Table 3.
Bacterial and fungal metabolites against cancer and virus infections
| Metabolite type | Sources | Antiviral and anticancer mechanisms | Key evidence and outcomes | References |
|---|---|---|---|---|
| Bacterial metabolites | ||||
| Short-Chain Fatty Acids (SCFAs) (Examples: Acetate, Propionate, Butyrate) |
Antiviral: Bifidobacterium, Faecalibacterium, Roseburia Anticancer: Bifidobacterium, Faecalibacterium, Roseburia |
Antiviral: Activate GPR43/41 to promote type I IFN and ISG expression in lung epithelial cells, reducing viral load. Regulate inflammation via HDAC inhibition and NLRP3 inflammasome modulation. Enhance IgA secretion and Treg differentiation for mucosal protection. Anticancer: Inhibit HDACs to induce apoptosis and cell cycle arrest (G2/M phase). Enhance CD8 + T-cell function and DC maturation via GPR109A. - Reduce inflammation and tumor angiogenesis. |
Antiviral: Acetate protects against rotavirus (RV) and respiratory syncytial virus (RSV) by GPR43-mediated IFN responses; high-fiber diets increase SCFA production, reducing RV load and inflammation in animal models. Butyrate limits influenza A virus (IAV) replication by priming myeloid cells for antiviral hematopoiesis. Dual effects: Low SCFAs may promote viral persistence in dysbiosis. Anticancer: Butyrate suppresses CRC proliferation via p53 activation; high SCFA levels correlate with better ICI response in melanoma. Dual effects: High systemic SCFAs may limit CTLA-4 blockade efficacy by Treg induction. |
[27, 104, 137, 138] |
| Flavonoid Derivatives (Examples: Desaminotyrosine (DAT)) |
Antiviral: Clostridium orbiscindens Anticancer: ??? |
Antiviral: Enhances type I IFN signaling in macrophages via TLR7/9, protecting against influenza. Modulates distal lung immunity through gut-lung axis. Anticancer: ??? |
Antiviral: DAT from gut commensals reduces influenza severity in mice; antibiotic depletion abolishes protection. Proviral in some contexts (e.g., enhances enteric norovirus stability). Anticancer: ??? |
[27] |
| Bile Acids (Examples: Secondary bile acids (e.g., deoxycholic acid, lithocholic acid)) |
Antiviral: Clostridium, Bacteroides Anticancer: Clostridium scindens |
Antiviral: Activate FXR/TGR5 receptors to regulate IFN responses and inflammasomes. Inhibit viral entry/replication in some viruses (e.g., norovirus). Anticancer: FXR activation inhibits proliferation; UDCA reduces inflammation. Modulate Tregs/Th17 balance to suppress tumor growth. |
Antiviral: Bile acids from microbiota inhibit murine norovirus via FXR signaling; dysbiosis reduces this protection. Dual role: Some promote inflammation aiding viral spread in chronic infections. Anticancer: Secondary bile acids like DCA promote CRC at high levels but UDCA protects via FXR in HCC models. |
[27, 104, 137, 138] |
| Tryptophan Metabolites (Examples: Indole, Indole-3-propionic acid (IPA)) |
Antiviral: Clostridium sporogenes, Bacteroides Anticancer: Lactobacillus reuteri, Clostridium |
Antiviral: Activate AhR to enhance epithelial barrier and IL-22 production, limiting viral invasion. Modulate NLRP6 inflammasome for antiviral innate immunity. Anticancer: Activate AhR to boost IL-22 and barrier integrity, inhibiting tumor invasion. Enhance CD8 + T-cell infiltration and ICI efficacy. |
Antiviral: Indole derivatives protect against influenza by boosting IFN-γ and Treg cells; microbiota depletion impairs this. Anticancer: IPA from Lactobacillus improves PD-1 blockade in CRC models; low IPA linked to poor prognosis. I3A restores mucosal integrity in liver fibrosis models. |
[104, 137, 138] |
| Other Metabolites (Examples: Inosine, TMAO) |
Antiviral: ??? Anticancer: Bifidobacterium pseudolongum |
Antiviral: ??? Anticancer: Inosine via A2A receptor enhances T-cell priming for ICI synergy. TMAO promotes antitumor immunity in breast cancer via IFN-γ. |
Antiviral: ??? Anticancer: Inosine boosts PD-1 efficacy in multiple cancers; Bifidobacterium colonization correlates with better outcomes. |
[27] |
| Fungal metabolites | ||||
| Polysaccharides |
Antiviral: Ganoderma spp: HSV, Influenza Anticancer: ??? |
Antiviral: Immune modulation, viral attachment inhibition Anticancer: ??? |
Antiviral: Hinnuliquinone from fungal sources inhibits HIV-1 protease. Agrocybone from Agrocybe salicacola shows activity via inhibition of viral hemagglutinin. Anticancer: ??? |
[142, 143] |
| Cordycepin |
Antiviral: Cordyceps militaris: SARS-CoV-2 Anticancer: ??? |
Antiviral: Mpro inhibition, poly(A) polymerase blockade Anticancer: ??? |
Antiviral: Sphaeropsidins A and B from phytopathogenic fungi reduce bovine coronavirus yield by deacidifying lysosomes and downregulating aryl hydrocarbon receptor signaling. Anticancer: ??? |
[142, 143] |
| Sphaeropsidins A/B |
Antiviral: Diplodia spp: Bovine coronavirus Anticancer: ??? |
Antiviral: Lysosomal deacidification, AhR downregulation Anticancer: ??? |
Antiviral: ??? Anticancer: ??? |
[142, 143] |
| Hinnuliquinone |
Antiviral: fungal dimeric non-peptide: HIV-1 Anticancer: ??? |
Antiviral: Protease inhibition Anticancer: ??? |
Antiviral: ??? Anticancer: ??? |
|
| Ganoderic acids |
Antiviral: ??? Anticancer: Ganoderma lucidum: Hepatocellular carcinoma |
Antiviral: ??? Anticancer: ROS induction, apoptosis |
Antiviral: ??? Anticancer: ??? |
[142, 143] |
| Pestheic acid |
Antiviral: ??? Anticancer: Pestalotiopsis guepinii: Hepatocellular carcinoma |
Antiviral: ??? Anticancer: Cytostatic, genotoxic |
Antiviral: HSV, Influenza Anticancer: ??? |
[142, 143] |
| Simplicilliumtides |
Antiviral: ??? Anticancer: Simplicillium obclavatum: Gastric adenocarcinoma |
Antiviral: ??? Anticancer: Cytotoxicity (IC50 39–100 µM) |
Antiviral: ??? Anticancer: ??? |
[142, 143] |
| Beauvericins |
Antiviral: ??? Anticancer: Fusarium spp: Leukemia (HL-60, K562) |
Antiviral: ??? Anticancer: Mycotoxic, pathway modulation |
Antiviral: ??? Anticancer: ??? |
[142, 143] |