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Genetic perturbations of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are widely used to
dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca>'-
permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or
expression of unedited GIuR-B(Q), both leading to increased Ca®>" permeability of AMPARs. Mice with this functional
AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-
go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain
was ectopically variable (“mosaic”) among individuals and strongly correlated with decreased olfactory memory in
hippocampus and cortex. Accordingly, memory was rescued by transgenic GIuR-B expression restricted to piriform
cortex and hippocampus, while enhanced odor discrimination was independent of both GIuR-B variability and
transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GIuR-B expression allowed a
mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.
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Introduction

The sense of smell is of paramount importance for rodents
[1], for which rapid odor discrimination and long-lasting
olfactory memory permits responses to predator and prey
critical for survival. Consequently, the behavioral analyses of
olfactory capabilities in rodents are efficient, quantitative,
and reproducible [2-4]. While in the formation and storage of
olfactory memory piriform cortex [5-7], hippocampus [8,9],
and olfactory bulb [10-12] are all implicated, the cellular
correlates for these processes have not been clearly
delineated. The contribution of the hippocampus to olfactory
memory is presently controversial [2,13-18], but is deemed
unlikely for simple olfactory discrimination tasks [9,19]. In
fact, the most likely candidates for a cellular correlate of
olfactory memory appear to be the neuronal connections in
the piriform cortex due to the associational connectivity [5]
and the expression of several forms of cellular and synaptic
plasticity [7,20-23].

Concerning odor discrimination itself, cellular mechanisms
for this process are often attributed to the inhibitory
circuitry of the olfactory bulb ([24-30]; reviewed in [31-33]).
Lateral inhibitory circuits were postulated, in analogy to
retina [34,35], to mediate contrast enhancement [24], for
which physiological recordings [24,36,37] and modeling data,
based on the well-known anatomy [29], provide additional
support. Such contrast enhancement may rest in large part
on the particular properties of dendrodendritic synapses
between the principal output neurons (mitral cells) and local
inhibitory neurons (granule cells) of the olfactory bulb. In
these distinct synapses, lateral and recurrent inhibition
mediated by the gamma-aminobutyric acid-A system may be
controlled by the activity of the closely appositioned
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glutamatergic part, perhaps triggering increased gamma-
aminobutyric acid release by Ca®" influx through glutamate-
gated receptor channels ([38]; see also [39]).

Given that neuronal circuits underlying odor discrimina-
tion, as well as olfactory memory, rely on properties of fast
excitatory neurotransmission mediated by o-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionate receptors (AMPARs),
we sought to alter, by genetic means, the specific functional
contribution of a-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionate (AMPA) channels containing the dominant subunit
GluR-B. Of the four AMPAR constituents, GluR-A to D
(GluR1 to 4), which form tetrameric channels with different
binary subunit combinations, GluR-B is contained in the
majority of AMPARs. GluR-B is critically involved in the
formation and trafficking of AMPARs, and dominates their
ion conductance and gating properties [40-46]. Notably, the
normally low Ca®" permeability of AMPA channels in
principal neurons is solely mediated by GluR-B, due to a
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unique arginine residue (R587) in the functionally critical
glutamine/arginine (Q/R) site of the pore-forming segment
M2 [44,47,48], resulting from RNA editing of GluR-B pre-
mRNA ([49]; reviewed in [b0]). Hence, either GluR-B
deficiency, or the expression of Q/R site-unedited GluR-B
with a glutamine residue at the critical channel site, leads to
increased Ca*" permeability of AMPA channels, as amply
demonstrated in gene-targeted mice [51,53,58,60]. Thus, the
absence of GluR-B, or the expression of GluR-B(Q) in the
olfactory bulb, may generate increased inhibition in mitral
cells. Moreover, the ablation of GluR-B, but also changes in
the extent of Q/R site editing of GluR-B, can alter the strength
of excitatory synaptic transmission in the genetically ad-
dressed neuronal populations [51,58,60], thus potentially
shifting the balance of excitatory and inhibitory transmission
in the affected circuits. Similarly, changes in synaptic
plasticity due to C32+-permeable AMPARs [51,52,60], e.g., in
piriform cortex, might alter odor memorization processes.
Thus, alterations of AMPAR properties in these brain regions
will allow investigation and possibly separation of mecha-
nisms underlying these behavioral traits.

Concerning this intended switch in AMPAR properties,
mice lacking all GluR-B, however, show a widespread
impairment in behavior, including lethargy, motor coordina-
tion problems, and deficits in exploratory activity [51], which
preclude detailed behavioral analyses. Similarly, mice ex-
pressing (in the entire brain) a substantial part of the GluR-B
population in the Q/R site-unedited form become seizure-
prone and die prematurely [53]. Some of these problems can
be partially overcome by use of spatially and temporally
restricted expression systems [54-56], in particular the Cre-
lox system, with Cre-recombinase expression in defined brain
areas of gene-targeted mice carrying GluR-B alleles marked
by loxP sites for Cre-mediated recombination [55,57]. Indeed,
restricting the expression of Q/R site-unedited GluR-B to
forebrain resulted in almost normal lifespan and an only
weakly seizure-prone phenotype [58]. Mice with forebrain-
specific GluR-B depletion appeared almost completely
normal throughout life with no developmental abnormalities,
thus permitting a detailed, quantitative investigation of
olfactory behavior.

To allow for the mechanistic separation of olfactory
learning, discrimination, and memory, we exploited a well-
known phenomenon of transgenes, which concerns hetero-
geneous expression among different founder lines and even
among genetically identical individuals of a given line.
Although such “mosaic” expression is usually undesired,
here we took advantage of it by ablating GluR-B via gene-
targeted, floxed GluR-B alleles with the help of a transgenic
mouse line with variegated Cre expression in forebrain. By
correlating GluR-B levels in olfaction-related brain regions
with quantitative behavioral data, we investigated the
dependence on GluR-B of olfactory discrimination and
memory. Moreover, to delineate the brain areas involved in
these distinctive olfactory processes we used transgenic
“rescue” of GluR-B ablation, specifically in piriform cortex
and hippocampus.

These efforts allowed us to dissect, both spatially and
mechanistically, the role of GluR-B-mediated AMPAR prop-
erties in selected brain regions in odor learning, discrim-
ination, and memory.
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Results

GIuR-B(Q) Expression in the Forebrain Increases Olfactory
Learning and Discrimination

To explore the role of fast excitatory neurotransmission
carried by GluR-B-containing AMPA channels in olfactory
processes, we first analyzed mice that express part of the
GluR-B population in a Q/R site-unedited form (Figure 1A;
termed “GluR-BY*“STE”; see also [58]). These mice carry, in
addition to a wild-type GluR-B allele, a gene-targeted GluR-
B" allele in which the intronic sequence critical for GluR-B
pre-mRNA editing at the Q/R site is replaced by a floxed TK-
neo gene, which severely reduces splicing of the modified
intron and hence attenuates the expression of the GluR-B"”
allele [60]. To unsilence the attenuated GluR-B"“ allele,
specifically in the postnatal forebrain, we crossed in the
Tg“* transgene, which encodes Cre-recombinase and is
driven by the aCaMKII promoter ([59]; “Camkcre4”). Thus,
Cre-recombinase removes in forebrain neurons the intronic
TK-neo gene, leading to the active GluR-B*““® allele for QIR
site-unedited GluR-B(Q) subunits (Figures 1 and SI). As
expected [53,60], also in mice expressing postnatally fore-
brain-specific Q/R site-unedited GluR-B(Q) subunits, Ca®"
permeability through AMPAR was increased and AMPAR
currents showed rectification ([58] and unpublished data).
GluR-BAFSTE mice had, in contrast to mice expressing GluR-
B(Q) globally, a prolonged lifespan and no severe devel-
opmental alterations. They were however, still seizure-prone
[58], and hence behavioral training was restricted to short
periods of time.

