Abstract
Hair growth in adult mammals involves continuous dermal-epidermal interaction across the follicular basement membrane, and repeated reorganisation of lower follicle structure during the hair growth cycle. The immunolocalisation of 3 extracellular matrix components, fibronectin, laminin and type IV collagen was investigated during the course of the rat vibrissa follicle growth cycle, and their distribution correlated with changes in cellular and extracellular ultrastructure, particularly around the basement membrane zone. Laminin and type IV collagen were omnipresent at the follicular dermal-epidermal junction, but were also seen in granular extracellular form within the inner dermal component of the follicle, the dermal papilla. Both the inner papilla-epidermal junction and the thick specialised outer basement membrane (the glassy membrane) revealed labelling by these 2 antibodies around telogen (the period of nonfibre production). By contrast, fibronectin was abundant within the anagen dermal papilla but at telogen stained the dermal-epidermal junction heterogeneously, when it disappeared from the inner papilla-epidermal interface but intensified externally. These changes to extracellular matrix distribution coincided with a modification of basement membrane ultrastructure from a relatively uniform line at anagen, to one which became much broader and multilayered at telogen with a loss of definite structure within the papilla. This shows that the lower part of the vibrissa follicle retains the capacity for very rapid basement membrane modification and remodelling, and implies that it is part of the biological process which enables dermal-epidermal signalling, rather than a secondary product of physical changes to the appendage. The work supports the idea that dermal papilla cells could contribute to basement membrane formation, and also that fibronectin may be involved in regulating cellular activities within the follicle. In the vibrissa follicle, dynamic cellular activity clearly takes place throughout the duration of the hair cycle.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bohnert A., Hornung J., Mackenzie I. C., Fusenig N. E. Epithelial-mesenchymal interactions control basement membrane production and differentiation in cultured and transplanted mouse keratinocytes. Cell Tissue Res. 1986;244(2):413–429. doi: 10.1007/BF00219217. [DOI] [PubMed] [Google Scholar]
- Bronner-Fraser M. An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest development in vivo. Dev Biol. 1986 Oct;117(2):528–536. doi: 10.1016/0012-1606(86)90320-9. [DOI] [PubMed] [Google Scholar]
- Clark R. A., Folkvord J. M., Wertz R. L. Fibronectin, as well as other extracellular matrix proteins, mediate human keratinocyte adherence. J Invest Dermatol. 1985 May;84(5):378–383. doi: 10.1111/1523-1747.ep12265466. [DOI] [PubMed] [Google Scholar]
- Clark R. A., Lanigan J. M., DellaPelle P., Manseau E., Dvorak H. F., Colvin R. B. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol. 1982 Nov;79(5):264–269. doi: 10.1111/1523-1747.ep12500075. [DOI] [PubMed] [Google Scholar]
- Couchman J. R., Gibson W. T. Expression of basement membrane components through morphological changes in the hair growth cycle. Dev Biol. 1985 Apr;108(2):290–298. doi: 10.1016/0012-1606(85)90033-8. [DOI] [PubMed] [Google Scholar]
- Couchman J. R., Gibson W. T., Thom D., Weaver A. C., Rees D. A., Parish W. E. Fibronectin distribution in epithelial and associated tissues of the rat. Arch Dermatol Res. 1979 Nov;266(3):295–310. doi: 10.1007/BF00418575. [DOI] [PubMed] [Google Scholar]
- Couchman J. R. Heterogeneous distribution of a basement membrane heparan sulfate proteoglycan in rat tissues. J Cell Biol. 1987 Oct;105(4):1901–1916. doi: 10.1083/jcb.105.4.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couchman J. R., King J. L., McCarthy K. J. Distribution of two basement membrane proteoglycans through hair follicle development and the hair growth cycle in the rat. J Invest Dermatol. 1990 Jan;94(1):65–70. doi: 10.1111/1523-1747.ep12873363. [DOI] [PubMed] [Google Scholar]
- Couchman J. R. Rat hair follicle dermal papillae have an extracellular matrix containing basement membrane components. J Invest Dermatol. 1986 Dec;87(6):762–767. doi: 10.1111/1523-1747.ep12456955. [DOI] [PubMed] [Google Scholar]
- Donaldson D. J., Mahan J. T. Keratinocyte migration and the extracellular matrix. J Invest Dermatol. 1988 May;90(5):623–628. doi: 10.1111/1523-1747.ep12560762. [DOI] [PubMed] [Google Scholar]
- Ferguson J. E., Schor A. M., Howell A., Ferguson M. W. Tenascin distribution in the normal human breast is altered during the menstrual cycle and in carcinoma. Differentiation. 1990 Feb;42(3):199–207. doi: 10.1111/j.1432-0436.1990.tb00762.x. [DOI] [PubMed] [Google Scholar]
- Hardy M. H., Goldberg E. A. Morphological changes at the basement membrane during some tissue interactions in the integument. Can J Biochem Cell Biol. 1983 Aug;61(8):957–966. doi: 10.1139/o83-122. [DOI] [PubMed] [Google Scholar]
- Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jahoda C. A., Horne K. A., Mauger A., Bard S., Sengel P. Cellular and extracellular involvement in the regeneration of the rat lower vibrissa follicle. Development. 1992 Apr;114(4):887–897. doi: 10.1242/dev.114.4.887. [DOI] [PubMed] [Google Scholar]
