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ABSTRACT

The growth in popularity of RNA expression micro-
arrays has been accompanied by concerns about
the reliability of the data especially when comparing
between different platforms. Here, we present an
evaluation of the reproducibility of microarray results
using two platforms, Affymetrix GeneChips and
lllumina BeadArrays. The study design is based on
a dilution series of two human tissues (blood and
placenta), tested in duplicate on each platform. The
results of a comparison between the platforms indi-
cate very high agreement, particularly for genes
which are predicted to be differentially expressed
between the two tissues. Agreement was strongly
correlated with the level of expression of a gene.
Concordance was also improved when probes on
the two platforms could be identified as being likely
to target the same set of transcripts of a given gene.
These results shed light on the causes or failures of
agreement across microarray platforms. The set of
probes we found to be most highly reproducible
can be used by others to help increase confidence
in analyses of other data sets using these platforms.

INTRODUCTION

The success of gene expression microarray technology has
led to the production of multiple array platforms differing
in the kind of probes used (short-oligonucleotide, long-
oligonucleotide, cDNA, etc.), the hybridization paradigm
(competitive versus non-competitive), the labeling method
and the production method (in situ polymerization, spotting,

microbeads, etc.). The diversity of microarray platforms has
made it challenging to compare data sets generated in different
laboratories, hindering multi-institutional collaborations and
reducing the usefulness of existing experimental data. When
comparing gene expression studies, we not only have to
consider the interesting biological factors but a plethora of
technical factors including diverse sample handling, target
preparation and data processing methods, as well as micro-
array platform choice. In order for the benefits of comparisons
between two laboratories to be realized, it is crucial to under-
stand the benefits and limitations of each platform used as well
as the cross-platform comparability.

At this writing, most published gene expression studies
use Affymetrix GeneChips, spotted cDNA arrays or spotted
long-oligonucleotide arrays. However, new approaches
are still evolving, such as the recently introduced long-
oligonucleotides bead-based array by Illumina, Inc. (1).
Arrays produced by Affymetrix are fabricated by in sifu syn-
thesis of 25mer oligonucleotides (2) while the Illumina pro-
cess involves using standard oligonucleotide synthesis
methods as is used for spotted long-oligonucleotides arrays.
However, on Illumina arrays the oligonucleotides are attached
to microbeads which are then put onto microarrays using a
random self-assembly mechanism (1). In addition to the differ-
ence in oligonucleotide physical attachment, the two platforms
are also very different in probe selection and design procedure.
Affymetrix uses multiple probes for each gene along with
one-base mismatch probes intended as controls for non-
specific hybridization. In contrast, the randomly generated
[llumina arrays yield on the order of 30 copies of the same
oligonucleotide on the array, which provide an internal tech-
nical replication that Affymetrix lacks. In addition, the Affy-
metrix arrays are constructed in a specific layout, with each
probe synthesized at a predefined location (2), while individual
[llumina arrays must undergo a ‘decoding’ step in which the
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Figure 1. Schematic representation of the experimental design. See Materials
and Methods for details. The key features of the design are the use of a single
pair of RNA samples for all analyses, mixed together in varying proportions and
analyzed in technical replicates on each platform. Unlike the Affymetrix plat-
form, each Illumina BeadArray slide contains multiple arrays, allowing us to
analyze a complete dilution series on one slide. Note that the BeadArray slides
actually contain eight arrays per slide, but we only used six for the data
described here.

locations of each probe on the array are determined using a
molecular address (1). A final difference between the plat-
forms is that in the current packaging, multiple Illumina arrays
are placed on the same physical substrate, meaning that
hybridization and other steps are performed in a parallel
manner, while Affymetrix arrays are processed separately.

This paper details results from an experiment comparing
Affymetrix HG-U133 Plus 2.0 microarrays with the Illumina
HumanRef-8 BeadArrays. We used a dilution design, where
two different RNA samples are mixed at known proportions,
and the same RNA is analyzed in duplicate on each platform
(see Figure 1). The advantage of this design is that it is very
simple to prepare and the number of differentially expressed
genes is large, allowing testing of many of the probes on each
array. However, in contrast to spike-in studies, the identities of
the genes expected to show differential expression are not
definitely known ahead of time.