We trained six GluR-B*“*™ mice and six littermate
controls on one odor pair in an automated go/no-go olfactory
conditioning task [3,61]. In this task, water-deprived mice are
trained to distinguish a water-rewarded odor (S+) and an
unrewarded odor (S—) by their licking response (Figure 1B).
Both GluR-B**“*™® and control mice acquired the “simple”
task to discriminate between the monomolecular odors
amylacetate and ethylbutyrate (percentage correct > 70%
after 400 trials). Strikingly, GluR-B**“*® mice showed more
rapid learning and enhanced discrimination capabilities
(Figure 1C, group effect: F ;0) = 10.2, p < 0.01). This was
confirmed by fitting linear trend lines to the initial part of the
learning curve (slope difference: p < 0.05; see Materials and
Methods). The training system employed allows for careful
monitoring of head positions [3]. For rewarded trials (Figure
1D, green), already weakly trained animals kept their head in
the sampling port (large tube in Figure 1B) during the entire
2-s trial, whereas for unrewarded trials the head is retracted
quickly (Figure 1D, red). The difference of these two curves
(Figure 1E, black) is a very sensitive assay for discrimination
performance; the fitted maximum of this curve (Figure 1E,
blue) is referred to as the “discrimination index” in the
remainder of the paper and is again strongly improved for
GluR-B*“5*® mice, compared with controls (Figure 1F; group
effect: Fy 10y = 11.7, p < 0.01). This was not due to general
motor performance, attention, or motivation changes, as
both the intertrial interval (group effect: F(; 19)=0.56, p > 0.4)
and the overall licking frequency (group effect: ¥5 10)=0.72, p
> (.4) were unaffected.

Thus, expression of Ca2+-permeable AMPARSs in forebrain
areas, including the olfactory bulb, resulted in more rapid
odor learning and enhanced olfactory discrimination.
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Figure 1. Odor Learning and Discrimination Is Enhanced in GluR-B*£<8 Mice

(A) Schematic diagram depicting Cre-mediated activation of GIuR-B(Q) by removing the loxP-flanked TK-neo (TK-neo pA, GIuR-B"°) element in intron
11, which is acting as a suppressor in expression from the Q/R site editing deficient G/uR-B"*° allele. Exon 10 and 11 encode membrane-spanning
segments 1, 2, and 3 (M1, 2, 3) of the GIuR-B subunit. The intronic element necessary for editing the Q/R site is shown for the wild-type allele (+).
(B) Scheme of an individual trial. Breaking a light barrier, the mouse initiates a trial. An odor is presented, and (depending on the odor denotation and
the mouse’s response) the mouse is rewarded or retracts its head. A small (2- to 4-ul) water reward is given at the end of an S+ odor if the mouse
continuously licks at the delivery tube during the 2-s trial. A trial is counted as correct if the mouse licks continuously upon presentation of a rewarded
(SH odor or does not lick continuously with a nonrewarded (S—) odor [3].

(C) Twelve experimentally naive animals (six GIuR-B*<*"® [orange] and six GluR-B™" littermate controls [black]) were trained on 1% AA versus 1% EB for
two tasks of 200 trials each. Both groups acquired the task (> 70% correct); however, the GIuR-B*“**8 were both quicker, and performed better overall,
than the littermate controls (group effect: F(;10 ) = 10.2; p < 0.01). AA, amylacetate; EB, ethylbutyrate.

(D) Average head position for one mouse and 50 presentations of the S+ (green) and 50 presentations of the S— (red) odor. “1” indicates the breaking
of the light beam (head in the sampling port [3]). Note the rapid head retraction for the S— odor.

(E) Difference of the average head positions from (D) for S+ and S— odors. Blue line indicates sigmoidal fit. “Discrimination index” refers to the
maximum of the fitted sigmoid.

(F) As (C) but depicting the discrimination index as a function of trial number (group effect: F;10)=1.7; p < 0.01).

DOI: 10.1371/journal.pbio.0030354.9001

GluR-B*"® Mice Exhibit Increased Olfactory Discrimination
Performance

To ascertain if enhanced olfactory learning and odor
discrimination may indeed correlate with the increased Ca®"
permeability of AMPA channels in the Q/R site-unedited
form, we next analyzed GluR-B**” mice, which lack GluR-B in
forebrain. This specific ablation was generated by forebrain-

selective Tg(:”"

expression ([59] “Camkcre4”) in gene-targeted
GluR-B*"* mice carrying, in both GluR-B alleles, a floxed exon
11 (Figure 2A). The specific GluR-B depletion in GluR-B*"™
mice can be monitored by immunohistochemistry (see below)
and immunoblotting. In quantitative immunoblot analyses,

we found GluR-B levels reduced to 28 * 7%, 29 *= 8%, and

i) PLos Biology | www.plosbiology.org

2019

52 = 9% (£ SEM; n=10) in the hippocampus, cortical areas,
and olfactory bulb, respectively, relative to GluR-B levels in
GluR-B* littermate controls. In the absence of GluR-B, the
electrophysiological properties of AMPA channels become
similar to those with GluR-B/GluR-B(Q) switch [51] showing
strong rectification and increased Ca*" permeability through
AMPA channels (unpublished data). However, GluR-B deple-
tion is not lethal and does not produce seizures. In addition,
in contrast to the complete GluR-B knockouts, mice with
forebrain-specific GluR-B depletion appeared normal
throughout life with no developmental abnormalities, or
difference in body size and weight in adulthood (wild-type:
31.0g * 1.2; GluR-BA®: 28.4 + 0.9; each n = 10). Exploratory
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Figure 2. Odor Learning and Discrimination Is Enhanced, but Odor
Memory Is Reduced in GluR-B*"® Mice

(A) Schematic diagram depicting Cre-mediated ablation of loxP-flanked
exon 11 of the GIuR-B alleles.

(8 and C) Nine GIluR-B*® (red) and nine GIuRB?** littermate controls
(black) were trained for successive odor discrimination tasks on 1% AA
versus 1% EB (400 trials), 0.4% Cin/0.6% Eu versus 0.6% Cin/0.4% Eu (400
trials) and 1% Pel versus 1% Val. GluR-B*F® mice showed increased
learning/discrimination compared with controls, both using the perform-
ance as measured by percentage of correct trials ([B]; group effect: Fy ;6=
6.55, p < 0.05) or the discrimination index (C), that is the maximal
difference of the sampling pattern (see Materials and Methods and
Figure 1D-1F; F1 16 =29.5, p < 10°%).

(D) Sampling difference for the last 100 trials of the mixture
discrimination task (indicated with a black arrow in [C]) for all 18
individual mice. Note that the GluR-B"® mice show a consistently larger
sampling difference.

(E) Olfactory memory performance for nine littermate controls (black)
and nine GIuR-B**8 (red) mice. Olfactory memory was tested at the time
indicated by the black bar in (C) by interleaving the Pel and Val trials with
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unrewarded AA and EB trials. AA, amylacetate; Cin, cineol; EB,
ethylbutyrate; Eu, eugenol; Pel, pelargonic acid; Val, valeric acid.
DOI: 10.1371/journal.pbio.0030354.9g002

activity in an open field task was slightly increased in GluR-
B mice (3,480 cm * 180, n= 11), compared with wild-type
littermates (2,612 cm * 96, n = 12, p <0.01). Motor
coordination measured in an accelerating rotarod was some-
what impaired in the mutant mice (wild-type: 156 s * 37, n=
6; GluR-B*"™: 87 s + 10, n=6; p < 0.05). Tests in the dark/light
box revealed increased anxiety of GluR-B*"™ mice (latency of
first exit: wild-type [17 s = 3], GluR-B*™ [97 s + 42], p=0.047;
compartment changes: wild-type [17 s £ 3], GluR-BA"® [7 +
2], p < 0.05; time spent in lit compartment: wild-type [103 s =
101, GluR-BY™® [59 s + 19], p = 0.051; each n = 6). Hence,
unlike the complete GluR-B knockouts, GluR-B** mice show
only very minor changes in general activity and no sign of any
major developmental disturbance, thus allowing detailed,
quantitative behavioral investigations.

