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ABSTRACT Traditionally, Gouy-Chapman theory has been used to calculate the distribution of ions in the diffuse layer next to a

charged surface. In recent years, the same theory has found application to adsorption (incorporation, partitioning) of charged
peptides, hormones, or drugs at the membrane-water interface. Empirically it has been found that an effective charge, smaller than
the physical charge, must often be used in the Gouy-Chapman formula. In addition, the large size of these molecules can be
expected to influence their adsorption isotherms. To improve evaluation techniques for such experiments, comparatively simple
extensions of the standard Gouy-Chapman formalism have been studied which are based on a discrete charge virial expansion.
The model allows for the mobility of charged groups at the interface. It accounts for finite size of the adsorbed macromolecules and
for discrete charge effects arising from pair interactions in the interface plane. In contrast to previous discrete charge treatments
this model nearly coincides with the Gouy-Chapman formalism in the case where the adsorbing molecules are univalent. Large
discrepancies are found for multivalent molecules. This could explain the reduced effective charges needed in the standard
Gouy-Chapman treatment. The reduction factor can be predicted. The model is mainly limited to low surface coverage, typical for
the adsorption studies in question.

INTRODUCTION

Biochemical reactions occurring at the surfaces of cell or
organelle membranes are likely to be influenced by
surface charges due to the ionizable groups of lipids and
proteins. Apart from governing specific interactions,
surface charge generally plays an important role in
modulating the distribution of counterions and co-ions
in the vicinity of the membrane (see Cevc, 1990, for a

recent review). Usually, these charge effects can be
taken into account in a fully satisfactory way by use of
the Gouy-Chapman theory (Aveyard and Haydon, 1973).
Despite its simplicity and the relatively crude approxima-
tions made (in particular, considering the surface charge
to be homogeneously smeared over the water-mem-
brane interface), this formalism has proved to be remark-
ably successful. Excellent reviews are available to docu-
ment this fact (McLaughlin, 1989). Problems appear,

however, in using the Gouy-Chapman approach, if the
charged groups on the surface are not univalent (e.g.,
phosphatidylglycerol or phosphatidyl-serine lipid head
groups) but multivalent (such as the trivalent phosphatidyl-
inositol, PIP2) (Langner et al., 1990). The simple formal-
ism then overestimates strongly the charge effect on the
co-ions. Complex statistical thermodynamics calcula-
tions have been invoked to explain these findings (Lang-
ner et al., 1990 and references to Kjellander and
Marcelja therein). In the work covered by the above-
mentioned reviews the typical situation is that of a

membrane carrying a fixed surface charge (e.g., a given
mole fraction of charged lipid). The interest in these

cases is to determine the surface potential or the ion
distribution close to the surface. Though some corrections
can be made to account for ion absorption (Gouy-Chapman-
Stem model, cf. e.g., Aveyard and Haydon 1973) the
predominant contribution always comes from the diffuse
double layer of ions near the surface. Surface charges
considered are relatively high, typically corresponding to
between 10% and 100% charged lipid in the membrane.

In recent years, it has become very popular to apply
the Gouy-Chapman formalism to a different kind of
experiment, namely the binding or incorporation of
charged drugs, hormones, peptides, or proteins at a lipid
bilayer or biomembrane (e.g., McLaughlin and Harary,
1976; Lee, 1978; Altenbach and Seelig, 1985; Schwyzer,
1986; Seelig and McDonald, 1989; Seelig et al., 1988;
Sauterau et al., 1989; Schwarz and Beschiaschvili, 1989;
Beschiaschvili and Seelig, 1990a, b). If these molecules
adsorb to a surface containing lipids of opposite charge,
their affinity is increased. If they associate with a neutral
or zwitterionic bilayer they build up a surface charge by
themselves and thereby discourage association, leading
to a flattening of the isotherm at increasing free concen-
tration. In principle, such effects can readily be evalu-
ated using the Gouy-Chapman approach. However, if
the membrane-associating molecules are multivalent,
isotherms can often be fitted only by inserting a formal
"effective charge" into the equations. In several cases,
this effective charge was found to be much smaller than
the actual physical charge (Chung et al., 1985; Seelig and
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McDonald, 1989; Beschiaschvili and Seelig, 1990a). The
most dramatic case is the hexavalent peptide melittin
where the effective charge needed for fitting was only

2 (Schwarz and Beschiaschvili, 1989; Kuchinka and
Seelig, 1989; Beschiaschvili and Seelig, 1990b; Stankowski
and Schwarz, 1990). Very recently, a similar situation
has been found for a hexavalent signal peptide (Frey and
Tamm, 1990). Of course, there could be some physical
mechanism operating to produce this apparent charge
reduction, e.g., close association of counterions with the
charged groups or their localization at some distance
from the interface. On the other hand, one must also
examine the possibility of a deficiency of the Gouy-
Chapman model, at least for multivalent adsorbates, in
analogy to the situation found with the phosphatidylinosi-
tol, PIP2, where co-ion repulsion was also smaller than
predicted by the simple model (Langner et al., 1990).

Considering association of charged molecules with a

membrane, the situation is quite different than the one

sketched previously: the surface charge is not fixed, but
changes continuously as more and more material ab-
sorbs. The parameter of interest is not the surface
potential but the deviation from ideality, or the activity
coefficient of the absorbing species. Furthermore, in this
kind of experiment, interest focuses on the interface
itself, not on the diffuse ionic double layer. The adsorb-
ing or incorporating molecules are often quite large, so

that effects due to their finite size are expected to play an
important role. On the other hand, average surface
charges often remain small, at least if adsorption (incor-
poration) is to an uncharged membrane, so that the
surface charge is exclusively due to the adsorbed species.
There exists a vast body of literature considering

various extensions of the Gouy-Chapman theory. Much
of this work is related to electrode/electrolyte interfaces,
but could in principle be applied or rewritten for
insulator/electrolyte interfaces which would be more

appropriate in the case of biological membranes. Unfor-
tunately, most of these theories contain a certain amount
of mathematical sophistication and/or a number of
parameters which are unknown in the case of protein or