Comparisons between long and short oligonucleotide arrays
have been carried out in the past for other array types (3-7).
To our knowledge, this study is the first to examine the com-
parison between in situ synthesized oligonucleotide arrays
with bead-based oligonucleotide arrays. Our results show that
these two completely different microarray technologies yield,
on the whole, very comparable results. This is especially true
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once the factors of gene expression level and probe placement
on the genome are considered.

MATERIALS AND METHODS
Samples, hybridization and quality control

Following informed consent (approved by Cincinnati
Children’s Hospital Medical Center Internal Review Board),
~50 ml whole blood was collected from 30 adult, apparently
healthy, volunteers using Acid Citrate Dextrose as an anti-
coagulant. Samples were processed immediately following
blood draw. Cells were isolated by Ficoll gradient centrifuga-
tion and total RNA was isolated using Trizol (Invitrogen Life
Technologies, Carlsbad, CA) according to the manufacturer’s
protocol, aliquoted and stored at —80°C until use. Whole
placenta was collected and immediately frozen in liquid nitro-
gen. RNA was extracted using TRI reagent, purified using
RNeasy columns (Qiagen, Valencia, CA), aliquoted and stored
at —80°C until use. RNA mixtures (100:0, 95:5, 75:25, 50:50,
25:75, 0:100; PBMC: placenta) were prepared in single ali-
quots. Portions of each aliquot were split in half for Affymetrix
analysis as technical replicates. Another portion was diluted
1:10 to account for differences in RNA concentration used
by each platform and then split into two samples for Illumina
analysis as technical replicates. These four final samples were
sent to the respective facilities for further processing as
described below. Quality was assessed for each sample
using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA) at their respective core facilities according
to internal quality control measures.

For Affymetrix microarray analysis, samples were run in
the CCHMC Affymetrix core facility. Biotinylated cRNA was
synthesized from total RNA (Enzo, Farmingdale, NY). Fol-
lowing processing according to the Affymetrix GeneChip
Expression Analysis Technical Manual (Affymetrix, Santa
Clara, CA), labeled cRNA was quantitated by hybridization
to Affymetrix U133plus2.0 GeneChips.

For Illumina microarray analysis, samples were prepared
and analyzed in Illumina laboratories by Illumina personnel.
Biotinylated cRNA was prepared using the Illumina RNA
Amplification Kit (Ambion, Inc., Austin, TX) according to
the manufacturer’s directions starting with ~100 ng total
RNA. Samples were purified using the RNeasy kit (Qiagen,
Valencia, CA). Hybridization to the Sentrix HumanRef-8
Expression BeadChip (Illumina, Inc., San Diego, CA), wash-
ing and scanning were performed according to the Illumina
BeadStation 500x manual (revision C). Two BeadChips were
used, each one containing eight arrays, so that each dilution
series of six samples was run on an individual BeadChip.

Data extraction and normalization

Affymetrix data were extracted, normalized and summarized
with the RMA method from Bioconductor’s ‘affy’ package
(8,9), using the default settings. The Illumina data were extra-
cted using software provided by the manufacturer. Pilot stud-
ies indicated that background subtraction had a negative
impact on the Illumina data quality, so we used data that
had not been background subtracted. The Illumina data
were then normalized using the ‘normalize.quantiles’ function
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from the ‘affy’ package. Other normalization methods yielded
similar results (data not shown).

Probe annotation

Manufacturer’s annotations for the Affymetrix platform
were downloaded from the NetAffx web site (https://www.
affymetrix.com/analysis/netaffx/) on March 15, 2005. Illu-
mina also provided a table of annotations. We supplemented
these annotations with our own sequence analysis based on
comparing sequences with the Human genome sequence
(assembly hgl7, July 2004). For Affymetrix, we merged and
joined the individual probe sequences to form a ‘pseudo-
target’ sequence; we found that aligning these to the genome
was much more effective and efficient than attempting to align
individual probes or using the Affymetrix ‘target’ sequences
(the merging procedure is depicted in a Supplementary
Figure). For Illumina the input sequences were the 50 bp
oligonucleotide sequences provided by the manufacturer.
All sequences used are provided as Supplementary Data or
are available from the manufacturers.

