Transformation of local Ca^{2+} spikes to global Ca^{2+} transients: the combinatorial roles of multiple Ca^{2+} releasing messengers

Jose M.Cancela 1 , Fabien Van Coppenolle 2 , Antony Galione³, Alexei V.Tepikin⁴ and Ole H.Petersen⁴

Laboratoire de Neurobiologie Cellulaire et Moléculaire, Unité CNRS UPR 9040, 1 Avenue de la terrasse, 91 198 Gif-sur-Yvette, ²Laboratoire de Physiologie Cellulaire, INSERM EPI 9938, Université de Lille I, France, ³Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT and ⁴MRC Secretory Control Research Group, The Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, UK

¹Corresponding author e-mail: jose.cancela@nbcm.cnrs-gif.fr

In pancreatic acinar cells, low, threshold concentrations of acetylcholine (ACh) or cholecystokinin (CCK) induce repetitive local cytosolic Ca^{2+} spikes in the apical pole, while higher concentrations elicit global signals. We have investigated the process that transforms local Ca²⁺ spikes to global Ca²⁺ transients, focusing on the interactions of multiple intracellular messengers. ACh-elicited local Ca^{2+} spikes were transformed into a global sustained Ca^{2+} response by cyclic ADP-ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP), whereas inositol 1,4,5-trisphosphate (IP3) had a much weaker effect. In contrast, the response elicited by a low CCK concentration was strongly potentiated by IP_3 , whereas cADPR and NAADP had little effect. Experiments with messenger mixtures revealed a local interaction between IP_3 and NAADP and a stronger global potentiating interaction between cADPR and NAADP. NAADP strongly amplified the local Ca²⁺ release evoked by a cADPR/IP₃ mixture eliciting a vigorous global Ca^{2+} response. Different combinations of Ca^{2+} releasing messengers can shape the spatio-temporal patterns of cytosolic $Ca²⁺$ signals. NAADP and cADPR are emerging as key messengers in the globalization of $Ca²⁺$ signals.

Keywords: cyclic ADP-ribose/inositol trisphosphate/local and global calcium/NAADP/pancreatic acinar cells

Introduction

 $Ca²⁺$ is one of the most versatile and important intracellular messengers, as it is involved in the control of many different cellular functions (Petersen et al., 1994; Berridge et al., 1998). Hormones and neurotransmitters can generate Ca^{2+} signals, such as local and global cytosolic Ca2+ elevations, and these can be transient (spiking) or sustained (Petersen et al., 1994; Thomas et al., 1996; Berridge, 1997; Meldolesi and Pozzan, 1998).

The mechanisms involved in the generation of local $Ca²⁺$ signals have been extensively investigated (Petersen et al., 1994; Parker et al., 1996; Berridge, 1997; Berridge et al., 2000; Jaggar et al., 2000). Local cytosolic Ca^{2+}

signals can be generated by opening $Ca²⁺$ channels located either in the plasma membrane or in the endoplasmic reticulum (ER) membrane (Petersen et al., 1994; Berridge, 1997). Cells possess multiple Ca^{2+} releasing messengers such as inositol trisphosphate (IP_3) , cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) (Berridge, 1997; Guse, 1999; Petersen and Cancela, 1999; Lee, 2000; Cancela, 2001). If the Ca2+ release elicited locally by a particular stimulus is sufficiently small, a highly localized cytosolic Ca^{2+} spike can be generated. This is due to cytoplasmic buffers with low mobility. The mitochondria play a particularly important role with respect both to local Ca^{2+} buffering and local Ca2+ signal-dependent ATP generation (Pozzan et al., 1994, 2000; Rizzuto et al., 1998; Tinel et al., 1999; Rizzuto et al., 2000; Park et al., 2001a).

Several mechanisms have been proposed to explain the transformation of a local Ca^{2+} spike into a global Ca^{2+} transient. A higher concentration of a second messenger could be produced by a higher extracellular agonist concentration (Parker et al., 1996; Berridge, 1997; Ito et al., 1999) and a local Ca²⁺ signal could be propagated as a global Ca^{2+} wave via a Ca^{2+} -induced Ca^{2+} release mechanism (CICR) (Parker et al., 1996; Berridge, 1997). In order to create a fully sustained $Ca²⁺$ signal, activation of Ca2+ entry must occur (Berridge, 1997; Parekh and Penner, 1997).

The pancreatic acinar cell represents an excellent system in which to investigate the mechanism of Ca^{2+} signal globalization. The pattern of receptor-activated cytosolic Ca^{2+} oscillations depends on the receptor type, the agonist concentration and the intracellular buffering of $Ca²⁺$ (Petersen *et al.*, 1991a). The two physiologically most important agonists, acetylcholine (ACh) and cholecystokinin (CCK), can generate both local and global Ca^{2+} signals. At high concentrations, both agonists elicit global $Ca²⁺$ responses, but at low, just suprathreshold concentrations, ACh evokes local repetitive Ca^{2+} spikes, whereas CCK, in addition to such local signals also occasionally induces global and relatively long-lasting Ca^{2+} transients (Petersen *et al.*, 1991a; Thorn *et al.*, 1993).

We have previously investigated the mechanism underlying the generation of local Ca^{2+} spikes in the apical (secretory) pole of the cell. The local cytosolic Ca^{2+} spikes are due to Ca^{2+} release from common oscillator units composed of IP_3 and ryanodine receptors. ACh activation of these common oscillator units is triggered via IP_3 receptors, whereas CCK responses are triggered via a different, but convergent, pathway dependent on NAADP and cADPR receptors (Cancela and Petersen, 1998; Cancela et al., 1998, 1999, 2000; Petersen and Cancela, 1999; Cancela, 2001). However, the mechanisms involved in the generation of global Ca^{2+} transients and global sustained Ca²⁺ elevations remain unclear.

Fig. 1. Globalization of the local ACh response by cADPR and NAADP, but not IP₃. (A) Repetitive spikes of Ca²⁺-sensitive current were evoked by low, just suprathreshold concentrations of ACh. When IP₃ at 15 μ M was included in the intracellular pipette solution, the ACh-evoked response was normal (B) , but when the intracellular pipette solution contained either cADPR (10 μ M) (C) or NAADP (50 nM) (D) ACh elicited larger sustained responses.

In view of the finding that physiological CCK concentrations evoke very little IP_3 production (Matozaki et al., 1990) and the recent report that ACh stimulation may result in both IP_3 and cADPR generation (Fukushi et al., 2001), we have investigated the functional consequences of the interaction of multiple intracellular messengers in the generation of local Ca^{2+} spikes and global Ca^{2+} transients. We have studied the process that transforms local Ca^{2+} spikes to global Ca^{2+} transients by the patch-clamp whole-cell recording technique combined with confocal Ca^{2+} imaging. The local Ca^{2+} spikes evoked by a low concentration of ACh were transformed into a global sustained Ca^{2+} response by cADPR or NAADP, whereas IP_3 had a much weaker effect. In contrast, the CCK response was strongly potentiated by IP_3 , whereas cADPR and NAADP had little effect. In the absence of ACh or CCK stimulation, NAADP alone, like $IP₃$ and cADPR, evoked cytosolic Ca^{2+} spiking confined to the apical pole of the cell. There were small mutually potentiating effects of cADPR and NAADP, or NAADP and IP₃, whereas a cADPR/IP₃ mixture was only very slightly more effective than either IP_3 or cADPR alone. However, NAADP strongly amplified the local Ca^{2+} release evoked by a cADPR/IP₃ mixture, eliciting a sustained global Ca^{2+} response. Our data demonstrate that different combinations of Ca^{2+} releasing messengers can shape the spatio-temporal pattern of Ca^{2+} signals. Although all the three Ca^{2+} releasing messengers tested could initiate local Ca^{2+} spikes, globalization of the signals required interactions between them.

