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While investigating microRNA targets, we have found that human
genes divide into two roughly equal populations, based on the
fraction of A plus T bases in their 3� UTRs. Using the Gene Ontology
database, we find significant functional differences between the
two gene populations, with AT-rich genes implicated in transcrip-
tion and translation processes, and GC-rich genes implicated in
signal transduction and posttranslational protein modification.
Better understanding of the background distribution of nucleo-
tides in 3� UTRs may allow improved prediction of microRNA-
targeted genes in humans. We predict at least 1,200 KnownGene
transcripts to be regulated by microRNAs. The large majority of
these microRNA targets are in the AT-rich 3� UTR population.
However, notwithstanding this preference for AT-rich targets,
microRNA targets are found preferentially to be regulatory genes
themselves, including both transcription factors and posttransla-
tional modifiers. These results suggest that some processes involv-
ing mRNA, of which microRNA regulation may be just one, require
AT-richness of 3� UTRs for functionality. A relationship, not simply
one-to-one, between these 3� UTR populations and large-scale
genomic isochores is described.

Gene Ontology � isochore � nucleotide content

M icroRNAs (miRNAs) are short (�22 bp), single-stranded
RNA molecules that bind specific mRNAs, their targets,

and repress their translation (1, 2). Additionally, evidence
suggests that miRNAs down-regulate message levels as well as
protein levels (3–5). The large majority of both known and
predicted target sites on mRNA molecules are within the 3�
UTRs (6). As a necessary condition for a target site of a
particular miRNA, the mRNA (usually 3� UTR) is believed to
require six continuous nucleotides that form exact Watson–Crick
base pairs to positions two through seven of the miRNA, where
position one is the first base of the 3� end of the miRNA (7, 8).
Applying both experimental and comparative genomics tech-
niques, a few groups have taken advantage of this hexamer
binding condition to predict that a much larger number of human
genes are regulated by miRNAs than at first believed, perhaps as
many as several thousand (3, 6, 9–12). However, even with such
a large number of regulated genes, six-nucleotide binding does
not provide enough specificity for a miRNA to find its intended
target. It does not seem likely that additional specificity is
imparted by partial binding of the miRNA to more than seven
positions of the target site in humans (6, 7), although such a
mechanism may operate in Caenorhabditis elegans and Drosoph-
ila melanogaster (11).

We show that human miRNAs preferentially target a large,
but nevertheless distinct, population of genes whose 3� UTRs
have a high proportion of A and T bases, not just near the
miRNA binding site, but globally. Such genes tend also to be
AT-rich in the third positions of their codons, where redundancy
in the genetic code allows alternative choices of base. Because
nearly half of all human genes are in this AT-rich population, the
immediately implied gain in specificity is not large. However, our
result is supportive of the conjecture that the additional speci-
ficity for miRNA binding lies in a global property of AT-rich
target mRNAs (different from CG-rich mRNAs) not just adja-

cent to the target hexamer; an example would be three-
dimensional conformational properties (13).

As additional evidence that a gene’s AT-richness is not merely
an artifact, but may be a fundamental aspect of its functioning,
we find that some Gene Ontology classification (14) keywords
correlate highly with AT-richness; we will show additional
keyword differences, highly statistically significant, between
genes that are miRNA targets and other AT-rich genes, meaning
that miRNA targets are not just ‘‘typical’’ AT-rich genes, but a
functionally distinctive subset thereof.

We have developed a variant of the method used by Lewis et
al. (6), and similar to Krek et al. (9), but using a digraph
background model, to predict miRNA targeted genes. For a list
of predicted probabilities, by gene, of being a miRNA target,
along with the set of miRNAs most likely to regulate the gene,
see Table 4, which is published as supporting information on the
PNAS web site.