Each sequence was compared with the genome sequence
using BLAT (10) with minimum score set to 20 and an initial
minimum identity set to 0.5 (all other parameters were left to
the default setting). Each hit was then given an overall score
equal to (m — g)/s, where m is the number of matches, g is the
number of gaps in the alignment, and s is the size of the query
sequences. This score differs slightly from the default in the
GoldenPath genome browser in that the gap penalty is lower,
but we found it gave us higher sensitivity when aligning
shorter sequences and permits good gapped alignments of
the collapsed Affymetrix sequences. A threshold of 0.9 applied
to this score yielded multiple BLAT hits for many of the
probes. These hits were associated with genes as follows.
The location of each hit was compared with the ‘refGene’
and ‘knownGene’ tables in the hgl7 Golden Path database
(11). A BLAT hit overlapping or falling within the anno-
tated limits of a gene (on the correct strand) was retained
as an initial hit. Each BLAT hit was further scored based
on two criteria. First, the fraction of bases which overlapped
with annotated exons or mRNAs (as represented in the hg17
database tables knownGene, refGene and all_mrna). Second,
we computed the distance of the 3’ end of the BLAT hit from
the 3’ end of the annotated transcript (using the center of
the BLAT hit made no difference in the conclusions; see
Supplementary Data).

The final ‘best’ match for a probe was the transcript closest
to the probe’s 3’ end and with the largest non-intronic overlap.

This means that probes falling entirely within introns were
given similarity scores of zero, and when there were two
alternative 3’ ends for a gene, the one with the 3’ end nearest
to the probe was selected as the targeted gene. In cases where
there were two or more equivalent ‘best’ hits to different sites
in the genome (i.e. a tie), one was arbitrarily chosen (247 cases
for Affymetrix, 231 cases for Illumina). These often repre-
sented alignments to sequences duplicated in the assembly
(e.g. parts of chromosome 1 and chromosome 1_random;
~10% of cases). Other ties often involved closely related
genes, probably reflecting duplications (e.g. CGB and CGBY).

To analyze the relationship of cross-platform agreement
with probe location, the distance between two probes was
measured as the distance between the centers of their align-
ments on the genome.

Investigations where we varied these parameters or meth-
odologies did not change our main conclusions, though the
results for individual probes are naturally affected by the exact
criteria used. The full sets of annotations we derived are avail-
able as Supplementary Data, along with additional details of
the results of the BLAT analysis. A summary of the annota-
tions used in this study is given in Table 1.

Clustering

For clustering only, the data matrices for each platform were
adjusted so the probe expression vectors had a mean of zero
and variance one. A combined data matrix was constructed
such that each probe for a gene on one platform was used to
form new combined expression vectors with each probe for the
same gene on the other platform. This means that if a gene
appeared twice on each platform, a total of four new expres-
sion vectors were constructed. This final matrix had 36 024
rows (approximately a factor of two over what would have
been obtained had we averaged the probes for each gene).
The rows of this matrix were subjected to hierarchical clus-
tering using XCluster (http://genetics.stanford.edu/~sherlock/
cluster.html), with average linkage and Euclidean distance.
The results were visualized with matrix2png (12).

Statistical analysis

Analyses were carried out in the R statistical language or using
custom Java programs. The dilution profile was described as
a simple factor in a linear model used to fit each gene. The
correlation of each gene expression profile was used as a
statistic for further analyses; P-values for the deviations
from a correlation of zero were computed using standard nor-
mal assumptions. To establish statistical thresholds via false

Table 1. Summary statistics for array designs studied, comparing two annotation methods

Known genes assayed Unassigned probes” Probes/gene (average)

Array Probes or probe sets Probes for ‘known’ genes”
Illumina (Mfg)* 24114 17 143
Illumina (BLAT) 19924
Affymetrix (Mfg) 54675 34089
Affymetrix (BLAT) 33922

14420 6971 1.19
16847 2978° 1.18
16610 20586 2.05
18417 20600° 1.84

“Mfg, Manufacturer’s annotations; BLAT, our own annotations computed using BLAT alignments to the genomic sequence.
Known genes’ are genes identified in the GoldenPath ‘refGene’ or ‘knownGene’ tables, including transcript information from the ‘all_mrna’ table to determine

exon overlaps. We designate all other potential transcripts ‘unassigned probes’.

“Includes probes not yielding BLAT results.
“Includes 14 334 probes where no gene name is listed by the manufacturer.


https://www
http://genetics.stanford.edu/~sherlock/

discovery rate (FDR) analysis (13), we used the ‘qvalue’
R package with default settings (14). To compare profiles
across platforms, the Pearson correlation was used on non-
log transformed data (the RMA data were transformed back
from log,), though the Spearman rank correlation yielded very
similar results (Supplementary Data). P-values for the test of
the null hypothesis that a Pearson correlation was equal to zero
were tested using the ‘cor.test’ function from R. As an alter-
native to presenting scatter plots of comparisons (which are
available as Supplementary Data), we have presented results
as stratified histograms. The thresholds for stratification were
determined by inspection or from the statistical testing, and
alternative reasonable thresholds do not change our findings.
All R scripts and data files used in the analyses are available
from the authors.