peptide adsorption to membranes. As a result, these
theories are currently ignored by most workers studying
peptide adsorption to lipid membranes. Instead, the
simple Gouy-Chapman theory is generally applied along
with the use of "effective" values of the most elementary
parameters such as the charge number of the adsorbing
molecule (Schwarz and Beschiaschvili, 1989; Beschi-
aschvili and Seelig, 1990a, b; Kuchinka and Seelig, 1989;
Frey and Tamm, 1990).
As a first step in an attempt to remedy this unsatisfac-

tory situation, I try to give the simplest extensions of the
Gouy-Chapman theory which account for finite size of
the membrane-absorbed particles and explain the ap-

pearance of "effective charges" when treating multiva-
lent adsorbed ions with the standard methods. To keep
the formalism as simple as possible, I shall take profit
from the following two experimental features: firstly,
surface coverage is often low, especially if adsorption to
uncharged membranes is considered. This fact allows
one to use simple linear approximations. Secondly, the
absorbing macro-ions are large and their shape in the
adsorbed conformation is usually unknown. Spherical
shapes would rather seem unprobable as compared with
flattened conformations accomodating to the surface.
The latter are in fact easier to treat than spheres.
Peptides are not expected to loose their hydration shells
upon adsorption. The significance of introducing inner

and outer Helmholtz planes (Grahame, 1947) as for
ionic adsorption on electrode surfaces is thus doubtful. I
shall avoid the appearance of undefined parameters by
representing the highly complex lipid membrane, water
interface by a formal interface between a high dielectric
(water) containing electrolyte and a low dielectric (mem-
brane). From experimental considerations, it has been
concluded that the mobility of charged groups at the
surface of lipid membranes is high (Winiski et al., 1986).
This fact is emphasized in the present treatment and
contrasts with the majority of existing discrete-charge
models which consider adsorption to a lattice.

In summary, the present approach is not intended to
introduce completely new theoretical concepts. Instead
it is thought to help for a better understanding of the
standard treatment and to provide simple corrections
for the experimental situations typical for macromolecu-
lar adsorption to lipid bilayers or biomembranes. The
main concept is to use a virial approach (thereby
considering explicitly pair interactions at the adsorption
interface), while retaining the mean-field treatment
characteristic for the standard Gouy-Chapman theory
for the electrolyte phase. This formalism, which may be
considered the next higher order correction to the
classical approach, will be shown to nearly coincide with
the latter in the case of small univalent adsorbates, but
to yield large differences for large size and/or multiva-
lent adsorbates. The formalism can either be taken as it
stands or else be used to predict finite-size corrections
and effective parameters in the standard treatment.

THE MODEL

Smeared charges: Gouy-Chapman
approach
For comparison with the formalism to be developed
below, we first state those results of the Gouy-Chapman
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treatment which are of interest in our context: the
absorbed charge is considered to be smeared uniformly
over the interface, giving rise to an average surface
charge, or (in Coulomb per square meter, say). The
natural variable to measure the concentration of ad-
sorbed (or incorporated) molecules at the interface is
r = moles of adsorbed material per moles of total lipid.
For the purpose of our discussion it is more convenient
to introduce

x = moles of adsorbed material/moles
of accessible lipid = r,, (1)

where is an accessibility factor. is equal to unity if the
molecule of interest has access to both sides of the
bilayers, as with lipid dispersions. If adsorption is from
aqueous solution to the outer leaflet of lipid vesicles,
will be between 0.5 and 0.65, depending on vesicle
size, the larger figure referring to very small unilamellar
vesicles where nearly two-thirds of the lipids stay in the
outer shell; in multilamellar dispersions, ,B may in fact be
much smaller than 0.5 if only the outermost shell is
accessible. We shall give our formulae in terms of x,
conversion to r being dependent on the relevant ,B value
for the particular experimental system. If the adsorbing
molecule inserts deeply into the bilayer thereby increas-
ing the area of the interface, x should be replaced by the
corrected parameterx:

NA = Avogadro's number, e = electronic charge). For a

0.1-M electrolyte solution at 25°C, the value of b is 6.2
(using 70 A2 for the area of a lipid). Up to zx = 0.1 the
sinh-1 can be simply replaced by its argument to 5%
precision. Eq. 4 then simplifies to

zex aF
',==AlipKEEO KEE0 (5)

Let us assume that ideal incorporation takes place in
the absence of electrostatic interactions, governed by a

partition coefficient K:

x = Kc,

where c is the (bulk) aqueous concentration of the
incorporating species. At low surface coverage the same
equation is also applicable for adsorption or surface
binding, with K the binding constant. At higher cover-

age, Langmuir or other isotherms can be used to account
for the saturation of sites. Charge accumulation at the
interface would reduce the adsorption due to repulsive
interactions, which can be written in terms of an activity
coefficient, a, giving

ax = KC. (6)

With the Gouy-Chapman formalism, a is obtained as

(Schwarz and Beschiaschvili, 1989)

x = xI(1 + xAins/Alip) (2)

with Ai., and Alip being the molecular areas of the
inserted molecule and the lipid, respectively.
The surface charge a adsorbed on a neutral lipid

bilayer can be expressed as

cr = (zeIAjjp)x (3)

with z the charge number of the adsorbed species and e

the elementary charge.
The Poisson-Boltzmann equation can be used to

describe the ionic distribution near the interface as a

function of the surface potential qi induced by the
smeared charge. Specializing to a 1:1 electrolyte bathing
the membrane (see McLaughlin, 1977, for more general
formulae), this differential equation can be solved to
yield (Schwarz and Beschiaschvili, 1989):

* = 2kTIe (sinh'zbx) (4)

with b = e2/(2A,iPKEE kT )

K2 = 2e2 INAI(EEOkT), K iS the inverse Debye length.