Composition of 3� UTRs
If we examine the nucleotide compositions of the �36,000
human KnownGene 3� UTRs whose length is �100 bases (so that
their composition is statistically determinable to within a rea-
sonable error), an interesting pattern emerges. If we let A, C, G,
and T represent the fraction of each base in a given 3� UTR, the
pattern is best seen by plotting A � T on one axis and C � G on
the other, as is shown in Fig. 1 Top. (Animation, which is
published as supporting information on the PNAS web site,
shows all possible axes.) One sees two populations, only partially
overlapping, distinguished primarily by their mean in A � T and
secondarily by their dispersion in C � G. The ellipses in Fig. 1
are the 2-� contours of a two-component Gaussian mixture
model blindly fitted to the data (that is, with all parameters
unguided by us). (See A. W. Moore’s tutorial at www.auton-
lab.org�tutorials, and also ref. 15 for more on fitting Gaussian
mixture models.) Such a model readily assigns, by the Bayes odds
ratio method, a probability for each gene that it is in the AT-rich,
versus AT-poor, population. For the fits shown in Fig. 1, and with
x � A � T, y � C � G, the resulting assignment algorithm is

z1 � 41.3 exp��23.7 � 99.4x � 104.5x2

� 21.50y � 36.7xy � 164.5y2�

z2 � 118.3 exp��79.1 � 251.2x � 199.7x2

� 40.6y � 88.9xy � 701.y2�

P � z2��z2 � z1� , [1]

yielding the value P as the probability of being in the AT-rich
population. In the work described here, we carry forward this
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probability (‘‘soft decision’’) rather than make a hard assign-
ment. The model places, statistically, �47% of genes in the
AT-rich population, with a mean A � T of �0.63; 53% are in
a CG-rich population with a mean C � G 	 1 � (A � T) of
�0.53. Additional fitted parameters are given in Supporting
Text, which is published as supporting information on the
PNAS web site.

For the analyses, we have used the full set of KnownGene
transcripts. Some of these transcripts refer to different splice
forms of the same gene. Because mRNAs regulate at the
message level, this is appropriate. However, we have also verified
that very similar results are obtained if one uses unique genes
from the RefSeq database.

The distribution of 3� UTRs in A � T for organisms that are
not warm-blooded vertebrates forms a single distinct population
(e.g., C. elegans and D. melanogaster as shown in Fig. 1 Middle).
The two- versus one-population phenomenon is related to the
existence of isochores (16–19), which we discuss below.

Methods
Use of Word Counts in the Gene Ontology (GO) Database. We describe
a recently developed method of identifying statistically signifi-
cant functional differences between two large populations of
genes using the GO database (14). We then apply the method to
AT- versus CG-rich genes and probable miRNA targets versus
all other genes.

One might think it straightforward to distinguish two large
populations of genes by differences in how they are assigned to
GO categories. Unfortunately, the ‘‘raw’’ GO data are very noisy
for this purpose. Because the hierarchical GO categories are
invented and populated with genes by a large community of
individual investigators, they are very inhomogeneous, with
breadth and depth varying widely according to the taste of the
individual contributors. Also, it is not clear how one would assign
a quantitative statistical significance to any differences found.

We found that it is useful to assign each gene the unweighted
list of all biologically meaningful words (and word-like phrases)

Fig. 1. Composition of human 3� UTRs with A � T on the horizontal axis and C � G on the vertical axis. (Top) All human genes are plotted in red. The red ellipses
are 2-� contours of the maximum likelihood Gaussian mixture model with two components. (Middle) Invertebrates, including C. elegans and D. melanogaster,
do not evidence more than a single population when plotted on the same axes. (Bottom) Same as Top (light red) with probable miRNA target genes now plotted
in green (Lewis et al. ‘‘high signal-to-noise’’ set; ref. 6) and blue (probable targets as determined by the methods of this paper). miRNA targets lie in the right
(AT-rich) component with �3:1 selectivity.
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that occur in the descriptive titles of all of the gene’s GO
categories, rather than its GO category list. For example, we
found that it is more meaningful (or at any rate less noisy) to take
note of the term ‘‘nucleic acid’’ in one of a gene’s GO categories,
than it is to note in exactly which GO category that term occurs.
As an additional set of keywords, we also include the HUGO
gene name prefixes (e.g., ‘‘ZNF*,’’ designating zinc finger genes).

