tRNAs, the modi®ed nucleotides can facilitate
the formation of correct anticodon±codon interaction and
thereby increase the ef®ciency and ®delity of translation
(reviewed by Agris, 1996). In rRNAs and spliceosomal
snRNAs, methylation of the ribose moiety at the
2¢-hydroxyl group and conversion of uridines into
pseudouridine are the most prevalent nucleotide modi®-
cations. Since 2¢-O-methylated nucleotides and pseudo-
uridines are restricted to the functionally essential regions
of rRNAs and snRNAs (Reddy et al., 1988; Maden, 1990),
they are expected to contribute to the faithful function of
the ribosome and the spliceosome. Consistent with this
view, lack of ribosomal pseudouridines can reduce the
growth rate or confer a selective disadvantage when it is
competed against wild-type ribosomes (Raychaudhuri
et al., 1999; Wrzesinski et al., 2000). More tellingly,
nucleotide modi®cations in the 5¢-terminal region of the
U2 spliceosomal snRNA are absolutely essential for its
function in pre-mRNA splicing (Yu et al., 1998).

Ribosomal 2¢-O-methylated nucleotides and
pseudouridines are synthesized by small
nucleolar RNPs

The human 18S, 5.8S and 28S rRNAs together carry ~110
2¢-O-methyl groups and almost 100 pseudouridines

(Maden, 1990). Synthesis of this large number of modi®ed
nucleotides in rRNAs is directed by guide snoRNAs. The
2¢-O-methylation and pseudouridylation guide snoRNAs
possess distinct sequence and structural elements
(Figure 1). The methylation guide snoRNAs carry the
conserved box C (RUGAUGA, where R stands for any
purine) and D (CUGA) motifs near their 5¢ and 3¢ ends,
respectively (Figure 1A). The C and D boxes are
frequently folded together by a short (4±5 bp) terminal
helix. Additional, often imperfect copies of the C and D
boxes, called C¢ and D¢ boxes, are located internally
(Tycowski et al., 1996a; Kiss-LaÂszloÂ et al., 1998). The
distance between the D¢ and C¢ boxes is restricted to 3±9
nucleotides, and frequently an internal stem brings these
elements closer to each other. The 2¢-O-methylation guide
snoRNAs possess one or sometimes two 10±21 nucleotide
antisense elements, which can form perfect double helices
with rRNA sequences (Bachellerie et al., 1995). The
ribosomal nucleotide positioned 5 bp upstream of the D or
D¢ box of the snoRNA is selected for 2¢-O-methylation
(CavailleÂ et al., 1996; Kiss-LaÂszloÂ et al., 1996; Tycowski
et al., 1996b).

The pseudouridylation guide snoRNAs consist of two
hairpins and two short single-stranded regions, which
contain the conserved H (ANANNA, where N stands for
any nucleotide) and ACA boxes (Balakin et al., 1996;
Ganot et al., 1997b) (Figure 1B). An internal loop in the 5¢-
and/or 3¢-terminal hairpin of the snoRNA forms a complex
pseudoknot structure with rRNA sequences. The substrate
ribosomal uridine is positioned at the base of the upper
stem closing the recognition loop of the snoRNA (Ganot
et al., 1997a). The distance between the substrate uridine
and the H or ACA box of the snoRNA (~14±16
nucleotides) is an important structural determinant for
selection of the correct pseudouridylation site (Ni et al.,
1997; Bortolin et al., 1999).

The 2¢-O-methylation and pseudouridylation guide
snoRNAs function in the form of small ribonucleoprotein
particles (snoRNPs). Each snoRNP consists of a speci®c
snoRNA and a set of associated proteins common to all
box C/D or H/ACA snoRNPs. The conserved box C/D and
H/ACA motifs are believed to function as protein binding
signals. The box C/D 2¢-O-methylation guide snoRNPs
contain at least four evolutionarily conserved, essential
proteins: ®brillarins Nop56p, Nop58p/Nop5p and Snu13p
(Schimmang et al., 1989; Tyc and Steitz, 1989; Lafontaine
and Tollervey, 1999, 2000; Lyman et al., 1999; Newman
et al., 2000; Watkins et al., 2000). Fibrillarin shares a
conserved domain with known S-adenosylmethionine-
dependent methyltransferases (Niewmierzycka and
Clarke, 1999; Wang et al., 2000). A point mutation in
the putative methyltransferase domain of the yeast
®brillarin, Nop1p, inhibits the overall ribose methylation
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of rRNAs (Tollervey et al., 1993), suggesting that
®brillarin is the methyltransferase in box C/D snoRNPs.