(EO = permittivity of vacuum, e = dielectric constant of
water, kT = thermal energy, I = ionic strength,

ln a = 2z sinh- zbx = zequ/kT.
Eq. 6 can thus be rewritten as

x = Kc exp(-zefi)/kT

(7)

so that 1/a can be interpreted as a Boltzmann factor
reducing the bulk aqueous concentration at the inter-
face. Again, in Eq. 7, the sinh-1 can be replaced by its
argument if the surface coverage is low:

In a = 2z2bx. (7a)

We note the activity coefficient goes with the square of
the charge number. Thus, for an effective charge reduc-
tion by a factor of 3 (Zeff = z13) as evaluated in the case of
melittin, the corresponding reduction in the interaction
energy is by a factor of 9.
So far, adsorption has been considered to proceed at

an interface composed of uncharged or zwitterionic lipid
head groups. If some of the lipid is charged, it contrib-
utes to the overall surface charge. It is the main virtue of
the Gouy-Chapman approach that it allows immediately
to incorporate this effect: zx in Eqs. 3, 4, 7 is simply
replaced by zx + z,jPx,1,, with ziip the valency of the lipid
head group charge and xlip the mole fraction of charged
over total lipid.
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Alternative derivation
Mathias et al. (1988) have proposed a very instructive
alternative derivation of the Gouy-Chapman formula.
Since the dielectric constant of a lipid membrane (E, - 2)
is low with respect to that of the aqueous phase
(e - 78), the following screened Coulomb potential can

be assumed for a point-like charge ze sitting right at the
interface (Mathias et al., 1988; McLaughlin, 1989; Nel-
son and McQuarrie, 1975; Brown, 1974):

2ze exp (-Kr)
4veeO r * (8)

The factor 2 accounts for the image charge effect arising
at the interface. (More rigorously, this factor would be
1 + (E - Em)/(E + Em) = 1.95 using the values of dielec-
tric constants given above. The reader may refer, e.g., to
Vorotyntsev and Ivanov (1989) for a more general
treatment where the adsorption plane is distinct from
the interface plane.)

I consider the point charge to be at the center of a

circular membrane patch of radius a >> K-1. Averaging
the potential, Eq. 8, over this patch, one obtains

( _)= 2 r(r)dr =_ (9)

The average surface charge has been defined as =

ze/lra2, and the exponential screening of the potential
allows one to integrate to infinity ifa is large with respect
to the Debye length. This reproduces the Gouy-
Chapman formula, Eq. 5. Of course, the same result will
be obtained for several point charges ze positioned at
distances from each other which are large with respect
to the Debye length.
A similar result has been obtained in more general

terms (i.e., including media of other dielectric con-

stants) by Vorotyntsev and Ivanov (1988). They note
that the equivalence of statistical averaging and smear-
ing out of charges is related to the adopted model of
Debye-Huckel-type electrolyte screening.
To conform with the formalism sketched under point

1, the activity coefficient of the adsorbate is calculated by
setting the interaction energy of an ion of charge ze with
the remaining membrane phase equal to ze(qi). This
represents a typical mean-field approach. According to
Eq. 7, the Gouy-Chapman potential can be written

*GC = kT In a /ze. (10)

Mobile discrete charges of finite
size-virial approach
As the next higher order approximation I propose to
consider pair interactions of charged molecules explic-

itly in the membrane phase, but to retain a mean-field
approximation for the electrolyte screening effects.
The Gouy-Chapman theory considers the distribution

of charge in the aqueous phase close to and up to a

homogeneously charged surface. In the following I shall
consider the membrane interface with the absorbed
molecules as a separate phase, in equilibrium with the
aqueous phase. The equilibrium condition is given by
Eq. 7.

In practical work on adsorption of charged molecules
to lipid membranes, typical electrolyte concentrations
range between 10 and 100 mM ionic strength. Screening
by counterions then makes the potential of discrete
charges exposed to water essentially "short-range,"
decaying to low values at distances of about two Debye
lengths (2 x 9.6 A at 0.1 M ionic strength, 25°C).
Consequently, the adsorbed molecules will not repel
each other when surface coverage is low enough that the
average distance between two charges is large with
respect to the Debye length, K-l. As the concentration of
absorbed molecules, x, increases, pair interactions will
come into play; at still higher concentrations triplet
interactions come in, etc. The situation is fully analogous
to modeling a real gas by a virial expansion. From
general thermodynamics, the activity coefficient of the
adsorbed species is given by (Tsien, 1978)

ln a = Y-k[(k + 1)Ik]Bk+lxk (11)

expanded in powers of x. (Others like Hill [1960] define
the virial expansion as a power expansion of a instead of
ln a. Both definitions are equivalent as far as the second
virial coefficient is concerned.) The Bk+l are the virial
coefficients. Since I measure surface concentration per
lipid and not per square meter, theB as defined here are

obtained from the ordinary coefficients by dividing by
the molecular lipid area. For low surface density only B2
is relevant. It can be calculated from the following
integral over the two-dimensional surface phase (Tsien,
1978)

B2 = A [1 - exp (-U/kT)Jrdr. (12)

Here, r is the distance between the two interacting
charges in the plane and U(r) is the pair interaction
energy.

Treating the aqueous phase as a continuum, I use the
screened Coulomb potential, Eq. 8, to describe the
potential produced by an absorbed molecule. This proce-
dure is in line with previous discrete charge treatments
of membrane surfaces (Nelson and McQuarrie, 1975;
Brown, 1974). The present approach differs from typical
models of that kind in so far as the charges are taken to
be mobile in the surface plane and are not restricted to a

344 Biophysical Journal Volume 60 August 1991344 Biophysical Journal Volume 60 August 1991



lattice or otherwise a priori restricted in their position.
Of course there is a sort of inconsistency to consider
direct pair correlations of discrete charges at the inter-
face while treating the aqueous phase in a mean field
continuum model. Such an assumption would appear to
be justified as an approximation only as long as attention
is limited to events in the interface plane, as will be the
case in the remainder of this article.

Using the potential of Eq. 8, the pair interaction
energy U, is given, in units of kT:

U/kT = ze*IkT
= zw exp (-Kr)fr (13)

w = 2e2I(47rFe0FkT). (14)

Inserting this into Eq. 12, the second virial coefficient,
B2, can be computed numerically. The integral con-

verges well, and there is no need of sophisticated
algorithms. Once B2 is known, the activity coefficient can
be obtained for any (sufficiently low) surface coverage x
by setting

a = exp (2B2x). (15)

The condition of low surface coverage means that
2B2x << 1 (e.g., 2B2x < 0.1) to justify truncation of the
virial expansion after the second, linear term. I shall
come back to this condition in the Discussion.