Results

Globalization of the ACh response by cADPR and NAADP, but not IP_3

We have recently reported that CCK potentiates the Ca^{2+} sensitive Cl⁻ current response to low, just suprathreshold concentrations of ACh. This potentiation is dependent on functional cADPR receptors and is blocked by a cADPR antagonist (Cancela et al., 2000). ACh at higher concentrations elicits global Ca^{2+} release, which could be due to increased IP_3 production and/or generation of cADPR (Fukushi et al., 2001). Very high concentrations of IP₃ ($>100 \mu M$) (Petersen *et al.*, 1991b) or cADPR (100 μ M) (Thorn *et al.*, 1994) can elicit sustained cytosolic Ca^{2+} elevations that are global. Here we investigated whether a low cADPR concentration, which alone would elicit local $Ca²⁺$ spikes, could transform a local $Ca²⁺$ signal evoked by ACh into a global Ca^{2+} wave. To do so, we dialysed the cells with an intracellular solution containing $10 \mu M$ cADPR and thereafter stimulated with ACh (Figure 1). When cADPR was present in the intracellular solution, ACh evoked long-lasting Ca^{2+} -sensitive currents (Figure 1C; $n = 8$), which were associated with global Ca²⁺ waves

Fig. 2. Globalization of the CCK response by IP_3 , but not cADPR or NAADP. (A) Repetitive spikes of Ca²⁺-sensitive current were evoked by low, just suprathreshold concentrations of CCK. (B) When IP₃ $(15 \mu M)$ was included in the intracellular pipette solution, the CCKevoked response was strongly potentiated (sustained). When the intracellular pipette solution contained either cADPR (10 μ M) (C) or NAADP (50 nM) (D), CCK evoked normal non-potentiated (spiking) responses.

 $(n = 3; \text{ data not shown})$. In the absence of cADPR, ACh (as expected, see Petersen et al., 1991a; Thorn et al., 1993; Cancela et al., 2000) elicited short-lasting local Ca^{2+} spikes (Figure 1A; $n = 3$).

In addition to cADPR, the ADP-ribosyl cyclase CD38 may form NAADP, and the NAADP receptors have also been shown to be involved in the CCK response (Cancela et al., 2000; Lee, 2000). We therefore investigated whether NAADP could also potentiate the ACh response. In this series of experiments, the cells were perfused internally with 50 nM NAADP. At this concentration, NAADP elicits short-lasting Ca^{2+} spikes (Cancela et al., 2000) (Figure 1D). When 25 nM ACh was applied on top of the NAADP stimulus, a sustained $Ca²⁺$ -sensitive current response was observed, indicative of a global rise in the cytosolic Ca²⁺ concentration (Figure 1D; $n = 12$). In the particular cell giving rise to the trace shown in Figure 1D, the NAADP response was very weak, but the potentiation of the ACh response was remarkably strong. In all 12 cells in which NAADP elicited Ca^{2+} spiking, the subsequent ACh response was markedly potentiated (Figure 1D). Finally, since both the ACh- and CCK-elicited responses depend on functional IP_3 receptors, we decided to investigate whether IP_3 could also potentiate the ACh response. In the four cells tested with 15 μ M IP₃ that elicited repetitive short lasting Ca^{2+} spikes, additional stimulation with 25 nM ACh evoked an increase in the spiking frequency and amplitude (Figure 1B). Comparing the typical records shown in Figure 1, it can be seen that the combinations of ACh and cADPR, as well as ACh and NAADP, produced much stronger responses (Figure 1C and D) than the combination of ACh and IP_3 (Figure 1B). This is remarkable, since IP_3 itself was a stronger stimulus than either cADPR or NAADP.

Globalization of the CCK response by $IP₃$, but not cADPR or NAADP

Since receptors for IP_3 , cADPR and NAADP have all been shown to be involved in the response to CCK (Cancela et al., 2000), we investigated whether addition of one of these messengers could alter the normal Ca^{2+} signal pattern elicited by a physiological CCK concentration. The cells were internally perfused with either control solution or intracellular solutions containing $IP₃$, cADPR or NAADP, and then stimulated by 2.5 or 5 pM CCK (Figure 2). As previously documented, CCK itself elicited a mixture of short-lasting repetitive spikes and much more long-lasting transients (Figure 2A; $n = 11$; Petersen *et al.*, 1991a). When CCK (2.5–5 pM) was added on top of an IP₃ (15μ M) stimulus, a very large and sustained response was observed (Figure 2B; $n = 7$). Clearly, IP₃ had markedly potentiated the CCK response. In the presence of IP_3 , the CCK effect was not, as usual, immediately reversible, indicating that the potentiation by IP_3 was so strong that even during the period when CCK was being washed out, a substantial effect remained. During internal stimulation with cADPR $(10 \mu M)$, low frequency spiking was observed (Figure 2C). When CCK (2.5 or 5 pM) was added to the external solution a fairly normal, nonpotentiated, response was seen (Figure 2C; $n = 9$). Internal stimulation with NAADP (50 nM) also elicited Ca^{2+} spiking with a low frequency (Figure 2D). In this situation, CCK added on top of the internal stimulation again elicited a rather normal, non-potentiated response (Figure 2D; $n =$ 7). These results indicate that NAADP and cADPR, in contrast to IP_3 , are unable to potentiate the response to CCK, although the receptors for all these messengers are involved in the generation of the normal CCK responses (Cancela et al., 2000).

Although low (and most likely physiologically relevant) concentrations of IP_3 , cADPR and NAADP each evoke local, short-lasting Ca^{2+} signals, the data shown in Figures 1 and 2 demonstrate that they can all be involved in global $Ca²⁺$ signal production. To understand how this can be achieved, we further characterized the functional consequences of multiple combinations of low messenger concentrations.

NAADP evokes $Ca²⁺$ spiking localized in the secretory pole

NAADP is the most potent Ca^{2+} releasing messenger found so far (Chini et al., 1995; Lee and Aarhus, 1995; Genazzani and Galione, 1997; Cancela et al., 1999, 2000; Lee, 2000). In pancreatic acinar cells NAADP acts as a trigger, apparently eliciting a very small primary Ca^{2+} release, subsequently recruiting neighbouring $IP₃$ and ryanodine receptors, which gives rise to the cytosolic Ca^{2+} elevation; this is observable with currently available methodology (Cancela et al., 1999, 2000). However, the spatial localization of the Ca^{2+} spikes evoked by NAADP is unknown.

