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On the extraction of kinetic rate constants
from experimental data

Dear Sir:
Recently Balser, J. R., D. M. Roden, and P. B. Bennett

(1990) proposed a method for experimentally determining the
values of the transition rate constants in a multistate kinetic
scheme when direct observations are possible of the occupancy
of only one of the states. They applied this method to the
scheme

k2l k32
Cl k C2 k °3

k12 k23

(where C, and C2 are closed and 03 iS the conducting state)
used to describe potassium currents in guinea pig ventricular
myocytes. They correctly noted that the time course of the
membrane current during a single potential step is insufficient
to uniquely define the values of the four transition rate
constants. The k 's are instantaneous functions of membrane
potential.

Balser et al. (1990) claimed that this scheme provides only
three independent values for a single step in potential, and
that four are needed. They approached the problem by noting
that the potential dependency of the rate constants should be
given by either

themselves, these data can be equally well described by an

infinite number of sets of ki 's. Eqs. 1 and 2 introduce no

additional measurable quantities which are functions of the
unknown terms, but only the purported (albeit reasonable)
form of the relation between unknown terms. This approach,
then, can never uniquely define the rate constants. While a

finite number of roots may exist, their number is expected to be
too large to permit a practicable solution even with numerical
methods. This was already suggested by their finding that the
extracted values of the rate constants depended on the initial
guesses.

Let P,,P2, and P3 be the probabilities of occupancy of Cl, C2,
and the observable conducting state, 03, respectively. The
scheme is described by

dP,Idt = -k21Pl + kl2P2 (3)
dP2Idt = -(k,2 + k32)p2 + k2,P, + k23p3

dPjdt = -k23 + k32P2,

(4)
(5)

with

Pi +P2 +P3 = 1. (6)

kii = exp [A,j + BijV + Cii V21
or, over a sufficiently limited voltage range

kii = exp[Aj + BijV].

(1) P, can be eliminated. Eqs. 4 and 5 become two coupled first
order differential equations in P3 and P2. These can be
combined into a single second order differential equation in P3
with the solution

(2)

Using either Eq. 1 or 2 the four rate constants at any one

potential imply 12 or 8 unknown terms. They expressed the
rate constants in the form of e.g., Eq. 1, and concluded that a

unique set of rate constants could be obtained by solving
simultaneously at four different potentials. No analytical
solutions were presented. Iterative methods, called a global
fitting procedure, were utilized that were demanding of com-
puter time. The Balser et al. (1990) analysis is in error in that in
general more information is provided from the current time
course at each potential than they claim, more information is
required to solve the problem than they have recognized, and
their global fitting method cannot in principle provide a unique
set of values for the kij terms. I describe here exact, analytical
methods for determining the values of the kij's exclusively in
terms of directly experimentally measurable quantities. Itera-
tive methods are not required. The approach described can be
extended to schemes with more than three states in certain
special cases.

In the Balser et al. (1990) approach the total data set is the
time course of the membrane current at the four selected
potentials, always with the same initial conditions. In general
five independent values can be obtained from the current time
course at any potential, whereas six are needed (four k j's and
two initial conditions). Each additional voltage examined from
the same initial conditions provides four more experimental
values, and introduces four more unknown terms. Hence, of

PAO PA0) -P3(0) + b[P3(0) P3(oo)]%X(-t
P3(t) P3(oo) a - b exp (-at)

P3(0) + a[P3(0) - P3(oo)] exp (-bt), (7)

where

a = (k2l + kl2 + k32 + k23)2
+ {[(k2l + k12 + k32 - k23)/2]2 + k32(k23 - k2l)} (8)

b = (k21 + k12 + k32 + k23)/2
- {[(k21 + k12 + k32 - k23)I212 + k32(k23 - k2l)}l'2. (9)

The steady-state probability of occupancy, P3(oo), is given by

P3(oo) = k2lk32/(k2,k32 + k2lk23 + k12k23). (10)