Thus far, four snoRNP proteins, Cbf5p, Gar1p, Nhp2p
and Nop10p, have been identi®ed in box H/ACA
pseudouridylation guide snoRNPs (Balakin et al., 1996;
Ganot et al., 1997b; Henras et al., 1998; Watkins et al.,
1998). Cbf5p (Nap57p in mammals), which is highly
homologous to the Escherichia coli tRNA:Y55 pseudo-
uridine synthase, provides the pseudouridine synthase
activity for the snoRNA-directed pseudouridylation reac-
tion (Lafontaine et al., 1998; Zebarjadian et al., 1999).
Gar1p, Nhp2p and Nop10p are also essential for the
pseudouridylation reaction, but their function remains
unknown (Bousquet-Antonelli et al., 1997; Henras et al.,
1998).

snoRNPs function in modi®cation of various
classes of cellular RNAs

Besides synthesis of >200 modi®ed nucleotides in rRNAs,
snoRNPs also function in 2¢-O-methylation and pseudo-
uridylation of spliceosomal snRNAs. The ®ve major
mammalian spliceosomal snRNAs, U1, U2, U4, U5 and
U6, carry 30 2¢-O-methyl groups and 24 pseudouridines
(Reddy and Busch, 1988). Involvement of snoRNPs in
modi®cation of spliceosomal snRNAs was ®rst demon-
strated by identi®cation of two box C/D snoRNAs,
mgU6-47 and mgU6-77, which function in 2¢-O-methyla-
tion of the RNA polymerase (pol) III-transcribed U6
snRNA (Tycowski et al., 1998). Later, it was shown that
all trans-acting factors directing the synthesis of the eight
2¢-O-methylated nucleotides and three pseudouridines in
the U6 snRNA are present and are functionally active in
the nucleolus (Ganot et al., 1999). This observation,
coupled with the ®nding that each U6 modi®cation factor
recognizes short sequences around the target nucleotide,
led to the proposal that 2¢-O-methylation and pseudo-
uridylation of the U6 snRNA are mediated exclusively by
snoRNPs.

An unusual `hybrid' snoRNA, called U85, that contains
both box C/D and H/ACA domains has been identi®ed in
human and Drosophila cells (JaÂdy and Kiss, 2001). The
U85 snoRNA is associated with both box C/D- and
H/ACA-speci®c snoRNP proteins. In vitro and in vivo
RNA modi®cation experiments demonstrated that the U85
snoRNA functions in 2¢-O-methylation and pseudouridy-
lation of the RNA pol II-transcribed U5 snRNA. Current
observations suggest that U85 is not the only snoRNA that
directs modi®cation of a pol II-speci®c spliceosomal
snRNA. Several putative 2¢-O-methylation and pseudo-
uridylation guide snoRNAs with signi®cant sequence
complementarities to the U1, U2, U4 and U5 snRNAs
have been identi®ed (HuÈttenhofer et al., 2001; B.E.JaÂdy
and T.Kiss, unpublished data). The new snoRNAs possess
the potential to select known 2¢-O-methylated nucleotides
and pseudouridines in U1, U2, U4 and U5 snRNAs, further
supporting the conclusion that snoRNAs function in post-
transcriptional modi®cation of both pol II- and pol
III-transcribed spliceosomal snRNAs. To what extent
snoRNPs participate in 2¢-O-methylation and pseudo-
uridylation of pol II-speci®c snRNAs remains unclear.
However, it seems that synthesis of at least some
pseudouridines is achieved by protein enzymes
(Massenet et al., 1999; JaÂdy and Kiss, 2001).

Current observations also suggest that the snoRNA-
based guide mechanism is not limited to the modi®cation
of ribosomal and spliceosomal RNAs. Homologs of
eukaryotic box C/D snoRNAs present in archaebacteria,
besides directing ribose methylation of rRNAs, also
function in 2¢-O-methylation of tRNAs (Omer et al.,
2000; B.Clouet-D'Orval and J.-P.Bachellerie, personal
communication; C.Daniels, personal communication).
In human and rodents, several novel putative 2¢-O-
methylation and pseudouridylation snoRNAs lacking
signi®cant complementarities to rRNAs, snRNAs or
other known stable cellular RNAs have been identi®ed
(CavailleÂ et al., 2000; JaÂdy and Kiss, 2000; HuÈttenhofer
et al., 2001; B.E.JaÂdy and T.Kiss, unpublished data).
Most probably, these `orphan' guide snoRNAs function in

Fig. 1. Structure and function of (A) 2¢-O-methylation and (B) pseudouridylation guide snoRNAs. The consensus sequences of boxes C, C¢, D,
D¢, H and ACA are indicated (R is a purine and N stands for any nucleotide). Models for molecular selection of 2¢-O-methylated nucleotides and
pseudouridine were adopted from Kiss-LaÂszloÂ et al. (1998) and Ganot et al. (1997a), respectively.
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2¢-O-methylation and pseudouridylation of thus far
unidenti®ed target RNAs. What types of cellular RNAs
might be the substrates of the new guide snoRNAs?
During the last decade, several non-coding RNAs with
important catalytic and regulatory functions have been
identi®ed (Eddy, 1999; Filipowicz, 2000). We can antici-
pate that numerous additional non-coding RNAs have
remained still undiscovered in eukaryotic cells. These
RNAs, of course, might carry 2¢-O-methylated nucleotides
and pseudouridines that are synthesized by snoRNPs.