- Kornblihtt A. R., Gutman A. Molecular biology of the extracellular matrix proteins. Biol Rev Camb Philos Soc. 1988 Nov;63(4):465–507. doi: 10.1111/j.1469-185x.1988.tb00668.x. [DOI] [PubMed] [Google Scholar]
- Laurie G. W., Leblond C. P. What is known of the production of basement membrane components. J Histochem Cytochem. 1983 Jan;31(1A):159–163. [PubMed] [Google Scholar]
- Malkinson F. D., Keane J. T. Hair matrix cell kinetics: a selective review. Int J Dermatol. 1978 Sep;17(7):536–551. doi: 10.1111/j.1365-4362.1978.tb05997.x. [DOI] [PubMed] [Google Scholar]
- Martin G. R., Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol. 1987;3:57–85. doi: 10.1146/annurev.cb.03.110187.000421. [DOI] [PubMed] [Google Scholar]
- Mauger A., Demarchez M., Herbage D., Grimaud J. A., Druguet M., Hartmann D., Sengel P. Immunofluorescent localization of collagen types I and III, and of fibronectin during feather morphogenesis in the chick embryo. Dev Biol. 1982 Nov;94(1):93–105. doi: 10.1016/0012-1606(82)90072-0. [DOI] [PubMed] [Google Scholar]
- McDonald J. A. Extracellular matrix assembly. Annu Rev Cell Biol. 1988;4:183–207. doi: 10.1146/annurev.cb.04.110188.001151. [DOI] [PubMed] [Google Scholar]
- Messenger A. G., Elliott K., Temple A., Randall V. A. Expression of basement membrane proteins and interstitial collagens in dermal papillae of human hair follicles. J Invest Dermatol. 1991 Jan;96(1):93–97. doi: 10.1111/1523-1747.ep12515907. [DOI] [PubMed] [Google Scholar]
- Newgreen D., Thiery J. P. Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res. 1980;211(2):269–291. doi: 10.1007/BF00236449. [DOI] [PubMed] [Google Scholar]
- O'Keefe E. J., Woodley D. T., Falk R. J., Gammon W. R., Briggaman R. A. Production of fibronectin by epithelium in a skin equivalent. J Invest Dermatol. 1987 May;88(5):634–639. doi: 10.1111/1523-1747.ep12470246. [DOI] [PubMed] [Google Scholar]
- Oliver R. F. Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J Embryol Exp Morphol. 1966 Jun;15(3):331–347. [PubMed] [Google Scholar]
- Olsen D. R., Chu M. L., Uitto J. Expression of basement membrane zone genes coding for type IV procollagen and laminin by human skin fibroblasts in vitro: elevated alpha 1 (IV) collagen mRNA levels in lipoid proteinosis. J Invest Dermatol. 1988 May;90(5):734–738. doi: 10.1111/1523-1747.ep12560934. [DOI] [PubMed] [Google Scholar]
- Panayotou G., End P., Aumailley M., Timpl R., Engel J. Domains of laminin with growth-factor activity. Cell. 1989 Jan 13;56(1):93–101. doi: 10.1016/0092-8674(89)90987-2. [DOI] [PubMed] [Google Scholar]
- Parakkal P. F. Morphogenesis of the hair follicle during catagen. Z Zellforsch Mikrosk Anat. 1970;107(2):174–186. doi: 10.1007/BF00335223. [DOI] [PubMed] [Google Scholar]
- Puccinelli V., Caputo R., Ceccarelli B. Changes in the basement membrane of the papilla and wall of the human hair follicle. Arch Klin Exp Dermatol. 1968;233(2):172–183. doi: 10.1007/BF00501453. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem. 1988;57:375–413. doi: 10.1146/annurev.bi.57.070188.002111. [DOI] [PubMed] [Google Scholar]
- Sugiyama S., Takahashi M., Kamimura M. The ultrastructure of the hair follicles in early and late catagen, with special reference to the alteration of the junctional structure between the dermal papilla and epithelial component. J Ultrastruct Res. 1976 Mar;54(3):359–373. doi: 10.1016/s0022-5320(76)80022-6. [DOI] [PubMed] [Google Scholar]
- Thesleff I., Barrach H. J., Foidart J. M., Vaheri A., Pratt R. M., Martin G. R. Changes in the distribution of type IV collagen, laminin, proteoglycan, and fibronectin during mouse tooth development. Dev Biol. 1981 Jan 15;81(1):182–192. doi: 10.1016/0012-1606(81)90361-4. [DOI] [PubMed] [Google Scholar]
- Thesleff I., Stenman S., Vaheri A., Timpl R. Changes in the matrix proteins, fibronectin and collagen, during differentiation of mouse tooth germ. Dev Biol. 1979 May;70(1):116–126. doi: 10.1016/0012-1606(79)90011-3. [DOI] [PubMed] [Google Scholar]
- Timpl R., Dziadek M. Structure, development, and molecular pathology of basement membranes. Int Rev Exp Pathol. 1986;29:1–112. [PubMed] [Google Scholar]
- Westgate G. E., Shaw D. A., Harrap G. J., Couchman J. R. Immunohistochemical localization of basement membrane components during hair follicle morphogenesis. J Invest Dermatol. 1984 Mar;82(3):259–264. doi: 10.1111/1523-1747.ep12260207. [DOI] [PubMed] [Google Scholar]
- Woodley D. T., Stanley J. R., Reese M. J., O'Keefe E. J. Human dermal fibroblasts synthesize laminin. J Invest Dermatol. 1988 May;90(5):679–683. doi: 10.1111/1523-1747.ep12560880. [DOI] [PubMed] [Google Scholar]
- Young R. D. Morphological and ultrastructural aspects of the dermal papilla during the growth cycle of the vibrissal follicle in the rat. J Anat. 1980 Sep;131(Pt 2):355–365. [PMC free article] [PubMed] [Google Scholar]
- Young R. D., Oliver R. F. Morphological changes associated with the growth cycle of vibrissal follicles in the rat. J Embryol Exp Morphol. 1976 Dec;36(3):597–607. [PubMed] [Google Scholar]




