Finite size
Finite size of the adsorbing ions is quite naturally
incorporated in the virial approach. For the sake of
simplicity, I shall limit myself to shapes which are

circularly symmetric in the interface plane (extension to
more general shapes being straightforward). Two ex-

treme cases are considered: (a) the z-valent charge
remains point-like but is surrounded by a "hard" disk-
shaped belt of radius R; (b) the z-valent charge is
smeared homogeneously over the surface of a hemi-
sphere of radius R, sitting with its center on the
interface. The image charges then complete this charge
distribution approximately to a full sphere of charge 2ze.
For case a, the potential of Eq. 8 remains valid in the

range of r > 2R, the distance of closest approach of two
large ions. For r < 2R, U becomes infinite. The integral,
Eq. 12 then yields

B2 = 2'rrR2/A ip + [1 exp (-UIkT)]rdr. (16)
Alip

The first term is the excluded-area contribution which
gives the entropic effect due to steric exclusion
(Stankowski, 1983, 1984). Since an integrand smaller
than unity has been replaced by unity in part of the

integration range, the resulting virial coefficient is larger
than the one for a point charge.

For case b, the hemispherical charge distribution,
completed to a sphere by the image charges, the poten-
tial is taken in analogy to Debye Huckel theory of large
ions (Moore, 1972):

2ze exp (KR) exp (-Kr) (7

+4(r)= (1 + KR) r
(17)

This potential is valid in the part of the space containing
the electrolyte solution and (by virtue of the continuity
conditions) including the interface plane itself. To
calculate the pair interaction energy, this expression has
to be integrated over the surface of a hemisphere, the
center of which is in the interface plane at a distance r

from the hemisphere producing the potential (see Tsien,
1978, for an argument of why integration is only over the
distribution of real charges whereas the potential in-
cludes image charges). The result is

Go

U(r)IkT ze*(s) sin 0d8

withs = (r2 + R2 - 2rR cos O)"2and i(s) given by Eq. 17
with r replaced by s. The final result is

ze sinhKR
U(r)IkT = kT KR () (18)

Again +i(r) is given by Eq. 17. Inserting this into Eq. 16
yields the second virial coefficient for case b. The
distance of closest approach, 2R, and the excluded-area
term are the same in the two cases considered.

Adsorption to charged bilayers
There is no problem to calculate B2 for repulsion
between point charges, but for attractive interactions
the interaction energy diverges as the distance of closest
approach goes to zero. This can only be avoided by
introducing the finite size of the charged groups. The
choice of the size is very critical because it determines
where the attractive potential trough is cut off. (In
contrast, for repulsive interactions, finite size merely
steepens the potential in the hard core region, see Fig.
1.) In the following, I shall give numerical values for a

range of trial radii of ionic groups, starting at - 2 A.
Combining positive and negative charges at the inter-

face, the virial approach has to be extended in analogy to
the well-known case of a binary mixture of real gases

(Hill, 1960). The activity coefficient of the absorbing
(incorporating) species then comes out as

In a = 2B2(rep) x + 2B2(att) x,ip + . . . (19)
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FIGURE 1 Hard core effect on repulsive (a) and attractive (b)
electrostatic potentials.

B2(rep), the repulsive pair interaction of adsorbed mole-
cules, is the same as above, that is Eq. 16 together with
Eqs. 8 or 17. B2(att), the attractive pair interaction
between adsorbing species and lipid head groups, is
given by the same Eq. 16, but the z2 appearing in the pair
interaction energy U(r), Eqs. 8 and 17, is replaced by
z Iz,p. Obviously, B2(att) is negative. (In textbook nota-
tion, B2[attj would be twice as large due to a symmetry
factor; the factor 2 in front of it in Eq. 19 is to
compensate for this in our notation.) 2R is the distance
of closest approach, equal to the sum of the individual
radii for the adsorbate and for the lipid head group. (For
case b note that the result, Eq. 18, implies the assump-
tion of equal radii of the interacting molecules; the more
general result is readily obtainable, but for the sort of
estimate of interest here it is fully sufficient to use Eq. 18
as it stands, withR taken as the arithmetic average of the
radii involved.)

It should be remembered that in any case this ap-

proach is limited to low surface coverage of all ionic
species in the interface, so that each term in Eq. 19
remains smaller than unity.

Simplified finite-size model
In general, evaluation of the virial integral, Eq. 16, has to
be done numerically. The situation simplifies consider-
ably, however, if the absorbing particles are very large:
the pair interaction energy U(r) has to be evaluated in
the range of r between 2R and infinity. Being a homoge-
neously decreasing function of r, U(r) will clearly remain
<<kT in the complete integration range, if R is large
enough. The exponential exp (-U/kT) can then be
expanded and the integral solved analytically. Assuming
"case b ," this yields

2B2 = 4irR2IAjjp + 2z2b exp (-2KR), (20)

where b is the same constant as appearing in the
Gouy-Chapman formalism, Eq. 4. Multiplying Eq. 20 by
x one obtains ln a which is thus composed of an

excluded-area and an electrostatic term. The latter has
the form of a mean-field potential, (4.), multiplied by
ze/kT. In fact, (4) is identical to the ordinary Gouy-
Chapman potential, apart from the exponential term
containing the size R.