Figure 3 shows the result from an experiment in which the effect of NAADP (50 nM) in the internal pipette solution was assessed both by patch-clamp recording of the Ca^{2+} -sensitive Cl⁻ current and by simultaneous confocal imaging of the Ca^{2+} -sensitive Fluo 4 fluorescence. As previously documented (Cancela et al., 1999, 2000), NAADP elicited repetitive short-lasting Ca^{2+} spikes. As shown in Figure 3, the cytosolic Ca^{2+} rise at the height of the spike was confined to the apical, granulecontaining part of the cell $(n = 7)$. The NAADP-elicited $Ca²⁺$ spikes are thus localized in exactly the same part of the cell as those evoked by IP_3 (Thorn *et al.*, 1993) and cADPR (Thorn et al., 1994).

IP₃ and cADPR evoke localized Ca²⁺ spiking without interaction

Both IP₃ and cADPR elicit local Ca^{2+} spikes in the secretory pole at low concentrations $\left($ <15 μ M), whereas higher concentrations of IP₃ or cADPR (>100 μ M) elicit global Ca^{2+} rises (Petersen *et al.*, 1991b, Petersen *et al.*, 1994; Thorn et al., 1994). We investigated the effects of mixing low concentrations of IP_3 and cADPR. IP_3 (10–15 μ M) or cADPR (10 μ M) evoked repetitive local $Ca²⁺$ spikes in the granular part of the cell (Figure 4A and B; $n = 4$ and 5, respectively). We then perfused the cells internally with a mixture of 10 μ M cADPR and 15 μ M IP₃, which, in all 10 cells investigated, evoked typical repetitive short-lasting Ca^{2+} -sensitive currents corresponding to local Ca^{2+} elevations (Figure 4C). This indicates that there is no major cross-talk between these two messengers.

NAADP has a modest locally potentiating effect on the local Ca^{2+} spiking evoked by IP₃

The next sets of experiments were designed to test whether a mixture of low concentrations of IP_3 and NAADP could generate larger responses than IP_3 or NAADP alone. Figure 5A shows a typical response to stimulation with IP_3 (15 μ M), consisting of repetitive short-lasting spikes (*n* = 9) that were associated with Ca^{2+} elevations confined to the apical granular pole of the cell $(n = 4)$. In five out of six cells, a mixture of NAADP (50 nM) and IP₃ (15 μ M) generated relatively large, repetitive, short-lasting Ca^{2+} sensitive currents (Figure 5B), corresponding to local Ca^{2+} elevations (Figure 5C), whereas in the sixth cell, relatively large spikes on top of a small sustained elevation were observed. The main effect of adding NAADP on top of IP_3 was to increase the amplitude of the local Ca^{2+} spikes.

NAADP globalizes cADPR-elicited local $Ca²⁺$ spiking

Both cADPR and NAADP receptors are involved in the Ca2+ response evoked by the hormone CCK (Cancela and Petersen, 1998; Cancela et al., 1999, 2000). The most striking feature of the response to a physiological CCK

concentration $(2-10 \text{ pM})$ is the mixture of short-lasting local Ca^{2+} spikes and long-lasting global Ca^{2+} transients (Petersen et al., 1991a). However, NAADP (Figure 3) and cADPR (Thorn et al., 1994) evoked mainly localized Ca^{2+} spiking in the granular part of the cell without triggering a long-lasting global Ca^{2+} wave. During internal perfusion with 10 μ M cADPR, all the cells tested displayed shortlasting Ca^{2+} -sensitive currents (*n* = 14). To investigate how CCK could generate global Ca^{2+} waves using these particular messengers, we performed experiments with both NAADP and cADPR in the pipette solution. Since the same enzyme, ADP-ribosyl cyclase, forms both cADPR and NAADP, this experiment might mimic a relevant physiological situation (Lee, 2000). Figure 6A shows the result of an experiment in which a mixture of NAADP and cADPR elicits repetitive, relatively long-lasting Ca^{2+} sensitive currents ($n = 15$). Figure 6B shows the result of an experiment simultaneously recording the $Ca²⁺$ -sensitive current and the cytosolic Ca^{2+} concentration in a single pancreatic acinar cell. Initially, the mixture of NAADP and cADPR elicits repetitive local Ca^{2+} spiking, but gradually there is an evolution to a pattern of relatively long-lasting global Ca^{2+} waves ($n = 6$). This suggests that although both NAADP and cADPR can act separately to initiate local Ca^{2+} elevations in the secretory pole of the cell, they can also act together to generate the mixed pattern of local Ca^{2+} spikes and global Ca^{2+} waves seen in a typical response to a physiological level of CCK.

NAADP globalizes localized $Ca²⁺$ spiking evoked by a mixture of cADPR and IP_3

The CCK response depends on functional NAADP and cADPR receptors, but there is also, as for ACh, a requirement for operational IP_3 receptors. Since ACh can stimulate the ADP-ribosyl cyclase CD38 (Fukushi et al., 2001), both CCK and ACh may generate cADPR, NAADP and IP_3 , although the precise levels are likely to depend very much on the agonist and its concentration. However, the functional consequences of the concerted action of the three messengers have never been explored. The next sets of experiments were therefore designed to determine whether NAADP triggers a globalization of the local Ca^{2+} spikes evoked by a mixture of cADPR and IP_3 . Figure 7A and B shows that NAADP strongly potentiates the Ca^{2+} release evoked by the cADPR/IP₃ mixture. Infusion of cells with the triple mixture NAADP (50 nM), cADPR (10 μ M) and IP₃ (15 μ M) induced a sustained Ca²⁺sensitive current, often with superimposed spikes, in six out of seven cells investigated. The sustained Ca^{2+} sensitive current corresponds to a sustained global Ca^{2+} elevation $(n = 4)$ (Figure 7B). Comparing the responses to the mixture of NAADP and cADPR (Figure 6) with those to the triple mixture NAADP + cADPR + IP_3 (Figure 7), it is apparent that whereas NAADP + cADPR typically elicited repetitive pulses of local and global Ca^{2+} transients, the triple mixture evoked a sustained global Ca^{2+} rise.

In order to assess the possible functional consequence of adding IP_3 to a mixture of NAADP and cADPR, we measured the maximal amplitude of the Ca^{2+} -activated Cl⁻ current in the two sets of experiments. It has recently been demonstrated that all Ca^{2+} -sensitive Cl^- channels in pancreatic acinar cells are located in the apical (secretory) part of the plasma membrane (Park et al., 2001b). The

Fig. 3. NAADP evokes Ca²⁺ spiking in the secretory pole. Confocal fluorescence microscopy reveals that NAADP, at 50 nM in the intracellular pipette solution, evokes repetitive \bar{Ca}^2 + spikes localized in the apical pole. In the picture panel below the current trace is shown (left) the transmitted light picture of the cell investigated (tip of attached patch pipette is seen), (middle) the fluorescence image between spikes, and finally (right) the fluorescence image demonstrating the position of one of the Ca²⁺ spikes evoked by NAADP. By comparison with the transmitted light image, it can be seen that the spike occurs in the apical granular pole of the lower right cell. Calibration of the colour coding of the cytosolic Ca^{2+} concentration is shown at the right-hand side.