If the GluR-B/GluR-B(Q) switch-induced alterations in the
Ca”" permeability of the AMPA channels are linked to
enhanced odor discrimination and learning, the depletion of
the GluR-B subunit should lead to a similar phenotypic
readout. We therefore trained nine GluR-B*"® mice and nine
littermate controls in the same automated associative go/no-
go olfactory conditioning task described above. To cover even
small phenotypic changes in olfaction, we tested different
odor pairs, “simple” monomolecular odors and “difficult”
binary mixtures [3]. After habituation, GluR-B*"™® and control
mice were trained to discriminate between the “simple”
monomolecular odors amylacetate and ethylbutyrate, and
subsequently additionally on a “difficult” discrimination task
consisting of similar binary mixtures of cineol and eugenol;
and finally again on a “simple” discrimination task with the
monomolecular odors pelargonic and valeric acid. Similar to
GluR—BAECS‘FB, GluR-B*"® mice also showed enhanced learning
and discrimination compared with controls (Figure 2B; group
effect: F 16 = 6.55; p < 0.05). Increased discrimination
performance is expected to show more pronounced effects
for closely related odors because of the more challenging
“difficult” discrimination task that is closer to the psycho-
physical limits of the system [3,4]. Consistent with this notion,
differences between GluR-B*™ and control mice were not
only larger if the detailed sampling pattern and discrim-
ination index were investigated (Figure 2C and 2D, group
effect: F116) = 29.5; p < 10_4), but in particular for the
discrimination of binary mixtures with similar composition
(group effect: F(3 16=27.8;p < 10~ for the mixture; Faa eB,16)
=7.0; p=0.02, and Fpe| vaia,16) = 5.8; p = 0.03 for the “simple”
discrimination tasks; 3-way ANOVA: Fs 96 = 2.9; p = 0.01). As
activity, measured by the intertrial interval, was not signifi-
cantly different between genotypes (F(; 16y = 3.1; p = 0.1), and
analysis of the lick frequency showed a tendency to reduced
motivation of GluR-B4*® mice in this particular task (F 16, =
9.2; p < 0.01), we conclude that depletion of GluR-B in
forebrain areas indeed resulted in increased olfactory learning
and discrimination performances, rather than motivational
alterations. To assess olfaction specificity, we trained ten GluR-
B*® mice and ten controls in a nonolfactory hippocampus-
dependent spatial learning task (elevated Y-maze). Perform-
ance in this task was not improved compared with controls
(Figure S2); on the contrary, the acquisition of this task was
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slightly impaired, allowing the conclusion that the enhanced
olfactory discrimination performance is likely to be specific to
the sense of smell and possibly related to enhanced discrim-
ination capability, rather than a general increase in alertness.
Furthermore, enhancement in odor discrimination in both
GluR-BY*“T8 and GluR-B*"® mice makes it likely that improve-
ment in this task results from the common AMPAR property
change mediated by the depletion of GluR-B and the lack of the
QIR site-edited GluR-B subunit, both resulting in Ca?™-
permeable AMPARs. Thus, this suggests that increased Ca?"
influx via AMPARs leads to enhanced olfactory learning and
discrimination.

Olfactory Memory Is Significantly Decreased but Highly
Variable in GluR-B“"® Mice

To capture the full extent of the role of Ca2+-permeable
AMPARs in olfactory behavior, we next assessed the effects of
altered AMPA channels on olfactory memory. To probe
olfactory memory in GluR-B*"® mice, six days after the end of
the first training phase for odor discrimination (amylacetate
versus ethylbutyrate), the training trials for the third odor
pair (pelargonic versus valeric acid) were interleaved with
unrewarded trials in which amylacetate or ethylbutyrate were
again presented (black bar in Figure 2C). Whereas control
mice reliably responded only to the previously rewarded odor
(memory of 86 £ 8%, mean = SD, n =9, Figure 2E), GluR-
B mice showed reduced olfactory memory (69 * 16%, n=
9, p < 0.05, Mann-Whitney). Due to the more rapid learning
observed in GluR-B*™®, one could speculate that a decrease in
olfactory memory might simply reflect increased extinction.
However, extinction levels were low in general, no significant
group-trial interaction could be found for the memory trials
(2-way ANOVA, F 90y = 1.5, p > 0.1), and a restriction of the
analysis to early memory trials displayed essentially the same
pattern (Figure S3A). Thus, reduced performance in the
probe trials is not due to increased extinction but reflects
genuine memory impairment. Moreover, because the hippo-
campus-dependent spatial memory after-task acquisition in
the Y-maze was not affected (Figure S2), we conclude that the
observed olfactory memory deficit is rather specific for
olfaction and does not readily generalize to other modalities.

While the improved odor discrimination and learning
behavior showed only little variability, the significantly
impaired memory performance observed in GluR-BY™®
was highly variable among individual animals compared with
control littermates (Figure 2E). This variability in olfactory
memory was reflected in the level and extent of Cre-
recombinase expression in forebrain of transgenic Tg“**
mice, as visualized by Cre-activity in the Cre-indicator mouse
line R26R. We observed that onset and extent of Cre-
recombinase expression in different forebrain regions varied
among individual 7g“** mice (Figure 3A), which could also be
directly visualized by immunohistochemistry with a Cre-
antibody (unpublished data). As this variability persisted after
several backcrosses, and Southern blot analysis revealed no
differences of transgene integration or number among
animals (Figure 3B), it could not be attributed to genetic
differences but rather to epigenetic mechanisms.

Hence, we hypothesized that the variability in olfactory
memory reflected the mosaicism observed in the transgenic
TgCTM line. The evaluation of regional differences in
expression pattern of animals with robust and poor olfactory

mice
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memory could then be applied to identify brain areas
responsible for the observed phenotypes.

Olfactory Memory Correlates with Residual GIuR-B Protein
Expression in GluR-B"™® Mice

Thus, to examine whether the pronounced variability of
olfactory memory in GluR-B*® mice (Figure 2E) reflects
variability of GluR-B levels in GluR-B*™® mice, we analyzed
the residual amount of GluR-B protein in mice with disparate
memory performances (Figure 4A-C). Notably, mice with
pronounced memory deficits (memory < 70%) showed
essentially no detectable GluR-B protein in hippocampus,
amygdala, olfactory bulb, and piriform cortex (n = 2, Figure
4B, and unpublished data), but mice with almost complete
memory displayed substantial residual GluR-B levels in all
brain areas investigated (n = 2, Figure 4B, and unpublished
data).

To quantify the relation between residual GluR-B protein
and olfactory memory, the memory experiment was repeated
with nine additional GluR-B™” mice and two GIuR-B*™
control animals (indicated with shaded symbols in Figure 4A),
resulting in the same mean, variability, and range of memory
performance (control: 89 * 10%; GuR-B®. 63 + 14%).
Subsequently, protein was extracted from olfactory bulbs,
cortical areas, and hippocampi from each mouse, and GluR-B
protein was quantified (Figure 4C). The summarized corre-
lations are depicted in Figure 4D (two animals were used for
immunofluorescent analysis that yielded the same results as
in the first experiment). Whereas no learning or discrim-
ination-related parameter correlated with residual protein
levels (Figure 4D, R* < 0.3), a strong correlation between
memory and GluR-B protein was observed in hippocampus
(Figure 4D, R? =0.72, p < 0.003, n = 10) and cortical areas
(Figure 4D, R® = 0.62, p < 0.006, n = 10). Only a weakly
significant correlation was found in the olfactory bulb (Figure
4D, R%= 0.48, p=0.03, n = 10). GluR-A levels were unchanged
from wild-type, indicating that compensatory up-regulation
of other AMPAR subunits is unlikely (GluR-A levels relative to
control: 1.02 = 0.05, mean = SEM, n = 10).

In summary, mice with reduced GluR-B levels in forebrain
areas showed decreased olfactory memory, which correlated
tightly with a reduction in GluR-B levels in the hippocampus
and cortical areas. Enhanced odorlearning and discrimination,
on the other hand, was independent of residual GluR-B levels
in the olfactory bulb and other forebrain areas, indicating that
moderate GluR-B reductions are sufficient to saturate
enhanced odor learning and discrimination. Thus, although
both are mediated by alterations in the AMPAR subunit GluR-
B, due to the qualitatively different dose-response curves, the
phenotypes regarding olfactory memory, and olfactory learn-
ing/discrimination must be mechanistically distinct.