Because the parameter b is proportional to the Debye
length, KO, the elecrostatic term dominates the excluded-
area term at sufficiently low ionic strength, and
exp (-2KR) approaches unity in that same limit. Thus
the virial approach goes over to the Gouy-Chapman
theory under the following limiting conditions: (a) U <<
kT everywhere in the physically available part of the
interface (no "discrete-charge effects") and (b) low
enough ionic strength so that KR << 1 (no "finite-size
effects").
Of course, U << kT at r = 2R is not at all satisfied for

ordinary particle radii of a few Angstroms, even for z =
1. This is the reason why the virial expansion yields
different results than the mean-field treatment: in the
statistical averaging, strong repulsion at close distance is
weighed more correctly than in the smeared-charge
treatment. The effect should be the more pronounced
the larger the interaction energy at the distance of
closest approach, i.e., the larger z. The corresponding
numerical values are discussed in Results.
From an intuitive point of view, one may thus state

that the smearing out of charges is equivalent to eliminat-
ing the peaks in the interaction energies arising in
discrete charge distributions at close distances between
charged groups. Vorotyntsev and Ivanov (1989) have
noted in a similar way (though in a different context
involving an intermediate dielectric layer) exaggerated
particle-particle repulsion due to the "smearing out of
the charge within the Bjerrum region around the ion." I
propose the following limiting procedure to make the
argument explicit: starting with a given distribution in
the interface plane of discrete charges ze (surface
coverage x), smearing out of these charges is simulated
by breaking them up into smaller entities of valency z' =
zin (surface coverage nx). In the limit of n tending to
infinity, the distribution represents a homogeneously
smeared surface charge. Clearly U(r) will be smaller
than kT at any fixed value of r = 2R if only n is made
large enough. The virial integral then goes over to Eq. 20
(where the finite-size contributions are negligible ifR is
small with respect to the Debye length). As before, the
activity coefficient is found as kT ln ot = z'e (*), with (4i)
equal to the Gouy-Chapman potential.

In the above discussion, finite-size effects were ne-

glected to allow direct comparison with the standard
Gouy-Chapman formalism. Obviously, however, even

with finite-size contributions included, the electrostatic
term in Eq. 20 is still of a mean-field type. This equation
can therefore be considered as a generalization of the
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ordinary GC formalism to include finite-size effects. It is
obtained from the virial expansion approach either
directly (for large R) or, more generally, by applying the
limiting procedure of splitting up the charges. The latter
corresponds to smearing out the charge while retaining
the steric structure of the adsorbed particles. Calcula-
tions can be done with particles of "case a " as well as of
"case b" type. The resulting formulae are:

In a = 4,rrR2x/A,ip + 2z2bx), (21)

where the factor is

(a) = exp (-2KR) for case a (22a)

sinhdR exp (-Kd?) for caseb. (22b)(b) KR (1 + cR)

Obviously, both cases give the same result if KR is much
smaller than unity.
The model represented by Eqs. 21 and 22 is clearly

less general than the virial approach, because it only
incorporates finite-size corrections, but not the "discrete-
charge effects" in the sense of the above discussion. This
simplified model is nevertheless useful to estimate the
size contributions alone in the framework of ordinary
smeared-charge treatments.

RESULTS

Adsorption (incorporation) of charged molecules to an
uncharged lipid bilayer is considered in the first in-
stance. Low surface coverage x is assumed throughout.
The logarithm of the activity coefficient of the adsorbing
(incorporating) material is then found to be a linear
function ofx both in the standard Gouy-Chapman (GC)
treatment and in the virial approach (VE):

(In a)/x = 2B2 for VE (23)
(In a)/x = 2z2b for GC. (24)

Thus, the two models can simply be compared by looking
at the coefficient C = ln aix, which still depends on the
valency of the adsorbate and on the ionic strength of the
electrolyte solution. In analogy to current evaluation
practice, one may also write

2B2= 2ze2ff b (25)

and compare the physical valency z with the "effective
charge number" Zeff needed in the GC formalism to
match the virial expansion results.

Numerical values of C = In a/x for the two models are

compiled in Table 1 for various ionic strengths and z = 1
(e= 78 and Alip = 70 A2 is assumed throughout). They

TAsLE 1 Coefficients C = In aix defining the activity
coefficients of membrane-adsorbed Ions, calculated from
virial expansion (VE) and from Gouy-Chapman theory (GC):
Ionic strength dependence

Ionic strength VE (point) VE (2 A)* GC (point)* GC (2 A)'

1mM 106 106 123 119
lOmM 29 29 39 35
20mM 19 19 27.5 23.7
50mM 10.7 10.9 17.4 13.9
100mM 7.0 7.1 12.3 9.0 (8.8)
500mM 2.4 2.6 5.5 3.2 (2.9)

1 M 1.5 1.8 3.9 2.0 (1.8)

*Hemispherical charge distribution of radius R = 2 A (Eqs. 16, 18);
case a would give nearly the same results.
tGiven is 2z2b, cf. Eq. 7a.
'Simplified finite-size correction, Eqs. 21, 22b. Case a results are given
in brackets where they deviate.

agree very well at low ionic strength, but deviate as the
electrolyte concentration increases.
Using the simplified finite-size correction of the previ-

ous section (last column of Table 1), it becomes evident
that the discrepancy is mainly due to finite-size effects.
These effects obviously become important already in the
range of ionic strengths between 10 and 100 mM, which
is the one of primary interest in experimental work.
Upon comparing Zeff and z in this range of salt concentra-
tion, the discrepancies amount to 15-25% without
finite-size correction and to 10% with finite-size
correction in the GC treatment, along the lines of the
simplified model given above.
The discrepancies between the coefficients C in the

GC and VE models become much more important for
larger values of z, as shown in Table 2 (ionic strengths:
0.01 and 0.1 M). 2B2 values are considerably smaller than
the corresponding Gouy-Chapman counterparts. In fact,
they increase rather more linearly with z in contrast to
the z2 dependence of the Gouy-Chapman parameter. (In

TABLE 2 Coefficients C = In aix at 0.01 M and 0.1 M ionic
strength: dependence on valency z

I= 0.01M I= 0.1M

VE GC GC VE GC GC
z (point) (point) (2 A) (point) (point) (2A)
1 29 39 35 7.0 12.3 9.0
2 82 156 137 17 49 34
3 140 350 308 27 111 76
4 197 622 546 36 197 134
5 252 973 853 45 308 209
6 304 1400 1228 52 444 301

Calculations as for Table 1 (VE [2 A] is within 2% of the values for VE
[point] throughout). GC (2 A) represents simplified finite-size correc-
tion.
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fact, using zbx instead of z2bx in the Gouy-Chapman
formula nearly exactly reproduces the second virial
coefficients for z > 1.) We have also calculated coeffi-
cients at 10, 20, and 50 mM ionic strength and find the
following approximate empirical relations valid for z >