Fig. 4. A mixture of IP₃ and cADPR only evokes local Ca²⁺ release. (A) Confocal fluorescence microscopy reveals that cADPR, at 10 μ M in the intracellular pipette solution, evokes repetitive Ca²⁺ spikes localized in the apical pole. The repetitive Ca²⁺ spikes evoked by IP₃ (10 µM) are localized in the apical pole (B) and the repetitive short-lasting Ca^{2+} spikes evoked by a mixture of cADPR (10 µM) and IP₃ (15 µM) (C) are also localized in the apical pole (no mutual potentiation).

 $Ca²⁺$ -dependent Cl⁻ current is responsible for driving acinar fluid secretion, which together with the exocytotic

secretion of digestive enzymes (Nemoto et al., 2001) represents the major functional consequence of the

Fig. 5. A mixture of NAADP and IP₃ evokes locally amplified Ca²⁺ release. (A) IP₃ (15 µM in the intracellular pipette solution) evokes repetitive spikes of Ca²⁺-sensitive current. The underlying Ca²⁺ spikes are localized in the apical pole (see Figure 4B). (B) A mixture of IP₃ (15 μ M) and NAADP (50 nM) evokes somewhat amplified repetitive spikes of Ca²⁺-sensitive current. (C) The Ca²⁺ spikes elicited by the mixture of IP₃ and NAADP are localized in the apical pole. Calibration of the colour coding of the cytosolic Ca^{2+} concentration is shown at the bottom.

agonist-elicited cytosolic Ca^{2+} elevation. The mean peak amplitude of the Ca^{2+} -dependent current response to NAADP + cADPR was $(\pm SE)$ 435 \pm 118 pA $(n = 8)$, whereas the corresponding value for the triple mixture was 1283 \pm 227 pA (n = 9). Thus, addition of IP₃ to the mixture of NAADP + cADPR markedly enhanced the Cl current across the apical membrane, most likely due to an enhanced amplitude of the Ca^{2+} concentration rise very close to the inner mouths of the Cl⁻ channels.

Caffeine (20 mM), used as a permeant IP_3 receptor antagonist, was employed to test the need for functional $IP₃$ receptors in the concerted activity of the three messengers. Although best known as an activator of ryanodine receptors, caffeine also inhibits the opening of IP₃ receptors (Wakui et al., 1990; Parker and Ivorra, 1991; Brown et al., 1992; Ehrlich et al., 1994; Petersen and Cancela, 1999). This effect is clearly not mediated by an increase in the intracellular cyclic AMP concentration (Wakui et al., 1990; Brown et al., 1992), but is likely to be a direct effect on the IP_3 receptor or a closely associated protein, since it has been observed in single channel current studies of isolated $IP₃$ receptors from cerebellum (Ehrlich et al., 1994). In the pancreatic acinar cells, caffeine (20 μ M) does not release Ca²⁺ via ryanodine receptors and does not deplete intracellular Ca2+ stores. With IP₃ present in the pipette solution there is no Ca^{2+}

spiking when caffeine is present from the beginning of an experiment, but immediately (within seconds) after caffeine removal, Ca^{2+} spiking starts (see Figure 5 in Wakui et al., 1990). Furthermore, caffeine has the advantage of being extremely membrane permeant. It can therefore be applied externally and its effects are rapidly reversible (Wakui et al., 1990; Petersen and Cancela, 1999; Cancela et al., 2000). Extracellular application of 20 mM caffeine dramatically, repeatedly and reversibly reduced the Ca2+ release evoked by the triple messenger mixture (Figure 7A; $n = 7$). This indicates that functional IP₃ receptors are required for sustained Ca^{2+} release.

Discussion

Our experiments demonstrate that the generation of global cytosolic Ca^{2+} signals depend on interaction between different Ca^{2+} releasing messenger pathways, which can be activated separately or in combination. We analysed the functional consequence of the concerted activity of IP_3 , cADPR and NAADP. Our new results demonstrate that the spatio-temporal pattern of a cytosolic Ca^{2+} signal can be shaped by different combinations of Ca^{2+} releasing messengers. One important finding from this work is that although every messenger can initiate local Ca^{2+} spikes, globalization of the Ca^{2+} signal requires interaction

A NAADP 50 nM + cADPR 10 μ M

в NAADP 50 nM + cADPR 10 µM

Fig. 6. NAADP transforms the short-lasting Ca^{2+} spikes evoked by cADPR into long-lasting Ca^{2+} spikes. (A) A mixture of NAADP (50 nM) and cADPR (10 μ M) in the intracellular pipette solution evokes repetitive, long-lasting spikes of Ca2+-sensitive current with relatively long intervals between the spikes. (B) The result of an experiment simultaneously recording the Ca²⁺-sensitive Cl⁻ current and the cytosolic $Ca²⁺$ concentration measured by microfluorimetry in a single pancreatic acinar cell. The short-lasting spikes are local and the long-lasting spikes are global. Calibration of the colour coding of the cytosolic Ca^{2+} concentration is shown at the bottom.

between these messengers. The strongest Ca^{2+} signals were obtained by a triple mixture containing IP_3 , cADPR and NAADP.

Agonist-specific Ca²⁺ signal patterns and messenger interactions

In pancreatic acinar cells, ACh and CCK induce specific $Ca²⁺$ signal signatures (Petersen *et al.*, 1991a, Petersen et al., 1994). Low and physiological concentrations of both agonists elicit repetitive, short-lasting Ca^{2+} spikes confined to the apical granular pole (Thorn et al., 1993). These local Ca^{2+} spikes are sufficient to elicit exocytosis, as assessed by capacitance measurements (Maruyama et al., 1993; Maruyama and Petersen, 1994), and fluid secretion, as assessed by monitoring the Ca^{2+} -dependent Cl⁻ current across the apical membrane (Thorn et al., 1993; Park et al., 2001b). CCK, but not ACh, at physiological concentrations also elicits much longer-lasting global Ca2+ transiNAADP 50 nM + cADPR 10 μ M + IP₃15 μ M

в NAADP 50 nM + cADPR 10 μ M + IP₃15 μ M

Fig. 7. NAADP transforms the local Ca^{2+} spikes evoked by a cADPR + IP₃ mixture into a sustained global Ca²⁺ elevation. (A) A mixture of short-lasting spikes and sustained activation of $Ca²⁺$ -sensitive current evoked by a triple mixture of NAADP (50 nM), cADPR (10 μ M) and IP₃ (15 μ M). External application of 20 mM caffeine, used as an IP₃ antagonist, abolished the sustained activation of the $Ca²⁺$ -sensitive current, indicating that functional IP_3 receptors are required to generate the sustained Ca^{2+} signal. (B) The result of an experiment simultaneously recording the Ca2+-sensitive current and the cytosolic $Ca²⁺$ concentration measured by microfluorimetry in a single pancreatic acinar cell. Confocal fluorescence microscopy reveals that the triple mixture of NAADP (50 nM), cADPR (10 μ M) and IP₃ (15 μ M) in the intracellular pipette solution evokes a sustained global Ca^{2+} elevation. Calibration of the colour coding of the cytosolic Ca^{2+} concentration is shown at the bottom.

ents (Petersen et al., 1991a; Thorn et al., 1993). The frequency with which the global transients occur is concentration dependent. At the lower end of the physiological concentration range $(1-10 \text{ pM})$ there are very infrequent, long, global transients, and the response essentially consists of repetitive local $Ca²⁺$ spikes, whereas at the top end long transients are seen regularly. The physiological importance of these global transients has not been clarified, but one possibility is that they are connected to the CCK-induced pancreatic growth response (Petersen et al., 1994). The results presented in Figures 1 and 2 indicate that the response to a low ACh concentration is principally triggered by IP_3 , since it can be markedly potentiated by cADPR and NAADP, but not by IP_3 , whereas the response to a physiological CCK concentration must be triggered by cADPR and NAADP, since it can be dramatically potentiated by IP_3 , but not by cADPR or NAADP. Clearly only complementary messengers can effectively potentiate a response. One important conclusion to be drawn from our new data is that increasing the intensity of stimulation with any one agonist is likely to produce all three messengers and consequently to generate substantial Ca^{2+} waves. To do so, ACh and CCK may recruit these messengers in a different sequence. These findings also provide a mechanism to explain the marked potentiation by CCK of the ACh response (Cancela *et al.*, 2000).