Partial Rescue of Olfactory Memory Deficit by Selective
Transgenic GluR-B Expression in Hippocampus and
Piriform Cortex in GIuR-B*™® Mice

The effect of selective GluR-B depletion in mice indicated
that GluR-B-containing AMPARs in the hippocampus, and/or
(olfactory) cortex are likely to be important for olfactory
memory. The olfactory memory phenotype could be due to
depletion of GluR-B in olfactory cortex or hippocampus;
enhanced learning and discrimination capabilities might rather
be evoked by AMPARs lacking GluR-B in the olfactory bulb.
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(A) Variable Cre expression in forebrains of three different mice positive for Tg<** and R26R Cre indicator (see Figure $1) at postnatal day 12 pictured by
the Cre-dependent B-galactosidase activity (blue, X-gal, counterstain by eosin) in coronal brain slices. Scale bar: 1.25 mm.

(B) Southern blot analysis of Bglll-digested genomic mouse DNA of four Tg

the wild-type (4.5 kbp) and the transgenic (7, 5, 3, and 2 kbp) alleles.
DOI: 10.1371/journal.pbio.0030354.g003

To obtain independent evidence for this spatial and
mechanistic dissection of the roles of (}a2+-permeable
AMPARs, we expressed by transgenic means N-terminally
green fluorescent protein (GFP)-tagged GluR-B specifically in
hippocampus and piriform cortex of GluR-B*™” mice (Figure
5A and b5B). In accordance with the proposed region-
dependence, we expected that additional GluR-B subunits
in hippocampus and/or piriform cortex improve odor
memory but do not alter odor discrimination performance.
The mouse line employed for this purpose, termed GluR-
B had the genetic background of GluR-B*™ mice but
additionally carried a bidirectional module for B-galactosi-
dase and “*YGluR-B expression, responsive to the tetracy-
cline-controlled transcriptional transactivator [62]. The
transactivator was under the control of a modified
aCaMKII-promoter fragment to obtain high expression
selectivity (Figure HA; see also Materials and Methods). The
transgenic expression level of CFPGluR-B was 9.72% * 1.25 (n
= 3) in the hippocampus, compared with endogenous GluR-B
(Figure 5C and 5D). Analysis of B-galactosidase activity and
S GluR-B expression in brain sections of GluR-B"“™ mice
revealed expression in hippocampus and piriform cortex,
whereas cortex, amygdala, and striatum only rarely showed
any positive cells (Figure 5B). Importantly, both the spatial
pattern and intensity of “""GluR-B expression were constant

among all GluR-BR#e

mice analyzed (n = 11).

Olfactory memory experiments with GluR-BR* and both
GluR-B™* and GluR-B”" mice as controls, were performed as
described above (indicated with shaded symbols in Figure
6A). Memory was again highly reproducible in both GluR-BA'®
(66 * 12%; n = 4) and GluR-B?™ (94 * 2%; n = 3) mice,
compared with experiments performed earlier (Figures 2E
and 4A). Importantly, olfactory memory in GluR-B**™ mice
was intermediate (75 = 15%, n = 8), below GluR-B>'™ control
levels, but better than in GluR-B*"™

under extinction-free condition, where each trial was

mice. Assessing memory

rewarded, confirmed again that the memory deficit was a
true memory deficit and not due to increased extinction
(Figure S3B). Data from the experiments described in Figures
2 and 4 were combined to allow statistical comparison
(Figure 6A and 6B). In summary, GluR-B**™ mice showed
both enhanced memory performances compared with GluR-
BArE (overall ANOVA: Fo 41,=13.6, p < 107% MEMOTYRescue =

i) PLos Biology | www.plosbiology.org

mice that differed in the Cre expression pattern. Southern probe detects

75 £ 15%, n = 8 memoryarp = 66 £ 14%, n = 22; p < 0.05;
Figure 6A), but were still impaired relative to GluR-B**
controls (memoryoj,x =88 * 8%, n=14; p < 0.005), consistent
with a partial rescue of the memory deficit by circumscribed
transgenic SFPGluR-B expression in hippocampus and piri-
form cortex. Notably, the partial memory is in numerical
agreement with the predictions from the protein correlation
and the measurement of transgenic protein expression (see
predicted memory, blue line, in Figure 6B). In the olfactory
memory experiments with GuR-B® animals, olfactory
memory linearly depended on GluR-B expression in cortex
and hippocampus with a slope of 9.1 £ 2.5% (cortex) and 8.9
* 2.0% (hippocampus) increase in memory per 10% increase
in protein (Figure 4D). A 9.7% increase in GluR-B in these
brain regions, as achieved by GluR-B"“"* animals (Figure 5), is
thus predicted to increase olfactory memory by approxi-
mately 9% throughout the heterogeneous population (blue
line in Figure 6B). This confirms the role of these brain areas
as inferred from the mosaic expression and protein correla-
tion analysis described above (Figure 4). However, odor
discrimination (measured by the discrimination index as in
Figures 1, 2, and 4D) was as enhanced as in GluR-B** mice
(0.79 = 0.05, mean * SEM compared with 0.76 = 0.02, p >
0.7, Figure 6C), and improved relative to GluR-B?* controls
(0.48 £ 0.06; Figure 6C; overall ANOVA: Fo 41y = 17.2, p <
1075 post hoc Newman Keuls: p < 107%), as expected if the
enhanced discrimination phenotype is due to C212+-perrne-
able AMPARSs in the olfactory bulb and unaffected by GluR-B
expression in piriform cortex or hippocampus.

Hence, transgenic GluR-B expression, specifically in the
piriform cortex and hippocampus in the GluR-B knockout
background, rescues the odor memory deficit but leaves
enhanced olfactory discrimination and learning unaltered.

Discussion

Here we present mechanistic and spatial dissections of
olfactory discrimination, learning, and memory. We em-
ployed gene-targeted and transgenic mice with region-
specific expression to demonstrate that a change in GluR-B-
mediated properties of AMPA channels in aCaMKII-express-
ing neurons of mouse forebrain, including olfactory bulb
mitral and granule cells, enhances olfactory discrimination
and learning but impairs olfactory memory. These pertinent
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Figure 4. Olfactory Memory but not Odor Learning/Discrimination Is Correlated with Residual GIuR-B Levels in Hippocampus and Forebrain of GIluR-B*"®
Mice

(A) The olfactory memory performance for 18 GluR- B8 (red) and 11 littermate control (black) mice is given as mean (thick lines = SEM) and as
individual performance in open circles and triangles. Arrows with numbers (#) indicate those mice used in experiments (B-C). Data were combined from
Figure 2 (open symbols) and an additional experiment with nine GIuR- B48 and two littermate controls (shaded symbols).

(B and C) Residual GIuR-B levels as detected by anti-GluR-B immunofluorescence in hippocampus, amygdala, piriform cortex, and olfactory bulb of one
control (#1) and two GluR-B*"® (#2 and #3) coronal mouse brain sections (B) and by immunoblot analysis from hippocampal (Hip), cortical forebrain (FB),
and olfactory bulb (OB) protein extracts of control (#4) and GIuR-B"™® mice (#5, #6, #7, and #8) probed with antibodies detecting GIuR-B and B-actin as
an internal loading control (C). Scale bars: 200 um (first panel), 100 um (other panels).

(D) From ten GIuR-B“™ mice, the individual odor learning/discrimination and olfactory memory performance was determined together with the relative
GIuR-B levels in immunoblots of hippocampal, forebrain, and olfactory bulb protein extracts. Memory performance (top panels) and discrimination
capability (bottom panels; discrimination index is measured for the last 100 trials of the mixture discrimination task as indicated by the arrow in Figure
2C) were plotted against GluR-B levels. Memory was tightly correlated to GluR-B protein level in hippocampus (R*> = 0.72; p < 0.003) and cortical
forebrain (R* = 0.62; p < 0.006) and only weakly in the olfactory bulb (R?> = 0.48; p = 0.03). No measure of learning/discrimination (discrimination index
for last 100 mixture trials [D], slopes of trend lines, average discrimination index, average sampling pattern differences, correct performance, etc. [not
shownl]) displayed any correlation (R? < 0.3).