If �(i, j) has the value 1 when a word j is associated with a gene
i, and 0 otherwise, and if pi is the probability that gene i belongs
to a population of interest, then we can form the probabilistic
word counts for each word in that population and its complement

nj� � �
i

p i�� i , j� n j� � �
i

�1 � p i��� i , j� . [2]

Similar sums give the variance or expected error of these counts
and the normalizing denominators:

Vj� � �
i

p i
2�� i , j� V j� � �

i

�1 � p i�
2�� i , j� [3]

N� � �
i

pi N� � �
i

�1 � p i� . [4]

Out of these sums we can form a t value (deviation in standard
deviations) and a P value (two-tail probability) expressing the
significance with which the word is associated (or negatively
associated) with the set of interest

tj � t value �
n j��N� � n j��N�

�V j��N�
2 � V j��N2

[5]

Pj � P value � erfc� � t j�� �2� . [6]

The straightforward proof is given in Supporting Text.
Two criteria must be met before a difference between two

gene populations can be considered as substantiated by this
method. First, there must be a set of at least several words for
which the P values, as calculated above, are highly significant
(e.g., 
10�4). This is a necessary Bonferroni constraint because
the number of hypotheses (words) is large. Second, only slightly
less objectively, there must be a thematic coherency among the
highly significant words that makes sense biologically; this is
necessary because one can readily imagine differences that,
although statistically significant, are biologically uninteresting.
For example, it would not be surprising to distinguish large
populations of genes entered into the database by a single
research group, simply by idiosyncrasies in their use of nonspe-
cific words (e.g., ‘‘process,’’ ‘‘activity,’’ and ‘‘function’’).

Digraph Probability Model. Using the assumption that functional
regulatory binding sites are likely to be conserved, we look at
conserved hexamers in 3� UTRs from the multiple alignment of
human, mouse, rat, dog, and chicken (20) similarly to Lewis et al.
(6). The difficult part is determining the background rate of
(noncausal) conserved hexamers. It seems unwise to use a
background model that is the same for every gene, at the very
least because we have identified two different populations of
genes. Instead, to capture the background rate at which any given
hexamer should occur, we use a digraph model that is specific to
each gene; this will account not only for the bias implied by
variable A � T content, but also for the known underrepresen-
tation of CpG in the human genome and any other digraphic
peculiarities of a given gene.

Ideally, one would model just the conserved regions in each
gene. Unfortunately, the total conserved lengths in each gene are
not enough to do this. Therefore, we make the assumption (or
approximation) that conservation probability and digraph prob-

ability are independent, and we construct the digraph model of
each gene from its entire (human) sequence.

Suppose a hexamer is abcdef. Then, to digraph order, we can
write the probability relations

p�abcdef� � p�a�p�b�a�p�c�b�p�d�c�p�e�d�p� f �e�

� p�a�
p�ab�

p�a�

p�bc�

p�b�

p�cd�

p�d�

p�de�

p�d�

p�ef�
p�e�

�
p�ab�p�bc�p�cd�p�de�p�ef�

p�b�p�c�p�d�p�e�
. [7]

Because Eq. 7 involves the product of many terms, it is conve-
nient to work with log-probabilities, so in abbreviated notation
we have

logprob�abcdef� � �
xy�abcdef

logprob�xy� � �
x�bcde

logprob�x� .

[8]

The individual terms p(xy) or logprob(xy) are estimated by
counting the number of times n that the digraph xy occurs in N
opportunities. However, it is not a good idea to use an estimate
like log(n�N) for the log-probability, because this is divergent for
n 	 0, and biased for small n.