The experiments with messenger mixtures revealed only a relatively minor interaction between IP_3 and cADPR (Figure 4), and a modest interaction between IP_3 and NAADP (Figure 5). There was a somewhat stronger potentiating interaction between cADPR and NAADP, but in order to obtain the type of global and sustained response that can result from combining CCK with IP₃ (Figure 2) or ACh with cADPR or NAADP (Figure 1), it was necessary to use all three messengers together (Figure 7). Using the membrane-permeant IP_3 receptor antagonist caffeine (Petersen and Cancela, 1999), we were able to demonstrate that activation of IP_3 receptors is essential for maintaining a sustained response. Application of caffeine led to a fully reversible transformation from a sustained cytosolic Ca^{2+} elevation to repetitive baseline spiking (Figure 7).

Localization of intracellular $Ca²⁺$ release channels

IP₃, cADPR and NAADP each simply evoke Ca^{2+} release in the apical pole. This has been well documented for IP_3 and cADPR (Thorn *et al.*, 1993, 1994). Our data (Figure 3) indicate that the short-lasting Ca^{2+} -dependent currents evoked by NAADP are associated with $Ca²⁺$ elevations specifically in the apical pole of the cells. This result demonstrates directly that infusion of NAADP into a cell can release Ca^{2+} in one specific region without affecting other parts. This could be due to the exclusive presence of NAADP receptors in the apical pole or to a much higher concentration of NAADP receptors in this part of the cell than in the basal region. It could also be explained by a more diffuse presence of NAADP receptors throughout the cell, since the NAADP response is completely dependent on functional IP₃ and ryanodine receptors (Cancela *et al.*, 2000). It is known that ryanodine receptors are present throughout the acinar cell (Leite et al., 1999; Fitzsimmons *et al.*, 2000; Straub *et al.*, 2000), whereas IP_3 receptors are preferentially localized in the apical pole (Nathanson et al., 1994; Lee et al., 1997). Most likely, cADPR elicits local $Ca²⁺$ spikes in the apical pole (Thorn *et al.*, 1994) because of the concentration of IP_3 receptors in this region, since the cADPR responses are completely dependent on functional IP₃ receptors (Cancela *et al.*, 2000). It is therefore entirely possible, and indeed likely, that the general primary localization of Ca^{2+} signals to the apical pole, irrespective of which Ca^{2+} releasing messenger is used, is principally due to the dominant presence of IP_3 receptors in this part of the cell. Since all Ca^{2+} signal initiation depends on interaction between at least ryanodine and IP_3 receptors, it must occur at sites where both

these Ca^{2+} release channels co-exist, and the only such region is the apical pole.

The general concept concerning the organization of the major intracellular Ca^{2+} store, the ER, is that it forms a continuous sheet enclosing a single internal space. The continuous lumen allows Ca^{2+} and other small molecules to diffuse rapidly over relatively long distances (Terasaki et al., 1994; Mogami et al., 1997; Subramanian and Meyer, 1997; Park et al., 2000; Petersen et al., 2001). In the pancreatic acinar cells, the primary localization of cytosolic Ca2+ signal generation in the apical granular pole (Kasai et al., 1993; Thorn et al., 1993) is due to clustering of IP_3 receptors in the most apical parts of the ER extensions into the granular area (Lee *et al.*, 1997). Opening of these channels can mobilize Ca^{2+} from the whole of the ER, and particularly from the major part of this store in the basolateral part of the cell due to the ability of Ca^{2+} to diffuse within the lumen of the ER, from the base of the cell to its apex (Mogami et al., 1997; Park et al., 2000; Petersen et al., 2001).

Globalization of $Ca²⁺$ signals

There would appear to be two separate aspects of the globalization process. Unlike the lumenally continuous ER, the cytosol is effectively compartmentalized with respect to Ca^{2+} diffusion by a major mitochondrial Ca^{2+} buffer barrier placed on the border between the apical granular pole and the rest of the cell (Tinel et al., 1999; Park *et al.*, 2001a). This barrier undoubtedly plays a major role in mostly confining Ca^{2+} signals generated in the apical region to this part of the cell (Tinel et al., 1999; Park *et al.*, 2001a). In order for a Ca^{2+} signal to become global, this barrier has to be overwhelmed by a substantial amount of Ca^{2+} released in the granular region. However, it is also known that when a Ca^{2+} wave progresses through the cell from the apical to the basal pole, there is a regenerative process, almost certainly due to Ca^{2+} -induced Ca^{2+} release (Kasai and Augustine, 1990; Toescu et al., 1992, 1994). This means that under these circumstances Ca^{2+} release channels also open in the basal pole. The mechanism by which silent Ca^{2+} release channels in the basal pole become activated during globalization of Ca^{2+} signalling is not fully understood, but our data indicate that a combination of IP_3 , cADPR and NAADP plays an important role in this process (Figure 8).

A global Ca^{2+} wave is generated by the concerted activity of elementary Ca^{2+} release units, which act as `building blocks' (Parker et al., 1996; Marchant et al., 1999; Berridge et al., 2000). The distance between these elementary units may vary between cell types, but the Ca^{2+} wave propagates by recruiting, in a saltatory manner, neighbouring Ca^{2+} release sites (Parker *et al.*, 1996; Berridge, 1997; Boittin et al., 1998; Cannell and Soeller, 1999; Koizumi et al., 1999; Marchant et al., 1999; Berridge *et al.*, 2000). The Ca^{2+} release units are recruited by several mechanisms, including Ca^{2+} diffusion, Ca^{2+} induced Ca^{2+} release and increase of IP₃ production. All these mechanisms increase the frequency of elementary $Ca²⁺$ release events, which, once the threshold is reached, will trigger a Ca^{2+} wave. However, if poorly sensitive Ca^{2+} release units surround the most sensitive Ca^{2+} release units, then the Ca^{2+} signal remains localized and the Ca^{2+} wave is aborted (Parker et al., 1996; Marchant et al., 1999;

Fig. 8. (A) Schematic model showing that every messenger on its own can initiate local Ca²⁺ spikes. (B) There is little interaction between IP₃ and cADPR. (C) NAADP does potentiate the action of cADPR producing long-lasting global spikes at long intervals. (D) In contrast, NAADP only has a locally potentiating effect on the local IP₃-evoked Ca²⁺ spikes. (E) When all three messengers act together a large, sustained, global Ca²⁺ elevation is observed. The apical pole is the most sensitive part of the cell. In the models shown to the right, the basolateral part of the cell contains poorly sensitive Ca²⁺ release units that cannot trigger a wave in the presence of either IP₃, cADPR or NAADP alone. To generate a Ca²⁺ wave across the cell, a combination of potentiated Ca^{2+} release in the apical pole, helping to overcome the mitochondrial barrier, and sensitization of Ca^{2+} release channels by coincident activation of ryanodine, IP₃ and NAADP receptors by their respective messengers in the basal pole is necessary.