DOI: 10.1371/journal.pbio.0030354.g004

olfactory behaviors were assessed in a go/no-go operant ties. The subsequent transgene-driven re-introduction of
conditioning task, which provides a quantitative, robust, and GluR-B, specifically in piriform cortex and hippocampus,
reversed the Cre-induced loss of GluR-B and partially rescued
the odor memory deficit, but left unaltered the enhanced

olfactory discrimination. In a nutshell, we conclude that

reproducible behavioral tool [3]. We observed among
individual mice a striking variability in olfactory memory
performance but not in odor discrimination. This variability
olfactory discrimination is enhanced by an increase in
AMPAR-mediated Ca®" permeability within the olfactory
bulb, whereas olfactory memory becomes impaired upon
genetically induced GluR-B ablation in higher brain centers,

specifically in piriform cortex.

could be traced to epigenetic variability in the transgenic
expression of Cre-recombinase, which mediated recombina-
tion within loxP-flanked segments of gene-targeted alleles for
the dominant AMPAR subunit GluR-B, and hence operated
the switch in AMPAR properties toward GluR-B ablation and
increased Ca®"

permeability. In contrast to variable memory,
olfactory discrimination and learning performances ap-
peared already saturated by even moderate extents of Cre
expression, and hence moderate changes in AMPAR proper-

@ PLoS Biology | www.plosbiology.org 2023

Olfactory Discrimination Is Increased in Mice with

Forebrain-Specific GIuR-B Ablation or GIuR-B(Q) Expression
Both forebrain-specific GluR-B(Q) expression and GluR-B

depletion led to increased olfactory learning and discrim-
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Figure 5. Specific Hippocampus and Piriform Cortex Expression of Transgenic “""GIuR-B

(A) Schematic diagrams depicting forebrain-specific GIuR-B deletion as in Figure 2A and itTA-dependent expression of “"GluR-B and nuclear-localized
B-galactosidase (nLacZ) in GluR-B*™® mice (termed GIuR-B*¢*“¢). °PG|uR-B and nlLacZ are both encoded by Tg°“"’, and itTA is controlled by a fusion of

the NR2C silencer element [91] and the aCaMKIl promoter (termed Tg

CN12-itTA [92])

Olfaction in GluR-B-Modified Mice

(B) In coronal brain sections of mice positive for both transgenes (TgcV'2-tTA and TgoN') B-galactosidase activity (blue, X-gal, counterstain by eosin) is
restricted to hippocampal neurons in CA1, DG, and neurons in the piriform cortex. The same neurons show GFPGIuR-B expression when analyzed in
immunohistochemical sections with an antibody against GFP. Scale bars: 500 pm.
(C) Immunoblot detecting endogenous GIuR-B and transgenic GFPGIUR-B in the hippocampus of three different mice (#1, #2, #3).
(D) Relative quantification from (C) of transgenic “"GIuR-B compared with endogenous GIuR-B in the hippocampus.

DOI: 10.1371/journal.pbio.0030354.g005
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Figure 6. GIuR-B Expression in Hippocampus and Forebrain Partially
Rescues the Memory Deficit of GluR-B"™ Mice

(A) Olfactory memory experiments as in Figure 2 were performed with
GluR-B**<“¢_ Individual mice are indicated: control GluR-B2°x with black
circles, GIuR-B*"® with red triangles, GluR-B***““* with green squares. Data
were combined from Figure 3 and 4 (open symbols) and an additional
experiment with four GluR-B“®, three littermate controls, and eight GluR-
BRes<u¢ (shaded symbols).

(B) Cumulative histogram of the memory performance. Memory
performance is indicated as a stepped line. The sigmoidal fit is indicated
as a continuous line. The predicted rescue on the basis of the extent of
transgenic = GIuR-B expression (Figure 5D) and the correlation between
memory and GIuR-B levels in piriform cortex (9.1 = 2.5% increase in
memory for 10% increase in protein, Figure 4D) is shown in blue. Note
that the predicted rescue is in perfect numerical correspondence to the
memory performance of GIuR-B*<“® mice.

(C) The discrimination index was calculated as in Figures 1E, 2C, and 4D
(last 100 trials of the mixture discrimination task) for GluRBRescve (n = 8),
GIuR-B*™® (n = 22), and control (n = 14) animals.

DOI: 10.1371/journal.pbio.0030354.9006

ination capabilities. This was rather pronounced for GluR-
B(Q)-expressing mice, consistent with the overall stronger
phenotypic consequences in comparison to GluR-B deple-
tion, both when forebrain-selective ([58], and this study) or
global [53,60].

A detailed analysis of the sampling pattern [3], and in
particular the analysis of discrimination tasks that involved
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“simple” dissimilar monomolecular odor pairs and “difficult”
binary mixtures, were necessary to fully capture the charac-
teristics of the olfactory discrimination phenotype for fore-
brain-specific GluR-B-depleted mice. For closely related
binary mixtures, discrimination improvements were largest,
consistent with a specific alteration in odor discrimination,
rather than a general enhancement of learning capabilities.
This is further supported by the notion that no general
improvement was observed in other nonolfactory behavioral
tasks, e.g., hippocampus-dependent spatial learning tasks
such as matching-to-place spatial reference memory tasks
(Figure S2). As no Cre expression and activity was observed in
the main olfactory sensory neurons at any developmental
stage (Figure S4 and unpublished data), olfactory epithelial
function was unaltered by the genetic modification. The
vomeronasal organ showed very weak Cre expression
(unpublished data), but a role of this structure concerning
performance in the olfactory discrimination task is unlikely
(for review, see [63]). The behavioral phenotype is thus likely
to be associated with the processing of olfactory information
rather than the detection of odors. Furthermore, increased
performance even after long stretches of training and, in
particular, increased sampling pattern differences (TB and
ATS, unpublished data) supported the notion that GluR-B
depletion resulted in enhanced odor discrimination capability.
The learning phenotype might thus be a result of this
enhanced discrimination capability or reflect additional
changes in circuits underlying task acquisition.

Putative Cellular Basis of Enhanced Odor Discrimination
and Learning

AMPAR properties were altered specifically in neurons of
forebrain areas, most notably olfactory bulb, olfactory cortex,
and other cortical areas and hippocampus, leading to
enhanced odor discrimination and learning. Interestingly,
transgenic expression of “"YGluR-B in GluR-B** mice
(genetic “rescue”), specifically in piriform cortex and hippo-
campus with no detectable expression in the olfactory bulb,
did not alter enhanced discrimination and learning capa-
bilities. This is consistent with a primary role of the olfactory
bulb in olfactory discrimination and learning. Alternatively,
transgenic protein levels might have been too low to alter
discrimination and learning capabilities, although memory
was clearly affected. This notion will be further tested in mice
with piriform cortex-specific GluR-B ablation.

A direct contribution to the phenotype by Ca®" influx
through genetically modified AMPA channels seems to be
likely, since mice expressing Q/R site-unedited GluR-B showed
even better odor learning and discrimination performance
compared with mice with depleted GluR-B. In both mouse
models Ca®" influx through AMPA channels is increased,
whereas the effect on the macroscopic AMPA conductance
differs. AMPAR currents are reduced in mice not expressing
GluR-B [51], possibly due to fewer synaptic AMPA channels
and impaired AMPAR trafficking and recycling. In mice
expressing the unedited form of GluR-B(Q), macroscopic
conductance in whole-cell patches of CAl pyramidals is
increased [60], but excitatory transmission in CA3-to-CA1l cell
synapses is somewhat reduced, in spite of a lower threshold
for generating a population spike [58], indicating increased
synaptic excitability by sustained GluR-B(Q)) expression, in
line with the seizure-prone phenotype. Yet, both mouse
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models yield enhanced discrimination and learning capabil-
ity. The milder phenotype upon GluR-B depletion could be
attributed to reduced AMPAR densities at synapses [40,41]
and therefore probably to a lesser extent of Ca®" influx. This is
further supported by kainate-induced Co*" uptake in acute
brain slices, revealing considerably higher Co®" uptake via
C32+—permeable AMPARSs in hippocampal pyramidal neurons
of mice expressing GluR-B(Q), than those lacking GluR-B
(DRS, RS, and PHS, unpublished data).