Estimating Log-Probabilities with Small Number Counts. We proceed
by writing a Bayesian estimate for the probability of a specific
value of probability, call it ps, given the observed values n and N.
(Note that, following usual statistical practice, commas are
omitted in the following equations.) We include the possibility
of having other information y associated with each gene, for
example, whether it is in an AT-rich or CG-rich population.
Bayes theorem and elementary manipulations give

p�ps�nN� � �
y

p� p s y �nN�

� �
y

p�p s�nNy�p� y �nN�

� �
y

p�nN �p s y�p�p s�y�

� dp s p�nN �p s y�p�p s�y�

p� y�� y p� y�
. [9]

We have replaced p( y�nN) by p( y) because the other information
is assumed not to depend directly on nN. Using a binomial
probability model for nN and a binomial conjugate prior for
p(ps�y), we get

p�ps�nN� � �
y

p s
n�1 � p s�

N�np s
ay�1 � p s�

by

� dp s p s
n�1 � p s�

N�np s
ay�1 � p s�

by

p�y�� y p�y�

� �
y

p s
n�1 � p s�

N�np s
ay�1 � p s�

by

B�n � ay � 1, N � n � by � 1�

p�y�� y p�y�
.

[10]

Here B denotes the beta function. In the case that y varies over
{AT-rich, CG-rich}, p(y) is given by the Gaussian mixture model
previously discussed. Otherwise, one can simplify by assuming a
single population y 	 0 and deleting all references to p(y).

The constants ay and by parameterize the (conjugate) prior on
ps. Although we had initial expectations that the use of good
priors could have a beneficial effect, in practice one obtains as

Robins and Press PNAS � October 25, 2005 � vol. 102 � no. 43 � 15559

G
EN

ET
IC

S



good or better results by taking a noninformative prior like ay 	
by 	 1, or any small constant.

Note that (doing an integral) we have the expectation value

E�ps� � �
0

1

p s p�p s�nN�dp s � �
y

n � ay � 1
N � ay � by � 2

p�y� ,

[11]

and, for the case when log-probabilities are needed,

E�log p s� � �
0

1

log p s p�p s�nN�dp s

� �
y

�H�n � ay� � H�N � ay � by � 1�p�y� ,

[12]

where H(n) is the harmonic sum.

H�n� � �
k	1

n 1
k

� � � �0�n � 1� [13]

Here, the second form is valid when n is not an integer, � is the
Euler–Mascheroni constant, and �0 is the digamma function.
The harmonic sums play the role of logarithms, but now properly
corrected for the possibility of small numbers of counts. Thus,
Eq. 12 is asymptotically �log(n�N) as we might expect, but it
remains regular as n and�or N go to zero. We recommend the
use of Eqs. 11 and 12, as appropriate, whenever small-count data
are being analyzed.

Identifying miRNA Target Genes. The digraph model and the
observed number of conserved sites gives, for each gene, the
expected number of conserved miRNA binding hexamers that
should occur by chance and an error estimate (as described in
Supporting Text). We can compare this to the number actually
observed and thus assign a probability that any excess is causal,
which we take to be the probability that the gene is an actual
miRNA target. Our methodology for this is not conceptually
different from Lewis et al. (6) and is detailed in Supporting Text.
Of interest here, however, is a recently developed method that
we have used to get model-free bounds for the total number of
targeted genes.

Consider two histograms, ‘‘predicted’’ and ‘‘observed,’’ each
giving the number of genes that contain i conserved miRNA
binding sites. Each histogram has the same total number of
genes. The idea is that ‘‘observed’’ is obtained from ‘‘predicted’’
by pushing some genes to the right in the histogram, that is, by
adding (never subtracting) some causal conserved binding sites
to the chance ones in that gene. Note that we are not using the
correspondence gene-by-gene, because it is very noisy, but only
the resulting histograms, which, because the number of genes is
large, have good signal-to-noise.

Can we say anything about how many genes have been pushed
to the right without knowing anything about the distribution of
how far each gene was pushed? Yes. In fact, we can get both
lower and upper bounds.

Let the numbers in bin i be mi for ‘‘predicted’’ and ni for
‘‘observed,’’ where i 	 0, 1, 2, . . . Because the histograms have
the same area (number of genes), the sum of the positive
binwise differences must equal the sum of negative binwise
differences. That is

�
i

max�0, n i � m i� � �
i

max�0, m i � n i� . [14]

The way to move the smallest number of genes is to take them
strictly from bins with mi � ni and move them strictly to bins with
ni � mi. If one does this starting from the right, then one can
always achieve this by moving genes in the positive direction. A
lower bound on the number of target genes is thus

Nmin � �
i

max�0, n i � m i� . [15]

One might at first think that the upper bound is just the number
of extra counts in ‘‘observed,’’ spreading them out maximally
with one new count per gene. This would give

Nmax � �
i

i�n i � m i� �Wrong!� . [16]

The problem is that one can not always do this construction by
moving genes strictly to the right. The actual bound is often
substantially lower and thus more meaningful.