2:

2B2 = 2zb at lOOmM ionic strength
2B2 = 1.6z1 °Sb at 5OmM ionic strength
2B2 = 1.86z'"lb at 20mM ionic strength
2B2 = 2z1'5b at lOmM ionic strength

(26a)
(26b)
(26c)
(26d)

In a purely operational way, these equations can be used
to define an "effective" charge number, Zeff, setting the
above equations equal to 2 Z2 b. For example, at 100
mM ionic strengthzeff = Z05 or at 20 mM, 2Z = 1.86z11,

i.e. Zeff= 0.96 ZO55.
Fig. 2 summarizes the main conclusions by showing

water-membrane partition isotherms for a molecule
with z = 3, assumed to be hemispherical with a radius of
2 A, at 0.1 M inert 1:1 electrolyte. Curve c flattens much
less at high concentrations than the Gouy-Chapman
curve a, as predicted by the virial approach. It can be
reproduced in the standard model by introducing an

"effective charge number" smaller than 3, namely
Zeff= 1.5. Curve b corresponds to the simplified model
which corrects only for finite-size effects. The dashed
curve is calculated with the virial model and represents
finite-size effects for a very large particle, of radius equal
to the Debye length (9.6 A). The simplified model then
gives a very good approximation to the virial expansion,
in fact so close to it that it had to be omitted from the
figure for clarity. (The effective charge number corre-

sponding to the dashed curve is 1.7.)
In principle, the model can be applied also to the case

of adsorption to charged lipid bilayers, provided that the
charge density is low enough. Some size estimate (dis-
tance of closest approach or average radius of charged
groups) has to be made. As more and more data
accumulate, it should become feasible to define a sort of
calibration parameter by comparison. In any event, as
shown in Table 3, the attractive interaction energies
evaluated with reasonable assumptions about size are
found in the same range of magnitude as the repulsive
energies. However, for the dependence on z, there is

2 4 6 8
c [(iM]

FIGURE 2 Water-membrane partitioning of a molecule with charge
number z = 3 and radius 2 A in 0.1 M inert 1:1 electrolyte. Partition
coefficient K = 104 MW. x = membrane-associated molecule per lipid,
c = aqueous concentration. (a) Standard Gouy-Chapman model; (b)
smeared-charge model accounting for finite size; (c) second virial
coefficient model. (Full lines) particle radius 2 A, (dashed line) very
large particle of radius 9.6 A (i.e., equal to the Debye length); curve
represents case c, case b would be very slightly below it.

apparently a stronger increase of attraction than of
repulsion. Of course, if the adsorbing molecule is very
large, much of the attractive effect may be compensated
by the excluded area.

DISCUSSION

Recently, Gouy-Chapman theory has been applied by
various authors to describe the adsorption (incorpora-
tion) of relatively large molecules (hormones, peptides,
proteins) at lipid bilayers. Two problems are obvious
from these reports: first the finite size of these molecules
is expected to cause excluded area effects and may also
have some influence on the electrical potentials. In
addition, fitting isotherms for multivalent molecules by
the Gouy-Chapman formula often required that a re-
duced "effective charge" was used.
To analyze problems with the standard treatment in

these cases, a virial expansion approach has been pro-
posed. It may be considered as the next higher level of
approximation in so far as pair interactions in the
interface plane are taken into account, as compared with
the mean-field character of the standard model. The
approach is, however, limited to low surface coverage of
ions, making it particularly appropriate for studying the
adsorption of peptides or other large molecules to

TABLE 3 CoefficIents for attractive interaction, 2B, (att), for different valencles z and different radil R as Indicated

z 2B2(2A) 2B2(3A4) 2B2(4A) 2B2(6A) 2B2(9.6,4) GC (point)

1 -51/ -12.5 -40/ -8.3 -34/ -4.1 -24/ +1.7 -7/+14 -39/ -12.3
2 -274/-59 -128/-25 -94/-14 -64/ -3.9 -34/+11 -156/ -49
3 -2620/-325 -400/-60 -211/-30 -121/-10.7 -67/ +8 -350/-111

Values given refer to 0.01 M (first item) and 0.1 M (second item) ionic strength, separated by slashes. z,ip =-1.

348 Biophysical Journal Volume 60 August 1991



uncharged (zwitterionic) lipid membranes. Neverthe-
less, a generalization has been given which includes the
presence of charged lipid in the membrane in not too
high amounts.

In the virial approach, the charged molecules are

considered to be mobile in the interface plane and not in
any way a priori restricted in their position (this is the
main difference with respect to the majority of existing
discrete-charge treatments). The resulting functional
form of the activity coefficient of the adsorbate is the
same as in the Gouy-Chapman model (at low surface
coverage x), ln a being a linear function ofx. It should be
pointed out that a completely different functional form
has been postulated in one of the few reports in the
literature where a discrete-charge model has been ap-

plied to peptide absorption data (Schoch and Sargent,
1980). In fact, in that treatment the charges were

assumed to adsorb always at the points where the
electrostatic potential is minimal, and this assumption
was combined with a Langnuir isotherm. Using this
isotherm, however, implicitly assumes random and unre-

stricted adsorption, which seems to conflict with the first
assumption.
Because the virial expansion as given here yields the

same functional dependence on surface coverage as the
standard Gouy-Chapman treatment, it predicts that the
latter should be able to correctly describe experimental
isotherms, if the coefficients are suitably adjusted. For
instance, it may be necessary to introduce an "effective
charge number," Zeff, instead of the physical valency, z.