Normally, GluR-B-containing AMPARs are prominently
localized at the dendrodendritic synapse between mitral and
granule cells in the olfactory bulb [64,65]. As Ca®" influx
through glutamate receptors is thought to contribute to
lateral and recurrent inhibition ([38] see also [39]), the
absence of GluR-B, or the presence of GluR-B(Q) in the
olfactory bulb, is likely to result in increased inhibition
between the principal neurons in this structure. Notably, the
improved olfactory discrimination capabilities were apparent
even upon relatively small reductions in GluR-B levels. It will
be interesting to see if GluR-B""* mice also exhibit enhanced
odor discrimination, which is indeed likely given that low
levels of GluR-B(Q), and hence a small increase in Ca*'-
permeable AMPARs, arise from the attenuated GluR-B"
allele [60], and, moreover, that GluR-B levels are decreased in
these mice due to the single copy of the GluR-B" allele.

In virtually all models of the olfactory bulb, lateral (and, in
fewer models, also recurrent) inhibition plays a dominant
role, either in establishing spatiotemporal dynamics [32,66-
69], or in directly enhancing contrast and therefore simplify-
ing discrimination and learning of similar odorants
[24,28,29,36]. Increased inhibition will thus in general
improve discriminability, consistent with the behavioral
improvements observed with GluR-B(Q) expression, the
GluR-B knockout, and the “rescue” mice. A direct test of
this link would require the quantitative measurement of
inhibition in the intact preparation, a task that might be
feasible with further improved in vivo electrophysiological
techniques, such as targeted recordings [70,71] or simulta-
neous pre- and postsynaptic intracellular measurements.

Olfactory Memory Is Reduced in GIuR-B Knockout Mice
and Improved by GIuR-B Expression in Piriform Cortex and
Hippocampus

To assess olfactory memory of GluR mice, after six
days the mice were probed with unrewarded odor presenta-
tions that interleaved a simple discrimination task. Prolonged
behavioral tasks such as the assessment of long-term olfactory
memory were not performed with the seizure-prone GluR-
BACSTE mice. Memory in GluR-B*"™ mice, however, was
dramatically impaired. This cannot be attributed to a general,
unspecific deficit because, simultaneous to the memory trials,
the normal, rewarded discrimination task was performed
even better than by controls. Reduced olfactory memory can
also not be simply attributed to increased extinction, as no
significant trial-group interactions were observed and also,
when restricted to the first unrewarded memory trials, a
significant impairment was observed (Figure S3A). Addition-
ally, investigating relearning of the first discrimination task
revealed a significant correlation with the memory perform-
ance, showing a “memory” deficit under extinction-free
conditions (Figure S3B). Finally, in other memory-related
tasks, such as a hippocampus-dependent spatial reference
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memory task (Figure S2), mice with GluR-B depletion were
not impaired after task acquisition. We therefore conclude
that forebrain-specific ablation of GluR-B results in a specific
loss of long-term olfactory memory but, at the same time, in
enhanced odor discrimination and learning capabilities.

To dissect the discrimination, learning, and memory
phenotypes, and ultimately identify potential cellular corre-
lates, we made use of the variegated Cre expression of Tg“**
mice. Therefore, residual GluR-B levels were determined from
each mouse that had been tested in the behavioral experi-
ments, and levels were correlated with odor learning,
discrimination, and olfactory memory. The significant direct
correlation between residual GluR-B levels in hippocampus
and cortical areas with olfactory memory suggested hippo-
campal and/or cortical neurons as putative mediators for odor
memorization and/or storage. No measure of discrimination
and learning, on the other hand, correlated with residual
GluR-B levels; even the smallest reduction in GluR-B levels
(about 20%-60%) was sufficient to establish and saturate
enhanced odor discrimination capabilities. Together, this
allows the conclusion that distinct mechanisms mediate
discrimination/learning and memory. This is furthermore
consistent with a prominent role of cortical areas or hippo-
campus in olfactory memory, although GluR-B levels in the
olfactory bulb were also weakly correlated with memory
performance. Transgenic expression of ““"GIuR-B in piriform
cortex and hippocampus indeed rescued memory to an extent
strikingly consistent with the transgenic protein levels
(approximately 10% of wild-type GluR-B), confirming the
reliability of the correlation analysis and the sensitivity of the
behavioral assay.

In general, the hippocampus is thought to be involved in
only those olfactory memory tasks that involve temporal
sequence analysis or require other higher cognitive features
[2,13,72-74]. In particular, extensive lesions to the hippo-
campal formation in rats do not interfere with long-term
olfactory memory in go/mo-go successive olfactory discrim-
ination tasks [72], such as the one described. This leaves
piriform cortex as the most prominent candidate for the
locus of the olfactory memory deficit described, consistent
with the prevalent view of piriform cortex as an associational
memory structure [75] and learning-associated changes in
piriform cortex [7,20-23].

Potential Mechanisms of Specific Olfactory Memory
Impairment

What could be the cellular basis of the long-term memory
deficit brought about by lack of GluR-B-containing AMPARs?
For complete GluR-B knockouts, increased long-term plasti-
city (LTP) was reported in hippocampal field recordings [51].
In addition, in hippocampal and amygdala pathways lacking
GluR-B, an AMPAR-dependent, N-methyl-D-aspartate
(NMDA) receptor-independent form of LTP can be readily
induced [51,52]. Mechanistically, this is likely to be due to
Ca®" influx through GluR-B-less AMPA channels leading to
non-hebbian forms of plasticity. However, hebbian depend-
ence on simultaneous pre- and postsynaptic activity is often a
critical feature for memory storage (reviewed in e.g. [76]);
hence, a non-hebbian form of plasticity should result in
impaired memorization.

Surprisingly, in GluR-B*"® mice no LTP changes could be
observed in field measurements in the hippocampus, nor

November 2005 | Volume 3 | Issue 11 | e354



could NMDA-independent LTP be induced in hippocampal
synapses between Schaffer collaterals and CAl pyramidal
cells in presence of the NMDA antagonist APV (K. Jensen, O.
Hvalby, personal communication). However, in other brain
areas that are potentially important for the processing of
olfactory information, such as piriform cortex or olfactory
bulb, LTP measurements have not yet been performed;
synapses of these pathways may be regulated differently than
hippocampal CA3/CA1 synapses.

Additionally, by changing the Ca®" permeability of
AMPARs, Ca?" signaling via AMPA and colocalized NMDA
channels might be disturbed, thereby impairing memory
formation. Other forms of plasticity [77,78] induced by Ca’™-
permeable AMPARs might play a prevalent role in olfactory
memory. Alternatively, long-term stabilization might involve
GluR-B phosphorylation similar to cerebellar long-term
depression [79] and thus be selectively impaired by GluR-B
depletion. Physiological experiments to assess these hypoth-
eses will ideally make use of even more restricted genetic
modifications with completely undisturbed input structures.
One possibility would be Cre-mediated GluR-B depletion
and GluR-B(Q) expression in piriform cortex as suggested
above.

Correlating Quantitative Behavior and Mosaic Gene
Expression for Dissecting Phenotypes

A critical step in discerning the discrimination and
learning phenotypes from the memory phenotype was the
observation of increased variability in the memory of the
GluR-B knockout animals and, subsequently, the individual
analyses of protein expression levels. We made use of the
epigenetic variability in GluR-B excision that could be
correlated to the variability in memory but showed no
correlation to variability in discrimination.

The analysis of quantitative trait loci (for review, see [80]),
or classically correlating different behavioral phenotypes
within a truly wild-type population [81-84], also attempts to
find common or distinct genetic origins of different
behavioral traits. These attempts undoubtedly contribute
significantly to unraveling the molecular basis of behavior.
Due to subtle and multigenic differences between different
strains of rodents or different individuals in a wild-type
population, however, they suffer from a rather low “signal-to-
noise” ratio. Differences in individual genes are rather small
compared with the vast number of genes involved. As a result,
purely correlating behavioral traits within a wild-type
population usually remains rather descriptive, whereas
quantitative trait loci analysis is capable of revealing multi-
genic basis of behavioral traits but usually lacks the power to
identify the individual genes themselves.

Herein, we described a way to enhance the signal-to-noise
ratio by making use of the mosaic expression often associated
with transgenic approaches: combining the advantages of
“classical” genetic manipulation—namely, that the target of
the manipulation is well defined—with the possibility to
analyze variability, might also in future provide novel ways to
define molecular and cellular correlates of complex behav-
ioral traits.