Berridge *et al.*, 2000). This is exactly what happens in our experiments with the infusion of a low concentration of either IP_3 , cADPR or NAADP, each of which is able to generate short-lasting Ca^{2+} spikes in the apical pole of the cell whithout triggering a $Ca²⁺$ wave. In this situation, the basolateral part of the cell contains poorly sensitive Ca^{2+} release units that cannot trigger a wave (Figure 8). A Ca^{2+} wave across the cell is generated by a combination of potentiated Ca^{2+} release in the apical pole, helping to overcome the mitochondrial barrier, and sensitization of $Ca²⁺$ release channels in the basal pole by coincident activation of ryanodine, IP_3 and NAADP receptors by their respective messengers (Figure 8).

NAADP as a key messenger in $Ca²⁺$ signal globalization

From our present work, NAADP is emerging as a key messenger in the globalization of Ca^{2+} signals. NAADP itself has a modest effect, since it only releases Ca^{2+} in the apical part of the cell; however, its unique ability to interact with ryanodine and IP_3 receptor activity allows a substantial increase in the medium excitability to further activation by either cADPR or IP_3 . Recent work in other cell types has shown that not only pancreatic acinar cells possess several Ca2+ releasing messengers (Churchill and Galione, 2000, 2001; Cancela, 2001; Lee, 2001), suggesting that our model may be more generally valid. In systems such as ascidian oocytes, starfish oocytes, T lymphocytes and sea urchin eggs, NAADP but also cADPR and IP₃ release Ca^{2+} from the internal stores in the same target cell (Albrieux et al., 1998; Guse et al., 1999; Berg et al., 2000; Churchill and Galione, 2000, 2001; Santella et al., 2000). These cells may have one continuous Ca^{2+} store or separate multiple Ca^{2+} stores located in different regions (Malgaroli et al., 1990; Golovina and Blaustein, 1997; Lee, 1997, 2001; Hofer et al., 1998; Churchill and Galione, 2000, 2001; Patel et al., 2001).

Our work with IP_3 , cADPR and NAADP has demonstrated the functional consequences of the actions of different Ca^{2+} releasing messengers in one target cell (Figure 8). They can be recruited individually or in combination to give an important diversity of Ca^{2+} signals (Figure 8). The new types of messenger interaction unravelled in our work may represent the building blocks for the more complex associations seen during stimulation with agonists. This is important, because cells in their native environment are constantly surrounded by multiple stimuli and must respond in an appropriate manner.

Materials and methods

Isolation of pancreatic acinar cells

Isolated single and double mouse pancreatic acinar cells were prepared and loaded with Fluo 4 at 60 μ M in the pipette solution as described previously (Park et al., 2001a,b).

Patch-clamp recordings

Cells were investigated using the whole-cell patch-clamp configuration. From a holding potential of -30 mV, steps were made to 0 mV, the reversal potential of the two Ca^{2+} -dependent currents through Cl^- and non-selective cation channels (Thorn and Petersen, 1992). The Cl⁻ current is by far the most important quantitatively (Park et al., 2001b). Using our solutions, the reversal potential of both the Cl⁻ and non-selective cation currents were at 0 mV (Petersen et al., 1991a). Small deviations in E_{Cl} and E_{cation} and in the holding potential sometimes produce small inward or outward currents at 0 mV. At -30 mV we obtained a measure of both the $Ca²⁺$ -dependent currents, which are an index of the cytosolic $Ca²⁺$ changes (Thorn et al., 1993; Tinel et al., 1999). The extracellular Na+ rich solution contained (in mM): 140 NaCl, 4.7 KCl, 1.13 $MgCl₂$, 10 glucose, 1 CaCl₂ and 10 HEPES-NaOH (pH 7.2). CCK octapeptide or ACh were added to the external solution as indicated. The internal solution contained (in mM): 140 KCl, 1.13 MgCl₂, 0.05 EGTA, 2 ATP and 10 HEPES-KOH (pH 7.2). Extracellular application of CCK and ACh was performed by means of a gravity perifusion system.

Confocal imaging

Fluorescence measurements and calcium concentration calibration on Fluo 4-loaded cells (Takahashi et al., 1999; Park et al., 2001a,b) were done using a Zeiss LSM510 confocal system. The K_D for Fluo 4–Ca²⁺ at room temperature was assumed to be 400 nM (Molecular Probes). An objective $(60\times)$ with NA 1.4 was used in all experiments. For fast scanning experiments, five frames per second final scanning speed was used. Fluo 4 was excited using a 488 nm laser light. Emitted light was collected using a BP505-550 filter. Image analysis was performed using the Zeiss confocal 510 image software as well as software developed by us. Images were divided by the first image. A linear colour scale was used in all cases.

Chemicals

NAADP, cADPR, 2,4,5-IP₃, caffeine, CCK and ACh were purchased from Sigma. Fluo 4 and NAADP were from Molecular Probes.

Acknowledgements

We thank N.Burdakova for technical support. This work was supported by an MRC Programme Grant. O.H.P. is an MRC Research Professor. F.V.C. was supported by a grant from the Association pour la Recherche sur le Cancer, France (ARC).