The bound is achieved by working from the right and building
up the desired ni distribution, taking genes from the closest bin
of mi that has any left to donate. That way, one never ‘‘wastes’’
a possible gene move by leaving a gene in place that could
otherwise have been moved. (This is a little bit like Chinese
checkers, but where one wants to avoid jumping one’s marbles.)
An explicit formula for the result is

Nmax � �
i	0

�

min� m i , �
j	i�1

�

n i � m i� . [17]

In fact, it is easy to show that Eq. 16 is obtained if the first
argument in the min is never used, that is, if one always has
enough genes to move at each stage.

To give a sense of how much better Eq. 17 is than Eq. 16: For
a typical histogram in this study, Eq. 17 yields an upper bound
of 3,650 (genes), whereas Eq. 16 would yield a much less
restrictive bound of 8,400. Eq. 15 gives a lower bound of 1,260.
(In Results, we give values that include an additional allowance
for statistical error, as described in Supporting Text.)

Results
GO Database Word Counts. Table 1 lists the 15 top words (or
word-like phrases) that are positively associated with the AT-rich
3� UTR population of genes, whereas Table 2 is the correspond-
ing list that is positively associated with the CG-rich 3� UTR
population (that is, negatively associated with the AT-rich
population). As shown by the listed t and P values, all of the
associations are highly significant. However, note from the
values of nj� and nj� (the probabilistic word counts) that the
word frequencies differ by at most �25% in the two populations.
Virtually all biologically meaningful words occur, to a greater or
lesser extent, in both populations. However, having large num-
bers of genes allows us to extract signal with high significance
even from these modest differences.

It is striking that each of the two lists evidence a clear thematic
coherency, and that the two lists are thematically very different.
Genes with AT-rich 3� UTRs are preferentially associated with
transcription and translation events, especially nucleic acid and
nucleic acid-binding processes (e.g., zinc finger motifs). These
functions are evolutionary old. By contrast, the high GC popu-
lation is associated with functions coupled to sensing and
responding to the external environment. These include signal-
transduction pathways and membrane transport. A unifying
theme of the high-GC population is that its functions tend
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toward posttranslational protein modification and signaling in-
teractions, as opposed to transcriptional regulation.

Although the evidence is only indirect, the strong association
of AT-rich 3� UTRs with genes that are implicated in RNA and
mRNA processing supports the same conjecture as for miRNA
target specificity. That is, some aspect of AT-richness in the 3�
UTR is necessary for at least some processes involving mRNA,
of which regulation by miRNAs may be just one.

miRNA Target Genes. By the method of equations 15 and 17, we
find among the �36,000 known genes a solid lower bound of
1,200 miRNA targets, and an upper bound of �5,000. However,
this method does not identify which specific genes are likely to
be targets. To accomplish this, and also to get a most probable
total count of targets (between the two bounds), we use a
Poisson odds-ratio method, as described in Supporting Text.
However, this most probable value is model-dependent and
rather less well determined. We get �1,400 � 150, but we
consider this value as likely subject to uncontrolled systematic
errors. Lewis et al. (6) have identified a set of ‘‘high signal-to-
noise’’ likely miRNA target genes. Although there is significant
overlap, our set of most probable target genes is different in
detail from this set. We believe that our use of a digraphic
probability model, specific to each gene examined, ought to give
superior predictions. However, a final verdict on this claim must
await experimental evidence. (For our predictions by gene, see
Table 5, which is published as supporting information on the
PNAS web site.)