According to the numerical results listed in Tables 1 and
2, Zeff is predicted to be smaller than z, the effect being
more pronounced at large z. This is exactly the situation
found in experimental work on peptide absorption to
lipid membranes. The "effective" reduction of the phys-
ical valency to be expected when applying the standard
treatment is given by Eq. 26.
One of the best documented cases is that of the bee

venom peptide melittin (Schwarz and Beschiaschvili,
1989; Kuchinka and Seelig, 1989; Stankowski and
Schwarz, 1990). It has been argued that out of its six
charged groups the two arginines probably do not
contribute very much to the surface charge at a bilayer-
water interface due to a close association of counterions
or a localization far away from the interface plane
(Stankowski and Schwarz, 1990). With Eq. 26, the
remaining valency of z = 4 then reduces to an "effective
charge" of 2 at 0.1 M ionic strength and 2.2 at 0.01 M.
This would explain the experimental values, reported to
lie between 1.85 (Schwarz and Beschiaschvili, 1989) and
2.2 (Kuchinka and Seelig, 1989). Similar arguments
apply to the hexavalent signal peptide from cytochrome
c oxidase subunit IV for which Frey and Tamm (1990)
report a comparable charge reduction. For a z = 2

analogue of somatostatin, Beschiaschvili and Seelig
(1990a) find Zeff =1.3 at 0.1 M NaCl, in line with the
prediction Of Zeff = 1.4 from Eq. 26.
The present model can be generalized in principle to

describe the absorption to charged lipid bilayers. How-
ever, application of the corresponding formalism is
limited by the condition that the surface density of every
charged species must be low. The results compiled in
Table 3 are nevertheless interesting in that they show
that the contributions due to attractive interactions are

of similar magnitude as in the standard GC theory.
Although the virial model is meant to describe the

charge distribution at the interface plane and not in the
ionic double layer, it is of interest to note the qualitative
agreement with recent experimental results obtained
using the multivalent lipid, inositol-trisphosphate (Lang-
ner et al., 1990). In that study, co-ion repulsion was

found to be much weaker than that predicted by the
simple Gouy-Chapman model, in accordance with an

effective charge reduction very much like the one ob-
tained with the present model. In contrast, counterion
attraction was stronger and more closely matched the
Gouy-Chapman value. I would predict the same behav-
ior if an estimated average radius of 2.5 A is used for the
charged groups involved. This is about the same size as

that used by the authors to rationalize their results in the
framework of a rather sophisticated thermodynamic
model of the hypernetted chain type.

Previous discrete charge theories had rather pre-

dicted co-ion interactions to agree with the standard
Gouy-Chapman results and counterion attraction to be
much stronger (Nelson and McQuarrie, 1975; Winiski et
al., 1986). The main problems in the treatment have
been discussed by Winiski et al. (1986) on the basis of
numerical calculations. Finite size and mobility of the
charges were considered as major factors affecting the
results, in agreement with conclusions from the present
model.

In fact, accounting for finite-size effects is the second
major advantage of the virial approach, apart from
rationalizing "effective charge numbers." Two extreme
cases have been considered in detail: a point-like charge
surrounded by a circular belt of radius R ("case a") and
a charge distribution smeared homogeneously over the
surface of a hemisphere of radius R ("case b"). Sizes of
the order encountered with simple ions do not markedly
affect the second virial coefficient, as shown in Table 1.
For very large molecules, the excluded-area contribu-
tion can become dominant. The importance of this term
has been stressed previously (Levine et al., 1962;
Stankowski, 1983, 1984).
A simplified model has been presented which com-

bines the steric properties of molecules with a smeared-
charge approach. This simplified model provides a very
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convenient correction to the standard GC treatment,
improving the results especially at not too high valencies
(cf. Tables 1 and 2). Improvement is due to cutting off
the potential in those parts of the plane which remain
inaccessible due to steric constraints. The quality of this
simplified model can be judged by comparison with the
more general virial expansion formalism.

Limitations
The main advantage of the formalism appears to be its
simplicity, especially when compared with sophisticated
thermodynamical theories of the hypernetted chain or
mean-spherical-approximation type (Kjellander and Mar-
celja, 1986; Attard et al., 1988). However, this can clearly
not go without serious limitations.

First of all, the formalism as developed here is only
valid at low surface coverage (2B2x < 1). This corre-
sponds approximately to the regime where the Gouy-
Chapman theory can be linearized. At higher surface
coverage it is necessary to take account of higher order
virial coefficients which are more difficult to calculate. I
evaluated the third virial coefficient numerically at 0.1 M
ionic strength for univalent point charges and found
13 = 0.3 B'. This is less than in the case of uncharged
hard disks in a plane, where B3 = 0.782 B2. This figure
allows one to estimate the importance of higher order
terms, by using Eq. 11. It turns out that the contribution
of these terms may have less importance than another
point of concern which becomes evident when consider-
ing the Gouy-Chapman formula, Eq. 7. For zbx > 1, the
sinh-' is smaller than zbx (in contrast to the higher order
virial coefficient which would tend to increase the linear
term). Obviously this is due to rearrangement of the ions
in the diffuse double layer: the total ion concentration,
c+ + c-, remains constant near the interface as long as
the sinh-' can be linearized (i.e., the increase in counter-
ion concentration is counterbalanced by the decrease of
co-ion concentration). Beyond that regime, counterion
concentration increase exceeds the decrease of co-ion
concentration, leading to more efficient screening of the
membrane-bound charges. Possible corrections would
involve appropriate modification of the Debye parame-
ter K. At the present stage, the simplest procedure is
probably to use the Gouy-Chapman formalism with an
effective charge number, Zeff, taken from a relation like
Eq. 26. It is encouraging to note that Vorotyntsev and
Ivanov (1989) have found linearization of the pair
interaction function to remain meaningful up to much
higher charge densities.
Another limitation of the virial coefficient approach

as used here is the distinction between charges at the
interface, modeled as individual entities, and in the
aqueous phase, modeled as a continuum, respectively.

This makes the model less appropriate to describe the
potential or interactions in the ionic double layer occupy-
ing the aqueous phase close to the interface. The main
scope was in fact to treat interactions among adsorbing
molecules at the interface.

Receivedforpublication 11 July 1990 and infinalform 14January
1991.

REFERENCES

Altenbach, D., and J. Seelig. 1985. Binding of the lipophilic cation
tetraphenylphosphonium to phosphatidylcholine membranes. Bio-
chim. Biophys. Acta. 818:410-415.

Attard, P., D. J. Mitchell, and B. W. Ninham. 1988. Beyond Poisson-
Boltzmann: images and correlations in the electric double layer. II.
Symmetric electrolyte. J. Chem. Phys. 89:4358-4367.