Tissue-specific genes

A search was performed of UniGene’s EST database using the
digital differential display tool to identify genes with differ-
ential expression (Fisher Exact Test, P < 0.05). A comparison
was made between placenta genes (library IDs 13037, 13021,
10404, 10403, 10425, 10424 and 10405) and blood, lympho-
cytes and lymph nodes (library IDs 13050, 1317, 7038, 7037
and 10312).

RESULTS
Initial characterization

To analyze the ability of each platform to yield reproducible
and accurate results, we used a dilution design, outlined in
Figure 1 and detailed in Materials and Methods. An initial
exploratory overview of the properties of the data is shown in
Figure 2, which shows the results of hierarchical clustering of
all genes that could be matched across platforms. It is apparent
that there are many probes which show strong dilution effects,
being overexpressed either in blood or in placenta, on both
platforms. Furthermore, there are large numbers of probes
which clearly agree across platforms. However, it is also pos-
sible to identify clusters of probes which seem to show dilution
effects on one platform but not on the other (Figure 2, light
bars). The rest of the results we describe first considers the
dilution effect we observe within each platform and then the
comparison across the platforms.

To quantify differential expression between placenta and
blood, we measured the linear correlation of the designed
dilution pattern to the expression pattern of each probe on
each microarray (see Materials and Methods). We expected
that large numbers of genes would show an effect of mixing of
the RNA samples on their relative expression levels, while
other genes expressed at equal levels (or not expressed) would
not show such a pattern. Figure 3A and B shows the distri-
butions of correlations for the two platforms. Both show pro-
nounced peaks near correlations of —1 and 1, apparently
reflecting probes whose targets are differentially expressed
between the two samples. A ‘hump’ of points around a cor-
relation of zero reflects probes which do not show a dilution
effect. The Affymetrix and Illumina platforms yielded 35 and
33% of probes with very high dilution effects (absolute value
correlations of greater than 0.8), respectively. In terms of tests
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Figure 2. Hierarchical clustering results of all 36024 comparable pairs of
probes. The dilution step is shown as a graph at the top of the figure
(Blood/Placenta). Black bars at the side indicate large clusters of genes that
appear to show clear dilution effects in both platforms. Gray bars indicate
examples of clusters that appear to show dilution effects in one platform but
not consistently in the other. Lighter colors indicate higher relative levels of
expression on an arbitrary scale. Note that in this figure, if a gene occurs
multiple times on one platform, it is shown in all possible valid comparisons
with matching probes on the other platform.

of the null hypothesis that RNA concentration was not affected
by dilution, 56% of Affymetrix and 50% of Illumina probes
show significant effects [at an FDR < 0.05; the threshold
correlations at this FDR are 0.53 (Affymetrix) and 0.55
(IMumina)].

We hypothesized that analyses focused on well-
characterized genes would tend to yield better results. Other
probes might target predicted genes that turn out to be false
positives or pose extra challenges in probe design. Indeed,
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Figure 3. Distributions of correlations for the Illumina HumanRef-8 BeadArrays (A) and the Affymetrix HG-U133 Plus 2 arrays (B). Correlations near —1 and 1
reflect probes whose targets are differentially expressed between the two samples. Correlations near zero reflect probes which do not show a dilution effect.
The dilution effect is more pronounced for probes targeted at ‘known’ genes. This effect is stronger for Illumina (C) than for Affymetrix (D), though the Illumina
platform has fewer probes which cannot be assigned to known genes (Table 1). For complete data see the Supplementary Data.

as shown in Figure 3C and D, probes targeted at known
(annotated in RefSeq or in the ‘Known Gene’ table of the
Golden Path database) genes have a stronger tendency to
show a clear dilution effect. This is apparent by the lessening
of the central hump in the known genes and its accentuation in
the other probes. The effect appears to hold on both platforms,
though the Affymetrix platform has many more probes which
target other sites in the genome not containing annotated genes
(‘unassigned’ probes, Table 1). Despite the overall difference
from the ‘known genes’, many of these probe sets do yield
strong correlations with the dilution profile, as evidenced by
the smaller peaks near 1 and —1, suggesting that they have
biologically meaningful targets (Figure 3C and D).