Fig. 1 Bottom is identical to Fig. 1 Top, with the Lewis et al.
(6) likely targets now plotted in green. The association with the
AT-rich population, in both A � T mean and C � G dispersion,
is immediately apparent, and easy to substantiate statistically
(P 
 10�10). Genes that we predict to be miRNA targets with
�50% probability are plotted in blue in Fig. 1. Using these
probabilities, we can substantiate that �75% of miRNA target
genes are in the AT-rich population, an �3:1 selectivity. How-
ever, there is no trend toward fewer targets in the CG-rich
population as miRNA target probability goes to 1, indicating that
the �25% minority of miRNA targets that are CG-rich are, in
fact, genuine, although atypical.

We also find weak, but statistically significant, associations
between the population of genes with AT-rich 3� UTRs and
those genes identified by the microarray analysis of Lim et al. (3)
as being targets of two specific miRNAs, miR-1 (n 	 82, P 

0.001) and miR-124 (n 	 152, P 
0.01).

We can perform the same GO keyword analysis as before on
the population of (probabilistically known) miRNA targets.

Knowing that miRNA targets lie strongly preferentially in the
AT-rich population, we might expect such an analysis to yield an
associated word list much like Table 1. The actual result, shown
in Table 3, is unexpected and much more interesting. Comparing
the two tables, it is striking that the multiple words that
associated AT-rich genes with nucleic acid processes are com-
pletely absent from the miRNA preferential word list. Instead,
the list is dominated by the word ‘‘regulation’’ and its closely
related concepts. This finding provides statistically strong evi-
dence that miRNA targets are themselves preferentially (al-
though by no means exclusively) regulators.

What is also surprising, in view of the results of Tables 1 and 2,
is that miRNA target preferences include both transcription factors
and also posttranslational regulators, the latter evidenced in words
such as ‘‘protein modification,’’ ‘‘phosphorylation,’’ ‘‘kinase,’’ ‘‘sig-
naling cascade,’’ and so forth. The dominant theme of regulation is
also seen in a set of words including and related to ‘‘development,’’
including ‘‘morphogenesis’’ and ‘‘neurogenesis.’’

In other words, within the population of genes with AT-rich
3� UTRs that miRNAs preferentially target, miRNAs tend to
regulate other regulatory genes, even when the regulated pro-

Table 1. GO words most associated with AT-rich 3� UTR genes

Word or phrase t value P value nj� nj�

Nucleic acid 8.75 0.000000 2,297 1,789
Nucleus 7.11 0.000000 1,722 1,365
Transition metal 6.80 0.000000 1,095 824
Zinc 6.65 0.000000 998 746
Bound 5.99 0.000000 2,398 2,042
ZNF* 5.87 0.000000 119 49
RNA 5.53 0.000000 613 448
Organelle 5.30 0.000000 2,489 2,169
Cellular component 4.63 0.000004 3,244 2,927
Binding 4.45 0.000009 4,405 4,054
mRNA 4.25 0.000022 102 53
Metal 4.11 0.000039 1,631 1,429
Cycle 4.07 0.000046 394 296
DNA 3.99 0.000067 1,324 1,149
Nucleobase 3.71 0.000205 1,468 1,297

Table 2. GO words most associated with CG-rich 3� UTR genes

Word or phrase t value P value nj� nj�

Receptor �5.43 0.000000 852 1,085
Signal transduction �5.16 0.000000 968 1,204
Signaling cascade �5.13 0.000000 349 494
Transducer �4.88 0.000001 880 1,093
Communication �4.80 0.000002 1,172 1,413
Signal �4.56 0.000005 902 1,102
Transmembrane �4.37 0.000012 381 506
Filament �4.31 0.000016 86 150
Cell �3.83 0.000129 1,840 2,081
Channel �3.77 0.000159 151 222
Immune �3.62 0.000291 217 296
Pore �3.39 0.000708 162 227
Defense �3.30 0.000961 237 311
Structural �3.22 0.001281 241 314
Development �3.21 0.001300 518 625