Aveyard, R., and D. A. Haydon. 1973. An introduction to the
principles of surface chemistry. Cambridge University Press, Cam-
bridge 40-52.

Beschiaschvili, G., and J. Seelig. 1990a. Peptide binding to lipid
bilayers. Binding isotherms and zeta-potential of a cyclic somato-
statin analog. Biochemistry. 29:10995-11000.

Beschiaschvili, G., and J. Seelig. 1990b. Melittin binding to mixed
phosphatidylglycerol/phosphatidylcholine membranes. Biochemis-
try. 29:52-58.

Brown, R. H. 1974. Membrane surface charge: discrete and uniform
modeling. Prog. Biophys. Mol. Biol. 28:343-370.

Cevc, G. 1990. Membrane electrostatics. Biochim. Biophys. Acta.
1031:311-382.

Chung, L., G. Kaloyanides, R. McDaniel, A. McLaughlin, and S.
McLaughlin. 1985. Interaction of gentamicin and spermine with
bilayer membranes containing negatively charged phospholipids.
Biochemistry. 24:442452.

Frey, S., and L. Tamm. 1990. Membrane insertion and lateral diffusion
of fluorescence labelled cytochrome c oxidase subunit IV signal
peptide in charged and uncharged phospholipid bilayers. Biochem.
J. 272:713-719.

Grahame, D. C. 1947. The electric double layer and the theory of
electrocapillarity. Chem. Rev. 41:441-501.

Hill, T. 1960. Introduction to Statistical Thermodynamics. Addison-
Wesley, Reading, MA. 261-275.

Kjellander, R., and S. Marcelja. 1986. Double-layer interaction in the
primitive model and the corresponding Poisson-Boltzmann descrip-
tion.J. Phys. Chem. 90:1230-1232.

Kuchinka, E., and J. Seelig. 1989. Interaction of melittin with phosphati-
dylcholine membranes. Binding isotherm and lipid head-group
conformation. Biochemistry. 28:4216-4221.

Langner, M., D. Cafiso, S., Marcelja, and S. McLaughlin. 1990.
Electrostatics of phosphoinositide membranes. Theoretical and
experimental results. Biophys. J. 57:335-349.

Lee, A. G. 1978. Effects of charged drugs on the phase transition
temperatures of phospholipid bilayers. Biochim. Biophys. Acta.
514:95-104.

Levine, S., G. M. Bell, and D. Calvert. 1962. The discreteness-of-
charge effect in electric double layer theory. Can. J. Chem. 40:518-
538.

350 Biophysical Journal Volume 60 August 1991



Mathias, R. T., S. McLaughlin, G. Baldo, and K. Manivannan. 1988.
The electrostatic potential due to a single fixed charge at a
membrane-solution interface. Biophys. J. 53:128a. (Abstr.)

McLaughlin, S. 1977. Electrostatic potentials at membrane-solution
interfaces. Curr. Top. Membr. Transp. 9:71-144.

McLaughlin, S. 1989. The electrostatic properties of membranes.
Annu. Rev. Biophys. Biophys. Chem. 18:113-136.

McLaughlin, S., and H. Harary. 1976. The hydrophobic absorption of
charged molecules to bilayer membranes: a test of the applicability
of the Stern equation. Biochemistry.. 15:1941-1948.

Moore, W. J. 1972. Physical Chemistry. 5th ed. Longman, London. 453.
Nelson, A. P., and D. A. McQuarrie. 1975. The effect of discrete

charges on the electrical properties of a membrane. J. Theor. Biol.
55:13-27.

Sautereau, A. M., M. Betermier, A. Altibelli, and J. F. Tocanne. 1989.
Adsorption of the cationic antitumoral drug Celiptium to phosphati-
dylglycerol in membrane model systems. Effect on membrane
electrical properties. Biochim. Biophys. Acta. 978:276-282.

Schoch, P., and D. F. Sargent. 1980. Quantitative analysis of the
binding of melittin to planar lipid bilayers allowing for the discrete-
charge effect. Biochim. Biophys. Acta. 602:234-247.

Schwarz, G., and G. Beschiaschvili. 1989. Thermodynamic and kinetic
studies on the association of melittin with a phospholipid bilayer.
Biochim. Biophys. Acta. 979:82-90.

Schwyzer, R. 1986. Molecular mechanism of opioid receptor selection.
Biochemistry. 25:6335-6342.

Seelig, A., and P. McDonald. 1989. Binding of a neuropeptide,
substance P, to neutral and negatively charged lipids. Biochemistry.
28:2490-2496.

Seelig, A., P. R. Allegrini, and J. Seelig. 1988. Partitioning of local
anesthetics into membranes: surface charge effects monitored by the
phospholipid head group. Biochim. Biophys. Acta. 939:267-276.

Stankowski, S. 1983. Large-ligand adsorption to membranes. II.
Disk-like ligands and shape-dependence at low saturation. Biochim.
Biophys. Acta. 735:353-360.

Stankowski, S. 1984. Large-ligand adsorption to membranes. III.
Cooperativity and general ligand shapes. Biochim. Biophys. Acta.
777:167-182.

Stankowski, S., and G. Schwarz. 1990. Electrostatics of a peptide at a
membrane/water interface. The pH dependence of melittin associa-
tion with lipid vesicles. Biochim. Biophys. Acta. 1025:164-172.

Tsien, R. Y. 1978. A virial expansion for discrete charges buried in a
membrane. Biophys. J. 24:561-567.

Vorotyntsev, M. A., and S. N. Ivanov. 1988. Potential drop at the
insulator/electrolyte solution interface. Elektrokhimiya. 24:805-807.

Vorotyntsev, M. A., and S. N. Ivanov. 1989. Ionic adsorption isotherms
at homogeneous insulator/electrolyte solution interfaces. Elek-
trokhimiya. 25:554-557.

Winiski, A. P., A. C. McLaughlin, V. McDaniel, M. Eisenberg, and S.
McLaughlin. 1986. An experimental test of the discreteness-of-
charge effect in positive and negative lipid bilayers. Biochemistry.
25:8206-8214.

Stankowski Surface Charging by Large Molecules 351