The genes that show no or weak dilution effects might
sometimes correspond to genes that are not well measured.
This is because noise will have a stronger influence on their
measurement, making detecting a dilution effect difficult.
Genes that are not expressed at all in either tissue studied
will (by definition) be purely noise. Indeed, as shown in
Figure 4, expression level is strongly associated with the mea-
surement of a dilution effect on both platforms: many of the
probes not showing dilution effects are expressed at lower
levels, compared with the probes showing strong effects.

As might be expected, there is an interaction of this effect
with the known/unassigned gene distinction, and probes with-
out known gene assignments tend to show lower expression
levels (Supplementary Data).

Comparisons between the platforms

The key question we wanted to answer was whether these
two platforms, measuring the same samples, yield the
same results. We therefore identified probes which map to
common genes between the platforms. Based on our own
sequence analysis (Table 1 and Materials and Methods), we
identified 28 383 Affymetrix probe sets and 17711 Illumina
probes that could be matched to a common gene (83 and
89% of probes mapped to genes), covering 14929 known
genes altogether. If there was more than one probe(set) for a
given gene, when doing comparisons we considered all pos-
sible combinations (to avoid repetition, we will use the term
‘probe’ even when we mean Affymetrix ‘probe set’, unless
stated explicitly). Thus, if both platforms had two probes for a
single gene, there were four comparative values generated.
Note that many probes are not specific for a single transcript
of a gene. Probes that could not be matched across platforms
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HG-U133 Plus 2.0 arrays (B). On both platforms, the probes not showing dilution effects tend to express at low levels, whereas highly expressed probes show

strong dilution effects. For complete data see the Supplementary Data.
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Figure 5. Cross-platform agreement for all ‘known’ genes (A), stratified by differential expression (B) and for placenta/blood specific genes (C). For complete data

see the Supplementary Data.

represent probes which did not map to a ‘known’ gene, or to
genes represented on only one platform.

A simple hypothesis is that the actual profile of gene expres-
sion should agree across platforms for all probes which can be
matched to a common gene. As shown in Figure SA, there is a
remarkable level of agreement for many probes by this mea-
sure (Pearson correlation was used for this analysis; similar
results are obtained with the rank correlation, see Supplemen-
tary Data). However, a large population of genes shows poor
correlations (peak near zero in Figure 5A). At an FDR of 0.05,
37% of the cross-platform comparisons result in rejection of
the null hypothesis of no correlation (the threshold correlation
to achieve significance is ~0.56).

A more refined analysis takes into account the fact that
genes that are not differentially expressed between the two
tissues would present noisy expression profiles that would not

be predicted to be reproducible across platforms. Figure 5B
suggests that a large fraction of the ‘failures’ of the platforms
to agree can be accounted for by probes which show a weak or
no dilution effect. Indeed, if we first filter the data to remove
comparisons between probes, of which at least one do not
show a significant dilution effect (FDR 0.05, removing 48%
of the comparisons), rejection of 88% null hypotheses yields
an FDR of <0.05 (i.e. 88% of the remaining comparisons are
significant). Using a more stringent Bonferroni correction on
this filtered data, 23.7% of the comparisons are considered
significant at an alpha of 0.05, compared with 8.4% for the
unfiltered data. This enrichment shows that when the dilution
effect is considered, the agreement between the platforms rises
substantially.

A difficulty with the analysis shown in Figure 5B and
described above is that it relies on the arrays themselves to
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identify genes that might show a differential expression
effect: an independent ‘gold standard’ would be desirable.
While we are not aware of any large validated set of placenta-
or blood-specific genes, from public databases we were able to
obtain a set of 174 genes that are predicted to be placenta or
blood specific (see Materials and Methods), and should there-
fore show a strong dilution effect. As shown in Figure 5C,
these genes show excellent agreement across the platforms,
with many fewer disagreements than the data considered at
large (Figure 5SA). Very similar results overall were obtained
when using annotations provided by the manufacturers
(Supplementary Data).