Table 3. GO words most associated with probable miRNA
target genes

Word or phrase t value P value nj� nj�

Transcription regulator 5.86 0.000000 134 1,114
Transcription factor 5.86 0.000000 129 1,068
Regulation 5.56 0.000000 315 3,215
Regulation of transcription 5.36 0.000000 205 1,970
Development 4.69 0.000003 140 1,326
Protein modification 4.65 0.000003 192 1,897
Serine/threonine kinase 4.42 0.000010 68 521
Nucleus 4.42 0.000010 319 3,477
Phosphorylation 4.30 0.000017 90 766
Signal transduction 4.09 0.000043 231 2,449
Promoter 4.07 0.000048 46 347
Phosphate 4.04 0.000052 133 1,286
Signaling cascade 4.02 0.000058 99 908
Morphogenesis 3.96 0.000075 66 567
Kinase 3.88 0.000106 133 1,311
Phosphotransferase 3.88 0.000106 105 977
DNA 3.82 0.000132 251 2,752
Cell 3.71 0.000155 30 205
Intracellular 3.72 0.000202 557 6,573
Neurogenesis 3.71 0.000205 30 205
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cesses are posttranslational and uncharacteristic of the AT-rich
population generally. In particular, keywords like ‘‘signaling
cascade’’ and ‘‘signal transduction’’ are among those strongly
positively associated with miRNA targets, even though they are
strongly negatively associated with AT-rich genes generally.

Because a smaller fraction (�25%) of miRNA targets are
genes with GC-rich, rather than AT-rich, 3� UTRs, one may
wonder whether those miRNA targets associated with posttrans-
lational processes are associated with that fraction. The answer
is no: keyword analysis of miRNA targets that are AT-rich (the
majority), versus those that are CG-rich (the minority), show no
significant differences. (By way of example, ‘‘protein modifica-
tion’’ happens paradoxically to be the top word associated with
AT-rich miRNA targets, whereas three of the five top words
associated with CG-rich miRNA targets refer to transcription.)

Discussion
So-called isochores (16–19, 21) are long, megabase-scale regions
of CG-richness that are found in the genomes of warm-blooded
vertebrates, including human, and absent in lower organisms.
Isochores span intron, exon, and intergene regions indiscrimi-
nately, as distinct from the comparatively tiny (�1,000 base)
scale of the individual 3� UTRs discussed here. Although we do
not provide a detailed discussion of the relationship between
these very different scaled phenomena, we need here to remark
on the obvious question as to whether our two populations of
genes (characterized only by their 3� UTRs) are located in
CG-rich isochores, versus the complementary AT-rich isochores,
in the genome. In other words, have we simply rediscovered a
previously known phenomenon?

Interestingly, the answer is both yes and no. Analysis shows
that, with a high degree of selectivity, AT-rich isochores contain

only genes with AT-rich 3� UTRs. However, CG-rich isochores
contain an apparently random mixture of genes with CG- and
AT-rich 3� UTRs. Although this result sheds no new light, per se,
on the (evolutionarily recent) origin of isochores, its relevance to
our work is that it does add support to the idea that an AT-rich
3� UTR is necessary for some functionally distinct subset of
genes. Such genes would naturally resist the evolutionary trend
that formed the CG-isochores (whatever it may have been; ref.
21), resulting in the mixture of genes seen in CG-rich isochores.

Given the observation that there are genes with AT-rich 3�
UTRs in both AT- and CG-rich isochores, it is also natural to ask
whether one or the other set is dominantly responsible for the
strong functional signal demonstrated in Table 1. The answer is
that virtually all of the functional signal comes from those
AT-rich 3� UTR genes in CG-rich isochores. If AT-richness of
the 3� UTR is indeed functionally necessary for some genes, the
most likely candidates for experimental verification should be
sought in CG-rich isochores.

More speculatively, the evidence seems to indicate that, with
respect to evolutionary pressure toward CG-richness, AT isoch-
ores were ‘‘never challenged,’’ as opposed to ‘‘challenged and
resisted.’’ That is, AT isochores appear to include populations of
AT-rich genes with functionalities that, had they been in a CG
isochore, could have become CG-rich without difficulty (Table
2). Conversely, CG isochores include a functionally distinct
population of AT-rich genes (Table 1) that seem to have strongly
resisted such conversion.
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