Skip to main content
. 2025 Oct 29;16:1991. doi: 10.1007/s12672-025-03855-8

Table 3.

Bacterial and fungal metabolites against cancer and virus infections

Metabolite type Sources Antiviral and anticancer mechanisms Key evidence and outcomes References
Bacterial metabolites
Short-Chain Fatty Acids (SCFAs) (Examples: Acetate, Propionate, Butyrate)

Antiviral: Bifidobacterium, Faecalibacterium, Roseburia

Anticancer:

Bifidobacterium, Faecalibacterium, Roseburia

Antiviral:

Activate GPR43/41 to promote type I IFN and ISG expression in lung epithelial cells, reducing viral load.

Regulate inflammation via HDAC inhibition and NLRP3 inflammasome modulation. Enhance IgA secretion and Treg differentiation for mucosal protection.

Anticancer:

Inhibit HDACs to induce apoptosis and cell cycle arrest (G2/M phase).

Enhance CD8 + T-cell function and DC maturation via GPR109A. - Reduce inflammation and tumor angiogenesis.

Antiviral:

Acetate protects against rotavirus (RV) and respiratory syncytial virus (RSV) by GPR43-mediated IFN responses; high-fiber diets increase SCFA production, reducing RV load and inflammation in animal models.

Butyrate limits influenza A virus (IAV) replication by priming myeloid cells for antiviral hematopoiesis. Dual effects: Low SCFAs may promote viral persistence in dysbiosis.

Anticancer:

Butyrate suppresses CRC proliferation via p53 activation; high SCFA levels correlate with better ICI response in melanoma.

Dual effects: High systemic SCFAs may limit CTLA-4 blockade efficacy by Treg induction.

[27, 104, 137, 138]
Flavonoid Derivatives (Examples: Desaminotyrosine (DAT))

Antiviral: Clostridium orbiscindens

Anticancer:

???

Antiviral:

Enhances type I IFN signaling in macrophages via TLR7/9, protecting against influenza.

Modulates distal lung immunity through gut-lung axis.

Anticancer:

???

Antiviral:

DAT from gut commensals reduces influenza severity in mice; antibiotic depletion abolishes protection.

Proviral in some contexts (e.g., enhances enteric norovirus stability).

Anticancer:

???

[27]
Bile Acids (Examples: Secondary bile acids (e.g., deoxycholic acid, lithocholic acid))

Antiviral: Clostridium, Bacteroides

Anticancer:

Clostridium scindens

Antiviral:

Activate FXR/TGR5 receptors to regulate IFN responses and inflammasomes.

Inhibit viral entry/replication in some viruses (e.g., norovirus).

Anticancer:

FXR activation inhibits proliferation; UDCA reduces inflammation.

Modulate Tregs/Th17 balance to suppress tumor growth.

Antiviral:

Bile acids from microbiota inhibit murine norovirus via FXR signaling; dysbiosis reduces this protection.

Dual role: Some promote inflammation aiding viral spread in chronic infections.

Anticancer:

Secondary bile acids like DCA promote CRC at high levels but UDCA protects via FXR in HCC models.

[27, 104, 137, 138]
Tryptophan Metabolites (Examples: Indole, Indole-3-propionic acid (IPA))

Antiviral: Clostridium sporogenes, Bacteroides

Anticancer:

Lactobacillus reuteri, Clostridium

Antiviral:

Activate AhR to enhance epithelial barrier and IL-22 production, limiting viral invasion.

Modulate NLRP6 inflammasome for antiviral innate immunity.

Anticancer:

Activate AhR to boost IL-22 and barrier integrity, inhibiting tumor invasion.

Enhance CD8 + T-cell infiltration and ICI efficacy.

Antiviral:

Indole derivatives protect against influenza by boosting IFN-γ and Treg cells; microbiota depletion impairs this.

Anticancer:

IPA from Lactobacillus improves PD-1 blockade in CRC models; low IPA linked to poor prognosis.

I3A restores mucosal integrity in liver fibrosis models.

[104, 137, 138]
Other Metabolites (Examples: Inosine, TMAO)

Antiviral:

???

Anticancer:

Bifidobacterium pseudolongum

Antiviral:

???

Anticancer:

Inosine via A2A receptor enhances T-cell priming for ICI synergy.

TMAO promotes antitumor immunity in breast cancer via IFN-γ.

Antiviral:

???

Anticancer:

Inosine boosts PD-1 efficacy in multiple cancers; Bifidobacterium colonization correlates with better outcomes.

[27]
Fungal metabolites
Polysaccharides

Antiviral:

Ganoderma spp: HSV, Influenza

Anticancer:

???

Antiviral:

Immune modulation, viral attachment inhibition

Anticancer:

???

Antiviral:

Hinnuliquinone from fungal sources inhibits HIV-1 protease.

Agrocybone from Agrocybe salicacola shows activity via inhibition of viral hemagglutinin.

Anticancer:

???

[142, 143]
Cordycepin

Antiviral:

Cordyceps militaris: SARS-CoV-2

Anticancer:

???

Antiviral:

Mpro inhibition, poly(A) polymerase blockade

Anticancer:

???

Antiviral:

Sphaeropsidins A and B from phytopathogenic fungi reduce bovine coronavirus yield by deacidifying lysosomes and downregulating aryl hydrocarbon receptor signaling.

Anticancer:

???

[142, 143]
Sphaeropsidins A/B

Antiviral:

Diplodia spp: Bovine coronavirus

Anticancer:

???

Antiviral:

Lysosomal deacidification, AhR downregulation

Anticancer:

???

Antiviral:

???

Anticancer:

???

[142, 143]
Hinnuliquinone

Antiviral:

fungal dimeric non-peptide: HIV-1

Anticancer:

???

Antiviral:

Protease inhibition

Anticancer:

???

Antiviral:

???

Anticancer:

???

Ganoderic acids

Antiviral:

???

Anticancer:

Ganoderma lucidum: Hepatocellular carcinoma

Antiviral:

???

Anticancer:

ROS induction, apoptosis

Antiviral:

???

Anticancer:

???

[142, 143]
Pestheic acid

Antiviral:

???

Anticancer:

Pestalotiopsis guepinii: Hepatocellular carcinoma

Antiviral:

???

Anticancer:

Cytostatic, genotoxic

Antiviral:

HSV, Influenza

Anticancer:

???

[142, 143]
Simplicilliumtides

Antiviral:

???

Anticancer:

Simplicillium obclavatum: Gastric adenocarcinoma

Antiviral:

???

Anticancer:

Cytotoxicity (IC50 39–100 µM)

Antiviral:

???

Anticancer:

???

[142, 143]
Beauvericins

Antiviral:

???

Anticancer:

Fusarium spp: Leukemia (HL-60, K562)

Antiviral:

???

Anticancer:

Mycotoxic, pathway modulation

Antiviral:

???

Anticancer:

???

[142, 143]