As mentioned, the level of expression would be an impor-
tant factor in making a good comparison: if a gene is simply
not present in the samples, the measurements will be just
noise, and we do not expect noise to be similar across plat-
forms (by definition). More generally, we expect higher exp-
ression levels to be associated with less noisy measurements,
and therefore would yield better agreement across platforms.
That this is indeed the case is shown in Figure 6A; the rank
correlation of expression level to measure cross-platform
agreement is 0.37-0.43 (depending on whether the Illumina
or Affymetrix expression levels, or their means, are used for
evaluation). Genes that are expressed at low levels are not as
likely to be reproducible across platforms. This effect is main-
tained even after filtering out genes that show no or weak
dilution effects as described above (comparisons were retained
if at least one probe showed a significant dilution effect at an
FDR of 0.05; Supplementary Data). This is because many of
the weakly expressed probes do show (apparent) dilution
effects.

We further hypothesized that for two probes to agree across
platforms, they should be measuring the same biological entity
(transcript or set of transcripts). While our annotation system
tries quite hard to identify which transcript or set of transcripts
a probe is likely to hybridize to, thereby identifying cases
where we believe the platforms are measuring the same
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RNA, the resolution of this approach is limited. Specifically,
probes that are expected to hybridize to different parts of the
same transcript might yield different signals. This could be
due to differential detection of degraded messages, or limita-
tions in annotations. As an example of the latter situation, if
one probe targets a previously unannotated transcript while
another does not, our system might measure them as assaying
the same transcripts while there is in fact a difference.

To test this idea in a simple way, we plotted the relationship
between cross-platform agreement and cross-platform probe
spacing. As shown in Figure 6B, when Affymetrix and Illu-
mina probes align to very close or overlapping locations in the
genome, they have a tendency to agree more, whereas probes
that hybridize to distinct locations, even along the same gene,
tend to disagree more. Compared with the effect of expression
level, the effect is small though still highly statistically sig-
nificant, with a rank correlation of 0.18. However, this con-
clusion is complicated by the fact that expression level is also
affected by distance from the 3’ end (rank correlation —0.15),
so the measure of probe location difference is not independent
of the level of expression. If we analyze only probes that have
higher expression levels (e.g. Affymetrix expression level
log, > 7), the effect of location on agreement is enhanced
slightly (rank correlation 0.25), indicating that the effect can-
not be completely attributed to associated differences in
expression level. As for the effect of expression level, the
effect remains after removing probes which failed the dilution
effect filter.

Within-platform reproducibility

Some additional insight into the reproducibility problem
comes from looking at reproducibility within each platform.
On the Affymetrix platform especially, there are often multi-
ple probes per gene (Table 1). It is expected that in many
cases this redundancy is intended to address transcript divers-
ity within a gene, but these data points provide a situation
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Figure 6. Cross-platform agreement measured by the rank correlation of expression levels as a function of expression level (log,) (A) and distance between probes

in base pairs (B). For complete data see the Supplementary Data.



where we can assess impact on reproducibility of the same
parameters discussed so far (expression level and probe place-
ment) while disregarding platform differences. We hypothe-
sized that reproducibility within each platform (for those genes
with multiple probes predicted to target them) would show the
same trends as reproducibility across platforms. We first found
that within-platform ‘reproducibility’ was substantially lower
on the [llumina array than for Affymetrix or between-platform
reproducibility (9.5% of 4312 correlations over 0.8 on Illu-
mina; 27.2% of 30 384 comparisons for Affymetrix, compared
with 24% between platforms; see Supplementary Data for
details). We interpret this as indicating that the Affymetrix
array contains more probe sets that are ‘truly redundant’, at
least as reflected in our tissue samples. We also confirmed that
the expression level and probe location appear to play a similar
role in reproducibility within platforms as they do between
platforms, i.e. two probes targeting the same gene within a
platform were more likely to yield concordant results if they
exhibited stronger expression and were targeting nearby sites
in the genome (see Supplementary Data for details).

‘Unexplained’ cases of disagreement

There are probes which, based on dilution effect, location and
expression level criteria, would be predicted to yield repro-
ducible results, but do not. This suggests that other factors are
influencing the results, and further examination of these cases
is warranted. To examine this in more detail, we sought to
identify provisionally ‘unexplained’ cases of disagreement by
filtering the full set of results, using partly arbitrary criteria.
We removed genes for which the 3’ ends of the probes were
located further apart than 100 bases (similar in size to the
average human exon) between the two platforms. We then
filtered out probes which were expressed at low levels on
both platforms (medians below the 25th percentile). Finally,
we removed pairs which showed good agreement across plat-
forms (as these need no further explaining), setting a maxi-
mum correlation threshold of 0.5 (close to that which
maintained an FDR of 0.05), and also required that at least
one of the probes show a strong dilution effect (again using the
threshold of 0.5, but as a lower limit). This leaves a set of
940 pairs of probes for further study, or ~3% of all compar-
isons. We do not suggest this set represents all the disagree-
ments, just a subset of harder-to-explain disagreements.