References

- Albrieux,M., Lee,H.G. and Villaz,M. (1998) Calcium signaling by cyclic ADP-ribose, NAADP and inositol trisphosphate are involved in distinct functions in ascidian oocytes. J. Biol. Chem., 273, 14566±14574.
- Berg,I., Potter,B.V.L., Mayr,G.W. and Guse,A.H. (2000) Nicotinic acid adenine dinucleotide phosphate (NAADP+) is an essential regulator of T-lymphocyte Ca^{2+} signaling. J. Cell Biol., 150, 581-588.
- Berridge,M.J. (1997) Elementary and global aspects of calcium signalling. J. Physiol., 499, 291-306.
- Berridge, M.J., Bootman, M.D. and Lipp, P. (1998) Calcium \sim a life and death signal. Nature, 395, 645-648.
- Berridge,M.J., Lipp,P. and Bootman,M.D. (2000) The versatility and universality of calcium signaling. Nature Rev. Mol. Cell. Biol., 1, $11 - 21$.
- Boittin,F.X., Coussin,F., Macrez,N., Mironneau,C. and Mironneau,J. (1998) Inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channel-dependent Ca2+ signalling in rat portal vein myocytes. Cell Calcium, 23, 303-311.
- Brown,G.R., Sayers,L.G., Kirk,C.J., Michell,R.H. and Michelangeli,F. (1992) The opening of the inositol 1,4,5-trisphosphate-sensitive Ca^{2+} channel in rat cerebellum is inhibited by caffeine. Biochem. J., 282, 309±312.
- Cancela,J.M. (2001) Specific Ca²⁺ signaling evoked by cholecystokinin and acetylcholine: the roles of NAADP, cADPR and IP₃. Annu. Rev. $Physiol., 63, 99-117.$
- Cancela,J.M. and Petersen,O.H. (1998) The cyclic ADP-ribose antagonist 8-NH2-cADP-ribose blocks cholecystokinin-evoked cytosolic Ca²⁺ spiking in pancreatic acinar cells. Pflügers Arch., 435, 746-748.
- Cancela,J.M., Mogami,H., Tepikin,A.V. and Petersen,O.H. (1998) Intracellular glucose switches between cyclic ADP-ribose and inositol trisphosphate triggering of cytosolic Ca2+ spiking. Curr. Biol., 8, 865±868.
- Cancela,J.M., Churchill,G.C. and Galione,A. (1999) Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature, 398, 74-76.
- Cancela,J.M., Gerasimenko,O.V., Gerasimenko,J.V., Tepikin,A.V. and Petersen,O.H. (2000) Two different but converging messenger pathways to intracellular Ca²⁺ release: the roles of NAADP, cADPR and IP₃. *EMBO J.*, **19**, 2549-2557.
- Cannell,M.B. and Soeller,C. (1999) Mechanisms underlying calcium sparks in cardiac muscle. J. Gen. Physiol., 113, 373-376.
- Chini,E.N., Beers,K.W. and Dousa,T.P. (1995) Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs. J. Biol. Chem., 270 , $3216-3223$.
- Churchill, G.C. and Galione, A. (2000) Spatial control of Ca^{2+} signaling by nicotinic acid adenine dinucleotide phosphate diffusion and gradients. J. Biol. Chem., 275, 38687-38692.
- Churchill, G.C. and Galione, A. (2001) NAADP induces Ca²⁺ oscillations via a two-pool mechanism by priming IP_3 and cADPR-sensitive Ca^{2+} stores. EMBO J., 20, 2666-2671.
- Ehrlich,B.E., Kaftan,E., Bezprozvannaya,S. and Bezprozvanny,I. (1994) The pharmacology of intracellular Ca^{2+} release channels. Trends Pharmacol. Sci., 15, 145-148.
- Fitzsimmons,T.J., Gukovsky,I., McRoberts,J.A., Rodriguez,E., Lai,F.A. and Pandol,S.J. (2000) Multiple isoforms of the ryanodine receptor are expressed in rat pancreatic acinar cells. Biochem. J., 351, 265-271.
- Fukushi, Y. et al. (2001) Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca^{2+} signaling using CD38 knockout mice. J. Biol. Chem., 276, 649-655.
- Galione,A. (1994) Cyclic ADP-ribose, the ADP-ribosyl cyclase pathway and calcium signalling. Mol. Cell. Endocrinol., 98, 125-131.
- Genazzani, A.A. and Galione, A. (1997) A Ca²⁺ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends Pharmacol. Sci., 18, 108±110.
- Golovina,V.A. and Blaustein,M.P. (1997) Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science, 275, 1643-1648.
- Guse, A.H. (1999) Cyclic ADP-ribose: A novel Ca^{2+} -mobilising second messenger. Cell. Signal., 11, 309-316.
- Guse,A.H. et al. (1999) Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature, 398, 70±73.
- Hofer, A.M., Landolfi, B., Debellis, L., Pozzan, T. and Curci, S. (1998) Free [Ca2+] dynamics measured in agonist-sensitive stores of single living intact cells: a new look at the refilling process. EMBO J., 17, 1986±1995.
- Ito,K., Miyashita,Y. and Kasai,H. (1999) Kinetic control of multiple forms of $Ca²⁺$ spikes by inositol trisphosphate in pancreatic acinar cells. J. Cell Biol., 146, 405-413.
- Jaggar,J.H., Porter,V.A, Lederer,W.J. and Nelson,M.T. (2000) Calcium sparks in smooth muscle. Am. J. Physiol. Cell Physiol., 278, C₂₃₅-C₂₅₆.
- Kasai,H. and Augustine,G.J. (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature, 348, 735±738.
- Kasai,H., Li,Y.X. and Miyashita,Y. (1993) Subcellular distribution of $Ca²⁺$ release channels underlying $Ca²⁺$ waves and oscillations in exocrine pancreas. Cell, 74, 669-677.
- Koizumi,S., Bootman,M.D., Bobanovic,L.K., Schell,M.J., Berridge,M.J. and Lipp, P. (1999) Characterization of elementary Ca^{2+} release signals in NGF-differentiated PC12 cells and hippocampal neurons. Neuron, 22, 125±137.
- Lee,H.C. (1997) Mechanisms of calcium signalling by cyclic ADPribose and NAADP. *Physiol. Rev.*, 77 , $1133-1164$.
- Lee,H.C. (2000) NAADP: an emerging calcium signaling molecule. J. Membr. Biol., 173, 1-8.
- Lee,H.C. (2001) Physiological functions of cADP-ribose and NAADP as calcium messengers. Annu. Rev. Pharmacol. Toxicol., 41, 317-345.
- Lee,H.C. and Aarhus,R. (1995) A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J. Biol. Chem., 270, 2152-2157.
- Lee,M.G., Xu,X., Zeng,W., Diaz,J., Wojcikiewicz,J.H., Kuo,T.H., Wuytack,F., Racymaekers,L. and Muallem,S. (1997) Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. J. Biol. Chem., 272, 15765-15770.
- Leite,M.F., Dranoff,J.A., Gao,L. and Nathanson,M.H. (1999) Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochem. J., 337, 305-309.
- Malgaroli, A., Fesce, R. and Meldolesi, J. (1990) Spontaneous [Ca²⁺]_i fluctuations in rat chromaffin cells do not require inositol $1,4,5$ trisphosphate elevations but are generated by a caffeine- and ryanodine-sensitive intracellular Ca^{2+} store. J. Biol. Chem., 265, 3005±3008.
- Marchant, J., Callamaras, N. and Parker, I. (1999) Initiation of IP₃mediated Ca²⁺ waves in Xenopus oocytes. EMBO J., 18, 5285-5299.
- Maruyama,Y. and Petersen,O.H. (1994) Delay in granular fusion evoked by repetitive cytosolic Ca2+ spikes in mouse pancreatic acinar cells. Cell Calcium, 16, 419-430.
- Maruyama,Y., Inooka,G., Li,Y.X., Miyashita,Y. and Kasai,H. (1993) Agonist-induced localized Ca2+ spikes directly triggering exocytotic secretion in exocrine pancreas. EMBO J., 12 , $3017-3022$.
- Matozaki,T., Goke,B., Tsunoda,Y., Rodriguez,M., Martinez,J. and Williams,J.A. (1990) Two functionally distinct cholecystokinin receptors show different modes of action on Ca2+ mobilization and phospholipid hydrolysis in isolated rat pancreatic acini. Studies using a new cholecystokinin analog, JMV-180. J. Biol. Chem., 265, 6247±6254.
- Meldolesi, J. and Pozzan, T. (1998) The heterogeneity of ER Ca²⁺ stores has a key role in non muscle cell signaling and function. J. Cell Biol., 142, 1395-1398.
- Mogami,H., Nakano,K., Tepikin,A.V. and Petersen,O.H. (1997) Ca2+ flow via tunnels in polarized cells: recharging of apical $Ca²⁺$ stores by focal Ca²⁺ entry through basal membrane patch. Cell, 88, 49-55.
- Nathanson, M.H., Fallon, M.B., Padfield, P.J. and Maranto, A.R. (1994) Localization of the type 3 inositol 1,4,5-trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. J. Biol. Chem., 269, 4693±4696.
- Nemoto,T., Kimura,R., Ito,K., Tachikawa,A., Miyashita,Y., Iino,M. and Kasai,H. (2001) Sequential replenishment mechanism of exocytosis in pancreatic acini. Nature Cell Biol., 3, 253-258.
- Parekh,A. and Penner,R. (1997) Store depletion and calcium influx. Physiol. Rev., 77, 901-930.
- Park,M.K., Petersen,O.H. and Tepikin,A.V. (2000) The endoplasmic reticulum as one continuous Ca^{2+} pool: visualization of rapid Ca^{2+} movement and equilibration. EMBO J., 19, 5729-5739.
- Park,M.K., Ashby,M.C., Erdemli,G., Petersen,O.H. and Tepikin,A.V. (2001a) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. $EMBO$ J., 20 , 1863-1874.
- Park,M.K., Lomax,R.B., Tepikin,A.V. and Petersen,O.H. (2001b) Local uncaging of caged Ca^{2+} reveals distribution of Ca^{2+} -activated Cl⁻ channels in pancreatic acinar cells. Proc. Natl Acad. Sci. USA, 98, 10948±10953.
- Parker,I. and Ivorra,I. (1991) Caffeine inhibits inositol trisphosphatemediated liberation of intracellular calcium in Xenopus oocytes. J. Physiol., 433, 229-240.
- Parker, I., Choi, J. and Yao, Y. (1996) Elementary events of InsP₃-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium, 20, 105-121.
- Patel, S., Churchill, G.C. and Galione, A. (2001) Coordination of Ca²⁺ signalling by NAADP. Trends Biochem. Sci., 26, 482-489.
- Perez-Tersic,C.M., Chini,E.N., Shen,S.S., Dousa,T.P. and Clapham,D.E.