According to a current, even more fascinating concept,
snoRNAs might also function in modi®cation of mRNAs.
Seven novel box C/D snoRNAs and a box H/ACA
snoRNA with predominant expression in brain tissues
have been identi®ed in human and mouse (CavailleÂ et al.,
2000; de Los Santos et al., 2000; J.CavailleÂ, P.Vitali,
Z.Basyuk, J.-P.Bachellerie, J.Brosius and A.HuÈttenhofer,
personal communication). The function of the new brain-
speci®c snoRNAs remains elusive. One of the novel box
C/D snoRNAs carries an 18 nucleotide phylogenetically
conserved target recognition element that is perfectly
complementary to the serotonin receptor 5-HT2C mRNA.
Intriguingly, the putative 2¢-O-methylation target nucleo-

tide in the serotonin receptor mRNA is known to undergo
an adenosine-to-inosine editing reaction, leading to the
intriguing possibility that snoRNA-guided 2¢-O-methyl-
ation might have a regulatory function in the expression of
this important brain-speci®c protein (CavailleÂ et al., 2000).

Cellular locations for snoRNA-directed RNA
modi®cation reactions

In vertebrates, all 2¢-O-methylation and pseudouridylation
guide snoRNAs are processed from pre-mRNA introns
(reviewed in Tollervey and Kiss, 1997; Weinstein and
Steitz, 1999) (Figure 2). The conserved box C/D and
H/ACA motifs, through binding snoRNP proteins, direct
the correct processing and nucleolar transportation of
snoRNAs (Lange et al., 1998, 1999; Samarsky et al., 1998;
Narayanan et al., 1999a,b). Since mature 2¢-O-methylation
and pseudouridylation snoRNPs are localized in the
nucleolus, the most immediate issue that comes to mind
is how they can function in post-transcriptional modi®ca-
tion of various classes of cellular RNAs that accumulate
in the cytoplasm or nucleoplasm. Recent attempts at

Fig. 2. Biogenesis and function of 2¢-O-methylation and pseudouridylation guide snoRNAs. In mammalian cells, all guide RNAs are synthesized
within introns of pre-mRNAs in the nucleoplasm. Most intronic snoRNAs are processed from the removed and debranched host intron by
exonucleolytic activities. It remains unclear whether 5¢ and 3¢ end processing of snoRNAs occurs already in the nucleoplasm, or later in the nucleolus.
Guide snoRNAs accumulating in the nucleolus direct 2¢-O-methylation and pseudouridylation of the 18S, 5.8S and 28S rRNAs, the U6 snRNA and
perhaps other cellular RNAs, including tRNAs, the signal recognition particle (SRP) and telomerase RNAs. It seems that box C/D, but not box
H/ACA snoRNAs, transiently appear in the Cajal body before accumulating in the nucleolus. Some guide RNAs (scaRNAs) directing modi®cation
of the pol II-transcribed spliceosomal snRNAs accumulate in the Cajal body (CB). For other details, see the text.
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understanding this apparent enigma shed new light on the
intracellular traf®cking of RNAs.

Certainly, the snoRNA-directed 2¢-O-methylation and
pseudouridylation of rRNAs take place within the
nucleolus where the 18S, 5.8S and 28S rRNAs are synthes-
ized as long precursor rRNAs (pre-rRNAs) (Figure 2).
Modi®cation of the 18S, 5.8S and 28S rRNAs occurs
during or immediately after transcription, but before
nucleolytic processing of the pre-rRNA (Maden, 1990).
This implies that each pre-rRNA transcript transiently
interacts with ~200 modi®cation guide snoRNPs.

The earlier ®nding that the U6-speci®c modi®cation
factors reside within the nucleolus raised the possibility
that the U6 snRNA might cycle through the nucleolus to
undergo snoRNP-mediated 2¢-O-methylation and pseudo-
uridylation (Tycowski et al., 1998; Ganot et al., 1999).
Indeed, upon injection into the Xenopus oocyte nucleus,
¯uorescent U6 snRNA transiently localizes to the
nucleolus before its accumulation in the nucleoplasm
(Lange and Gerbi, 2000), supporting the idea that post-
transcriptional modi®cation of the U6 snRNA takes place
in the nucleolus. Besides U6, several small stable RNAs,
including RNase P RNA, signal recognition particle (SRP)
RNA and telomerase RNA, have been detected in the
nucleolus (reviewed by Pederson, 1998). In yeast cells, the
RNase P-catalyzed endonucleolytic processing of the
5¢ terminus of a major portion of tRNAs occurs within
the nucleolus (Bertrand et al., 1998). Last, but not least,
some mRNAs have also been reported to localize
transiently to the nucleolus (Bond and Wold, 1993).
These observations raised the fascinating possibility that
various cellular RNAs can transit through the nucleolus to
undergo nucleolar processing including snoRNA-directed
nucleotide modi®cations.