By far the most striking disagreements among the selected
probes are those exhibiting strong negative correlations across
platforms, i.e. both platforms indicate a strong dilution effect
for the gene, but in the opposite direction. There are 41 pairs of
probes in this set which show cross-platform rank correlations
of <—0.5. These probes appear wholly unremarkable based on
the parameters we have focused on (expression level and loca-
tion), compared with the 899 other probe pairs (the complete
list of the 940 probe pairs are provided as Supplementary
Data). Most disagreements are more subtle. If one focuses on
probe pairs that show cross-platform correlations of <0.2, the
number of selected probes is reduced by about a factor of two
(that is to say, quite a few of the ‘unexplained disagreements’
involve marginal cases with correlations between 0.2 and 0.5).

To attempt to further explain the 940 cases, we first
hypothesized that despite having similar genomic locations
of the centers of the targeted sequences, there might be larger
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differences in the sequences assayed on the two platforms.
We considered this plausible because Affymetrix probe sets
assay more sequence and often include probes spread fairly
widely (a median of 481 genomic bases from the 5" end of the
5’-most probe to the 3’ end of the 3’-most probe) compared
with the Illumina platform, which use a single 50 bp probe that
almost always maps to 50 contiguous bases in our analysis.
This could lead to different populations of transcripts being
assayed in some cases. However, there was no significant
enrichment in alignments shorter or longer than the median
in the set of 940 pairs (P > 0.05, Fisher’s exact test), suggest-
ing that there is no overall pattern of alignment statistics
that can explain the relatively anomalous behavior of these
940 pairs.

Next, we counted the number of different transcripts pre-
dicted to be hybridized by each probe (assuming for the
moment that all RNAs are equally likely to be detected,
regardless of 3’ location of the probe). If these values are
different on the two platforms, then agreement may be
lower if the predicted transcripts are indeed present in the
tissues we studied. However, there was no overall difference
between Affymetrix and Illumina in the number of transcripts
assayed among the set of 940 (P ~ 0.3, paired ¢-test).

A potential remaining source of ‘disagreement’ could be
differential cross-hybridization. Similar to transcript specifi-
city, cross-hybridization is difficult to analyze computation-
ally because it could involve platform-specific differences that
might not be reflected in the probe sequences alone (e.g. syn-
thesis efficiency on the Affymetrix platform, or the effect of
the probe identification sequences and linker for Illumina
probes), and other unknowns such as the impact of highly
expressed but weakly cross-hybridizing transcripts. There
are ~250 probes on each platform that have very high poten-
tial for cross-hybridization based on our sequence analysis (see
Materials and Methods). If anything these are slightly under-
represented among the 940 strongest disagreements (Fisher’s
exact test, P = 0.036, [llumina; 0.07, Affymetrix). We also
note that on the Affymetrix platform, where the manufacturer
‘flags’ probe sets with the potential for various types of non-
specificity, there is no difference in the proportion of flagged
probe sets among the 940 compared with the rest of the probes
(38 versus 37%).

We performed a similar analysis for the within-platform
analyses. Within-platform reproducibility showed many fewer
hard-to-explain failures of reproducibility. For the Illumina
platform, application of the same filter that yielded 940 pairs
of probes (2.6% of the total) for the cross-platform compari-
son yielded 10 pairs of probes (0.2%), while for Affymetrix
it yielded 103 pairs (0.3%). Interestingly, 3 of these Illumina
probes and 37 of the Affymetrix probes appear in the list of
940 probes involved in poor ‘unexplained’ cross-platform
comparisons. This enrichment is highly significant (P =
0.0039 and P < 10~ " for Illumina and Affymetrix, respec-
tively). Our interpretation of this finding is that these probes
are somehow inherently ‘poorly behaved’ and we predict that
they will not yield biologically useful results.