In this study, we combined genetically induced manipu-
lation of the AMPAR composition with quantitative behav-
ioral and molecular analyses. We could thus provide evidence
for opposing roles of specific GluR-B manipulation and
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increased Ca®" influx via AMPARs in olfactory discrimina-
tion/learning, and memory, potentially in the olfactory bulb
and piriform cortex, respectively. To achieve this, we made
use of the epigenetic variability in the extent of GluR-B
ablation, which correlated with the variability in odor
memory, but not in discrimination and learning; this finding
was subsequently confirmed in GluR-B rescue mice with
piriform cortex-specific transgenic expression of GluR-B.
Extending these principles of combining quantitative behav-
ioral analyses with minimal and dosed genetic interference,
together with further physiological analyses, will ultimately
pinpoint the neural circuitries underlying related, but
distinct, behavioral traits in olfactory and other systems.

Materials and Methods

Mouse lines. The R26R line [85] was employed as Cre indicator.
GIuR-B**“*™® mice were of mixed C57BlI6 and NMRI genetic
background and generated from Tgcre" (“Camkcre4” in [59]) and
GluR-B™" [60] mice. GIluR-B™ mice carry a wild-type GluR-B allele
and a gene-targeted GluR-B allele in which the intron 11 sequence
critical for Q/R site editing is replaced by a TK-neo gene flanked by
loxP sites (“floxed”). GluR-B*"* mice [86] carry gene-targeted GluR-B
alleles in which exon 11 is floxed. GluR-BA™5 mice were of C57Bl/6
genetic background and generated from Tg“*’ and GluR-B>"* mice.
Tg™"™ mice were generated as described for Tg™¥' %™ mice (see
Materials and Methods in [58]), and represent another founder line
obtained from the same pronucleus injection, with more widespread
forebrain expression. For exogeneous expression of ““"GIluR-B, the
mouse line Tg®™" was generated: an Asel fragment of plasmid
pnlacZ/°"PGluR-B was injected into the pronucleus of oocytes
obtained from DBA1/C57Bl/6 F1 hybrids. Positive founders were
backcrossed into C57BI/6 for further analysis. Plasmid pnlacz/©™™
GluR-B was constructed from pnlacZ/“""GluR-A [87] by replacing
GluR-A ¢DNA with the rat cDNA for GluR-B. Transgenic ““"GluR-B
protein levels were measured in hippocampus of g™ mice also
carrying a transgene for forebrain-specific homogeneous tTA
expression [88]. )

Experimental groups. Mice heterozygous for Tg“*’ and hetero-
zygous for the TK-neo cassette in the GluR-B allele (GluR—BAb(‘SJ'B) or
homozygous for the floxed GluR-B (GluR-B*™®) were used in the
experiments. The “rescue” mice (GIluR-B***“°) were positive for Tg””,
homozygous for the floxed GluR-B gene, and positive for the tet-
sensitive responder transgene 7g9“N! and for the itTA expressing
activator transgene Tg@NI2-tTA,

Control groups. Littermate controls were used in all experiments.
GluR-B™" mice were used as controls in the task described in Figure
1. GluR-B™** and GIuR-B**"*"* (both negative for 7g“"*’) mice were
used as controls in experiments described in Figures 2, 4, and 6. For
the GluR-B"“" experiments (Figure 6), controls positive for either
T C‘Wz’ftm or Tz in a GIuR-B#2/* and GluR-B”*¥?** (both negative
for Tg”**) background were used.

Genotyping. Mice were selected by PCR of mouse-tail DNA with
specific primers as described below. Indicated are the sequences and
the approximate length of the amplified DNA fragments. ”g("ﬂ:
rspCrel (5'-ACCAGGTTCGTTCACTCATGG-3") and rspCre2 (5'-
AGGCTAAGTGCCTTCTCTACAC-3"), 200 basepairs (bp).

GluR-B": MH60 (5'-CACTCACAGCAATGAAGCAGGAC-3'),
MH53a (5'-GAATGTTGATCATGTGTTTCCCTG-3'), and MHI117
(5"-GTTCGAATTCGCCAATGACAAGACG-3'), wild-type: 500 bp
and mutant: 400 bp.

GuR-B*: VM12 (5'-GCGTAAGCCTGTGA AATACCTG-3') and
VMI10 (5'-GTTGTCTAACAAGTTGTTGACC-3'), wild-type: 250 bp
and mutant: 350 bp.

Tg%N: VM4 (5'-CTCCCAGACAACCATTACCTGTCC-3') and
GluR-B882BST (5'-CGAAGTATACTTAATTGTCGCTGTGTG-3'),
600 bp.

Tg(‘ll)\”z'if744: htTAl (5'-AGAGCAAAGTCATCAACTCTG-3") and
htTA2 (5'-GTGAGAGCCAGACTCACATTTCA-3"), 1,000 bp.

Southern blot analysis. Genomic DNA from mouse-tail/liver was
digested with restriction enzyme BglIl (NEB), and the Southern blot
was done with a 320-bp probe (“integ”) obtained by PCR detecting
the aCaMKII promoter.

Histochemistry. Histochemistry was performed as described
previously [89], with the following exceptions: Coronal 70- to 100-
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um vibratome slices were used for immunohistochemistry with GluR-
B (1:60, polyclonal; Chemicon, Temecula, California, United States),
GFP (1:8,000, polyclonal; MobiTech, Gottingen, Germany), and Cre
(1:8,000, polyclonal; BAbCO, Berkeley, California, United States)
primary antibodies, and FITC-coupled (1:200; Dianova, Hamburg,
Germany) and peroxidase-coupled (1:600; Vector, Burlingame,
California, United States) secondary goat anti-rabbit antibodies.

The main olfactory epithelium was obtained via cryostat section-
ing, and immunohistochemistry was performed (primary antibody
Cre, 1:5,000, polyclonal; BAbCO). X-gal staining was performed as
described [89].

Immunoblot analysis. Mouse brains were removed, and the
hippocampus, olfactory bulb, and remaining forebrain areas were
isolated. Total protein was prepared, and immunoblots were
performed as described [87]. Antibodies used were against GluR-B
(1:800, monoclonal; Chemicon), B-actin (1:40,000, monoclonal; Sigma,
St. Louis, Missouri, United States) as an internal standard, and
secondary goat anti-rabbit and goat anti-mouse antibodies (Vector,
1:15,000). Immunoreactivity was detected with ECLplus (Amersham,
Little Chalfont, United Kingdom), and immunoblots were scanned
and quantitatively analyzed with Image].

Behavioral analysis: Subjects. All mice were four to six weeks old at
the beginning of the experiments. Subjects were maintained on a 12-
h light-dark cycle in isolated cages in a temperature and humidity-
controlled animal facility. All behavioral training was conducted
during daytime. During the training period, animals were kept on
free food but on a water-restriction schedule designed to keep them
at > 85% of their free food body weight. Continuous water
restriction was never longer than 12 h. All animal care and
procedures were in accordance with the animal ethics guidelines of
the Max-Planck Society.

Apparatus. All olfactory discrimination experiments were per-
formed using three modified eight- channel olfactometers ([61],
Knosys, Bethesda, Maryland, United States of America) operated by
custom-written software in Igor (Wave Metrics, Lake Oswego,
Oregon, United States of America) on Pentium I, II, and III PCs
running Microsoft Windows 98. Great care was taken to counter-
balance groups between setups. In brief, animals were presented with
odor from one out of eight possible odor channels and rewarded with
a 2- to 4-pl drop of water in a combined odor/reward port (Figure 1B),
ensuring tight association of the water-reward with a presented
odorant. Head insertion into the port was monitored by an IR beam
and photodiode (Figure 1B). Odors used were n-amyl acetate, ethyl
butyrate, pelargonic acid, valeric acid, and binary mixtures of cineol
and eugenol. If not otherwise noted, odors were diluted to 1% in
mineral oil (Fluka Chemie, Steinheim, Germany) and further diluted
by airflow to a final concentration of approximately 0.15%. All
dilutions in the text refer to the dilution in mineral oil. All chemicals
were obtained from Fluka Chemie.