(1995) Ca^{2+} release triggered by nicotinate adenine dinucleotide phosphate in intact sea urchin eggs. Biochem. J., 312, 955-959.

- Petersen,C.C.H., Toescu,E.C. and Petersen,O.H. (1991a) Different patterns of receptor-activated cytoplasmic Ca²⁺ oscillations in single pancreatic acinar cells: dependence on receptor type, agonist concentration and intracellular Ca^{2+} buffering. EMBO J., 10, 527–533.
- Petersen,C.C.H., Toescu,E.C., Potter,B.V.L. and Petersen,O.H. (1991b) Inositol trisphosphate produces different patterns of cytoplasmic Ca^{2+} spiking depending on its concentration. FEBS Lett., 293, 179-182.
- Petersen, O.H. and Cancela, J.M. (1999) New Ca²⁺-releasing messengers: are they important in the nervous system? Trends Neurosci., 22, 488±494.
- Petersen,O.H., Petersen,C.C.H. and Kasai,H. (1994) Calcium and hormone action. Annu. Rev. Physiol., 56, 297-319.
- Petersen,O.H., Tepikin,A.V. and Park,M.K. (2001) The endoplasmic reticulum: one continuous or several separate Ca^{2+} stores. Trends Neurosci., 24, 271-276.
- Pozzan,T., Rizzuto,R., Volpe,P. and Meldolesi,J. (1994) Molecular and cellular physiology of intracellular Ca²⁺ stores. Physiol. Rev., 74, 595-636.
- Pozzan,T., Magalhaes,P. and Rizzuto,R. (2000) The comeback of mitochondria to calcium signaling. Cell Calcium, 28, 279-283.
- Rizzuto,R., Pinton,P., Carrington,W., Fay,F.S., Fogarty,K.E., Lifshitz,L.S., Tuft,R.A. and Pozzan,T. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca^{2+} responses. Science, 280, 1763-1766.
- Rizzuto,R., Bernadi,P. and Pozzan,T. (2000) Mitochondria as all-round players of the calcium game. J. Physiol., 529, 37-49.
- Santella,L., Kyozuka,K., Genazzani,A.A., De Riso,L. and Carafoli,E. (2000) Nicotinic acid adenine dinucleotide phosphate-induced Ca^{2+} release. J. Biol. Chem., 275, 8301-8306.
- Straub,S.V., Giovannucci,D.R. and Yule,D.I. (2000) Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors and mitochondria. J. Gen. Physiol., 116, 547-559.
- Subramanian,K. and Meyer,T. (1997) Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell, 89, 963±971.
- Takahashi,A., Camacho,P., Lechleiter,J.D. and Herman,B. (1999) Measurement of intracellular calcium. Physiol. Rev., 79, 1089-1125.
- Terasaki,M., Traverse Slater,N., Fein,A., Schmidek,A. and Reese,T.S. (1994) Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc. Natl Acad. Sci. USA, 91, 7510-7514.
- Thomas,A.P., Bird,G.S.J., Hajnoczky,G., Robb-Gaspers,L.D. and Putney,J.W. (1996) Spatial and temporal aspects of cellular calcium signalling. $FASEB$ J., 10, 1505-1517.
- Thorn,P. and Petersen,O.H. (1992) Activation of non-selective cation channels by physiological cholecystokinin concentrations in mouse pancreatic acinar cells. J. Gen. Physiol., 100, 11-25.
- Thorn,P., Lawrie,A.M., Smith,P.M., Gallacher,D.V. and Petersen,O.H. (1993) Local and global cytosolic Ca^{2+} oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell, 74, 661-668.
- Thorn,P., Gerasimenko,O. and Petersen,O.H. (1994) Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic $Ca²⁺$ oscillations in pancreatic acinar cells. *EMBO J.*, **13**, 2038–2043.
- Tinel,H., Cancela,J.M., Mogami,H., Gerasimenko,J.V., Gerasimenko, O.V., Tepikin,A.V. and Petersen,O.H. (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca^{2+} signals. *EMBO J.*, 18, 4999±5008.
- Toescu,E.C., Lawrie,A.M., Petersen,O.H. and Gallacher,D.V. (1992) Spatial and temporal distribution of agonist-evoked cytoplasmic Ca^{2+} signals in exocrine acinar cells analysed by digital image microscopy. EMBO J., 11, 1623-1629.
- Toescu,E.C., Gallacher,D.V. and Petersen,O.H. (1994) Identical regional mechanisms of intracellular free Ca²⁺ concentration increase during polarized agonist-evoked Ca2+ response in pancreatic acinar cells. Biochem. J., 304, 313-316.
- Wakui,M., Osipchuk,Y.V. and Petersen,O.H. (1990) Receptor-activated cytoplasmic $Ca²⁺$ spiking mediated by inositol trisphosphate is due to Ca^{2+} -induced Ca^{2+} release. *Cell*, **63**, 1025–1032.

Received October 29, 2001; revised December 28, 2001; accepted January 10, 2002