In contrast to the pol III-transcribed U6 snRNA,
maturation of the pol II-speci®c U1, U2, U4 and U5
snRNPs includes a cytoplasmic phase (Figure 2). The
newly synthesized precursor snRNAs (pre-snRNAs) are
exported to the cytoplasm, where the seven common Sm
proteins bind to the pre-snRNAs before processing of their
3¢ ends and hypermethylation of their primary mono-
methylguanosine cap to trimethylguanosine. After re-
importation from cytoplasm, the newly assembled snRNPs
transiently appear in Cajal (coiled) bodies before accu-
mulating in the nucleoplasm (Carvalho et al., 1999;
Sleeman and Lamond, 1999). Earlier, it was found that the
actively transcribed human U1 and U2 genes frequently
co-localize with Cajal bodies (Frey and Mateira, 1995;
Smith et al., 1995; Frey et al., 1999). Although it seems
that transcription does not occur within the Cajal body, the
newly synthesized pre-U2 snRNA was also detected in this
nucleoplasmic organelle (Smith and Lawrence, 2000). The
Cajal body has long been considered as a possible site for
assembly and/or modi®cation of spliceosomal snRNPs
(reviewed in Bohmann et al., 1995; Matera and Frey,
1998). We have recently investigated the subcellular
distribution of the human U85 box C/D/H/ACA snoRNA
that functions in both 2¢-O-methylation and pseudouridyl-
ation of the U5 snRNA (JaÂdy and Kiss, 2001). To our
surprise, in situ hybridization experiments demonstrated
that the U85 snoRNAs co-localize with Cajal bodies in
human HeLa cells (X.Darzacq, B.E.JaÂdy, C.Verheggen,
E.Bertrand and T.Kiss, in preparation). Likewise, three

other currently identi®ed snoRNAs that are predicted to
function in pseudouridylation of the U2 snRNA and
2¢-O-methylation of the U1, U4 and U5 snRNAs were also
found to accumulate within Cajal bodies. These observa-
tions raised the possibility that the novel small Cajal body-
speci®c RNAs (scaRNAs) may direct modi®cation of the
U1, U2, U4 and U5 snRNAs within Cajal bodies either
after the synthesis of nascent pre-snRNAs or after re-
importation of the newly assembled snRNPs from the
cytoplasm. A recent study, however, indicates that
nucleolar factors may also contribute to the internal
modi®cation of the U2 snRNA (Yu et al., 2001).
Therefore, several exciting questions remain to be
answered in the future. Do all 2¢-O-methylation and
pseudouridylation guide RNAs that function in modi®ca-
tion of pol II-speci®c snRNAs reside within Cajal bodies?
Can bona ®de nucleolus-localized RNAs also function in
snRNA modi®cation? What are the cis- and trans-acting
factors that direct scaRNAs into the Cajal body?

Concluding remarks

Eubacterial rRNAs contain only a handful of 2¢-O-
methylated nucleotides and pseudouridines, which are
synthesized by speci®c protein enzymes. To synthesize
the numerous 2¢-O-methylated nucleotides and pseudo-
uridines in eukaryotic rRNAs, eukaryotes probably
adopted the snoRNA-guided modi®cation mechanism
before the split between archaebacteria and eukaryotes
(Gaspin et al., 2000; Omer et al., 2000; Watanabe and
Gray, 2000). The primordial 2¢-O-methylation and pseu-
douridylation guide snoRNAs likely derived from cis-
acting rRNA or perhaps tRNA sequences which acquired
the ability to function as trans-acting cofactors. The
complex world of present-day guide snoRNAs probably
evolved through duplications and random mutations of the
snoRNA genes (Lafontaine and Tollervey, 1998). The
guide snoRNA-based RNA modi®cation mechanism pro-
vides several advantages for eukaryotic cells. Selection of
modi®cation sites by guide snoRNAs is independent of
local structures of the substrate RNA, and guide RNAs can
evolve much more rapidly than protein enzymes that are
highly dependent on pre-existing modi®cation sites.
During evolution, therefore, the ¯exible snoRNA-based
modi®cation systems can continuously test novel 2¢-O-
methyl groups and pseudouridines in eukaryotic rRNAs,
snRNAs, tRNAs and probably other cellular RNAs.
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