Task habituation training. Beginning 1-3 d after the start of the
water restriction schedule, animals were trained using standard
operant-conditioning procedures [3]. In a first pretraining step, each
lick at the water delivery tube was rewarded. After 20 licks, a second
stage was entered in which head insertion initiated a 2-s “odor”
presentation during which a lick was rewarded. The “odorant” used
in the pretraining was the carrier medium mineral oil. All animals
learned this task within one day (2-3 sessions 30 min each).

Structure of an individual trial. The mouse initiates each trial by
breaking a light barrier at the opening of the sampling port (see also
[3]). This opens one of eight odor valves, and a diversion valve that
diverts all air flow away from the animal for typically 500 ms. After
the release of the diversion valve, the odor is accessible to the animal
for 2,000 ms. If it continuously licks at the lick port during this time
(once in at least three out of four 500-ms bins), it can receive a 2- to 4-
ul water reward after the end of the 2,000-ms period. If the animal
does not continuously lick, or if the presented odor was a designated
nonrewarded odor, neither a reward is given nor any sort of
punishment, to minimize stress for the animal. Trials are counted
as correct if the animal licks continuously upon presentation of a
rewarded odor or does not lick continuously with a nonrewarded
odor. A second trial cannot be initiated unless an intertrial interval of
at least 5 s has passed. This interval is sufficiently long so that animals
typically retract quickly after the end of the trial. Odors are
presented in a pseudo-randomized scheme (no more than two
successive presentations of the same odor, equal numbers within
each 20-trial block). No intrinsic preference toward any of the odors
was observed but controlled for by counterbalancing.

A total of 100-300 trials were performed each day, separated into
30- to 40-min stretches to ensure maximal motivation despite the mild
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water restriction scheme. Additionally, motivation was controlled by
monitoring intertrial intervals and the response frequency [3].

Measurement of performance. The simplest measure of perform-
ance is the fraction of trials in which the animal responds correctly—
that is, responds with licking to the presentation of the S+ odor and
does not lick with presentation of the S— odor.

It was shown previously, however, that the detailed sampling
pattern is a more sensitive measure of discrimination performance
[3]. To avoid long (> 3-week) training periods, we chose not to
measure discrimination times [3] but to analyze the average sampling
behavior in total. Upon presentation of a rewarded odor, the animal
usually continuously breaks the beam, whereas upon presentation of
an unrewarded odor the head is quickly retracted. The difference in
response to the rewarded and unrewarded odor is approximately
sigmoidal (Figures 1D, 1E, and 2D) and yields a sensitive measure of
the discrimination performance. From this difference or from a
sigmoidal fit to the difference (Figure 1E), several measures of
discrimination can be determined: the average difference, peak, or
maximum, time of half maximum, and slope of the fitted sigmoid.
Whereas for small trial numbers (< 200) the slope often is not well
constrained, any of the other parameters yielded essentially the same
results. The discrimination index plotted in Figures 1F, 2C, 4D, and
6C refers to the fitted maximum, generally ranging from zero to one,
one indicating the best discrimination. Identical results were
obtained with other measures of discrimination, such as the average
sampling difference.

Structure of training. After habituation, mice were trained to
discriminate 1% amylacetate from 1% ethylbutyrate for 500 trials.
During the last 100 trials, the S+ odor was rewarded in only 50% of
the cases to increase the resistance to extinction of the acquired
memory. These trials were excluded for the statistical analysis of the
learning curves. Inclusion did not alter the result of the ANOVA;
however, linear fitting of the learning curve was not appropriate
anymore as partial saturation of learning performance had already
occurred. Subsequently, animals were trained for 500 trials on the
“difficult” discrimination task [3] between the binary mixtures 0.6%
eugenol/0.4% cineol and 0.4% eugenol/0.6% cineol. To allow
comparison, the last 100 trials were altered as for the “simple”
discrimination task above. After two days of rest, animals were finally
trained on the “simple” discrimination task between 1% pelargonic
acid and 1% valeric acid for another 600 trials.

In all experiments, counterbalancing between both odors and
setups was ensured within and between genetic groups, or results
were compared with counterbalanced subgroups, which in every case
yielded identical results. During the entire course of the experiment,
the person handling the animals and operating the olfactometers was
blind to the genotype of the mice.

Memory measurement. To assess memory, after 280 trials of
training to discriminate between pelargonic acid and valeric acid,
memory trials were interleaved for 120 trials; that is, within each
block of 20 trials two unrewarded amylacetate and two unrewarded
ethylbutyrate trials were included. Memory scores are given as the
fraction of those unrewarded trials that were responded to
“correctly” (licking response to the odor that was rewarded in the
initial training session [S+], no response to the odor that was not
rewarded initially [S—]). Due to the epileptic phenotype and the
slightly increased mortality [58], GluRBA#“S"B mice were trained only
for the initial period of 400 trials.

Statistics. Learning curves for both correct performance (“per-
centage correct”) and the discrimination performance were analyzed
by repeated measure ANOVA. Additionally, learning curves were
assessed by linearly fitting of trend lines to the data with fixed offsets,
leaving the slope as the only variable. In general, binning was 100
trials per block. To allow for the investigation of group/block
interactions, the repeated measure ANOVA binning was reduced to
20 trials per block. To compare memory performance in the GluR-
B (n = 8) and GluR-B*™ (n = 22) mice, due to the high variability,
a bootstrap approach was employed. Subpopulations of eight animals
were selected from the population of 22 GluR-B** mice, and mean
memory was determined. In only 343 out of 20,000 subpopulations,
mean memory exceeded the mean GluR-B"“ memory of 74.99%,
resulting in a p value of p = 343/20,000 = 0.017.

Supporting Information

Figure S1. Forebrain-Specific Gene Manipulation

(A) Schematic diagrams depicting Cre under the oCaMKII promoter
control [59] and Cre-dependent expression of B-galactosidase (LacZ)
by the R26R indicator mouse [85].
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(B) Coronal forebrain sections (left) and sagittal brainstem/cerebel-
lum sections of mice at P42 positive for Tg““* and R26R Cre-
indicator. Cre expression visualized by enzymatic PB-galactosidase
activity (blue, X-gal, counterstain by eosin) of R26R and by anti-Cre
immunostainings (brown, DAB [diaminobenzadine]) was restricted to
forebrain regions. Scale bars: 1 mm. A, amygdala; Ce, Cerebellum; Cx,
cortex; H, hippocampus; Me, medulla oblongata.

(C) Olfactory bulb sections of the same mouse to visualize Cre
expression by Cre immunoreactivity (left, DAB) and by enzymatic B-
galactosidase activity (right, X-gal, counterstain by eosin) in granule
cells (GC) and mitral cells (MC) as indicated by arrows. Scale bars: 400
um (upper panel), 50 pm (lower panel).

Found at DOI: 10.1371/journal.pbio.0030354.sg001 (3.4 MB TIF).

Figure S2. Performance of GluR-B*"™® (n=10) and Littermate Control
(n = 10) Mice in a Spatial Reference Task on the Elevated Y-Maze

Details of the methodology are described in [90]. * indicates p < 0.05.
Found at DOI: 10.1371/journal.pbio.0030354.sg002 (126 KB TIF).

Figure S3. Memory Deficit Is Not Due to Increased Extinction

(A) Memory performance as a function of time for the experiment
described in Figure 2E (nine GluR-B*™® and nine GluR-B*™ control
animals). Only four unrewarded “memory +” trials are binned for
each data point. Memory of GluR-B*® animals was significantly
reduced (F(; 33 = 17; p < 0.001). Whereas a weak overall time effect
could be observed (F 66 = 3.6; p = 0.03), there was no genotype-time
interaction effect (Fo 46, = 0.67; p = 0.5), indicating that there is no
differential effect of putative extinction on memory performance. *
indicates p-values for a Mann-Whitney U test (* < 0.05, ** < 0.01).
(B) After the memory experiments from Figure 6A, the last set of
animals (eight GluR-BR“™ four GluR-B*'™®, and three controls) was
further trained on AA versus EB for 900 trials one week after the
memory experiment. Subsequently, training continued on AA/EB
mixtures for 1,200 trials. Finally, the animals were retrained on AA
and EB for 100 trials. Relearning performance during the last
retraining task is highly correlated to the original memory perform-
ance (R*=0.46, p = 0.006, n = 15).
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