DISCUSSION

Our main conclusion from this study is that the Affymetrix and
Illumina platforms yield highly comparable data, especially
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for genes predicted to be differentially expressed. Beyond this
conclusion, two more specific findings we wish to highlight in
the discussion are that expression level plays a major role in
determining reproducibility across platforms, and that the pre-
cise location of the probe on the genome affects the measure-
ments to a substantial degree, such that two probes which do
not map to the same location cannot be assumed to be mea-
suring the same thing. When these two factors are taken into
account, the agreement of the results across platforms is very
high, though still not perfect.

Contrary to our general findings, a number of groups have
found that concordance of results across expression analysis
platforms is low (4,5,15—18). The reason for the discordance
between such findings and ours, as well as that of a number of
other groups (19-26) is not always clear, especially as in some
cases the data are not publicly available. At least one group
(24) has reported higher reproducibility than in a previous
analysis of the same data (15), suggesting that data treatment
and choice of comparison metric plays a role. One group
reported high reproducibility of Affymetrix and long oligonu-
cleotide arrays (which share similarities to the BeadArrays in
the type of sequence used), but not of cDNA arrays (21),
suggesting that there could be real differences in the repro-
ducibility of different platforms, and that arrays based on long
clones may have particular problems with specificity (16,17).

Our study reinforces the idea that a failure to consider
annotations and expression levels sufficiently carefully can
help explain some of the observed differences. For example,
we note that Tan et al. (who compared three platforms) (4)
relied on GenBank or UniGene identifiers to match genes
across platforms. We believe this approach may be unsuitable
for high-sensitivity comparisons across platforms, because of
the coarseness of resolution of UniGene or GenBank IDs
compared with the actual probes used on the arrays. The cita-
tion of the particular accession number only indicates the
source of the probe sequence and does not imply that that
GenBank sequence is specific for a particular gene. In extreme
cases, the GenBank accession number referenced by the manu-
facturer includes multiple genes. Thus, even when two manu-
facturers cite the same GenBank accession number, there is
no guarantee that the same transcripts are being assayed. For
this reason, we have discarded identifier cross-references as a
primary means of matching probes across platforms. Tan et al.
(4) also do not document any consideration of the impact of
expression level on agreement. In contrast, Park er al. (5)
reported both an expression level and a probe specificity
effect. It will be of interest to re-examine other cases of poor
agreement across platforms in light of such considerations.

In our study, we identified thousands of probes on both
platforms which show extremely good confirmation of results.
In contrast to studies where a few results are checked by
quantitative PCR, we have built-in cross-validation of a
huge fraction of the results of the experiment. This set of
cross-validated probes, though identified using conservative
criteria on only one set of samples, could be considered as a
starting point for identifying probes that perform well on these
platforms. It is likely that many other probes on both platforms
also perform well, but could not be evaluated due to insuffi-
cient signals in the tissues we studied. The complete list of
probes on both platforms, with their agreement statistics across
platforms, is included as Supplementary Data.

Our recommendation for groups which plan to compare or
combine data across platforms (whether array-based or using
another technology), or even across laboratories using the
same platform, is to take the following issues into considera-
tion. First, not surprisingly, genes which give weak signals
are hard to confirm. Therefore the failure of one platform to
confirm a result on a rare transcript should be interpreted
cautiously. Second, careful bioinformatics analysis of each
platform is necessary to maximize the precision of the com-
parison. At the first level of analysis, the manufacturer’s anno-
tations should be evaluated for comparability or replaced with
a customized analysis that uses a common approach, to avoid
conflicts due to differences in annotation methodology. At a
second level of analysis, one can consider a finer level of
stratification of probes based on their relative locations.

Some questions still remain. There are a still fairly numer-
ous probes which, based on dilution effect, location and
expression level criteria, would be predicted to yield repro-
ducible results, but do not. As mentioned, we could not fully
address the possibility that cross-hybridization may play an
important role (16). Resolving this will likely require addi-
tional data. We also cannot eliminate the possibility that
refinements of transcript assignment would resolve some
cases of ‘disagreement’. Our assignment of probes to genes
was based on limited databases of mRNAs and known genes,
and transcripts not represented in these databases would not be
reflected in our analysis. This could lead to incorrectly pre-
dicting the same hybridization pattern for two probes located
at nearby locations in the genome. A likely explanation for
some of the effects we see have to do with differences in the
technologies, such as differences in RNA labeling protocols,
or the linker and ‘bar code’ sequences on the Illumina arrays
compared with the direct attachment of the Affymetrix
sequences to the substrate.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online and at http://
microarray.cu-genome.org/platformCompare.
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