The initial velocity of the occupancy probability is given by

P3(0) = -k23P3(0) + k32P2(0), (11)

and P3(0) and P2(0) are the initial probabilities of occupancy of
C2 and 03. In general five values are obtained from the current
time course at any potential (a, b, P3(oo), P3(0), and P3(0)).
These are experimentally determined from the five terms
needed to fit equations of the form of Eq. 7 to experimental
data (two relaxation time constants, the steady-state value, and
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two coefficients on the exponential terms). Neither P3(0) or
P3(0) need be directly measured. They can be computed from
the measured a, b, and P3(oo) values and the coefficients on the
two exponential terms using the definitions in Eq. 7. To extract
the values of the k 's Eqs. 8-11 must be solved simultaneously.
As P3(0) is always experimentally determinable, there are four
equations in five unknowns (k2l, k12, k32, k23, and P2(0)). As
noted by Balser et al. (1990) P3(V, t) is not itself observed but
can be computed from the measured conductance according to

P3(V, t) = g(V, t)/gx(oo), (12)

where gm,(oo) is the saturated value of the conductance.
Alternatively, the tail current method of Balser et al. (1990)
may be used. For a scheme displaying inactivation, the mea-
sured g.. is not sufficient to define P3 .

IfP2(0) is independently known (and not zero) then the rate
constants can be extracted for a single step in potential. Eqs.
8-11 yield

k23= [(a + b)P2(0) - P3(0)]/2[P(0) + P3(0)]
± ([P3(0) - (a + b)P2(0)]2 - 4[P2(0) + P3(0)]

{abP2(0)[1 - P3(oo)])"2/2[P2(0) + P3(0)]. (13)

k32 is obtained from Eq. 11. The remaining rate constants are
readily obtained by noting that

P2 can be eliminated between Eqs. 11 and 17. For simplicity,
but without any loss of generality, T can be selected as steady
state yielding

P3(0)/Pc3(oo) = k,23(k32Ikc32) - k23, (18)

P3(0) is measured from the time course of the current at V
following the step to V, of duration T, and expresses the well
known effect of changing initial conditions on the values of the
coefficients on the exponential terms. P3(0) is a new experimen-
tal value not predictable from the current time courses at V
and Vc separately as it includes the effect of the time course of
the unknown P2 variable during V,. Eq. 18 introduces no new
unknowns, yielding nine equations for the nine unknown
terms. To obtain explicit values for the rate constants at Vand
Vc in terms of experimentally measurable quantities, solve
simultaneously Eqs. 8-11 for V(from reference), an analogous
set of four for Vc (from reference) and Eq. 18. We obtain

kC = -Y/2X ± [(Y2 _ 4XZ)"212X], (19)

where

X= o[ot(a + b) - (a + b) -13] (20)

Y=ab[l -P3(oo)] + P[(a + b) - x(at+ bj) + 1]
- acbca2[1 - PC3(oo)] (21)

a + b = k2l + kl2+ k32+ k23
ab = k2,k32 + k2lk23 + k,2k23,

(14)

(15)
Z = ao3a,b,[l- PC3(oo)],

and

and hence
a = [P"3(0)P3(oo) - P3(0)P 3(0)]/Pc3(0)P,3(oo) (23)

abP3(ox) = k21k32- (16)
= P3(0)IPT3(oo)

The solution has two roots, and the correct set must be
selected on physical criteria. For example, all rate constants
must be real and positive, or Eq. 1 or 2 must be satisfied.
For the case where P2(0) is not known (but not zero), the

problem can be solved in the following way. For any step to
potential V from some fixed reference initial conditions we

obtain a, b, P3(oo), and P3*(0), where the star indicates a step
from reference conditions. For some other step to Vc from
reference we obtain a,, bc, P.(oo), and P * (0). This is eight
equations in nine unknowns. Now again step from reference to
Vc, but after some time interval, T, at Vc step again to the
original V. At Vwhen t = 0

P3(0) = -k23P3(0) + k32P2(0), (11)

and for V, at t = T

Pc3(T) = -kc23Pc3(T) + kc32Pc2(T). (17)

P3(0) and Pc3(T) are different as the rate constants are

instantaneous functions of potential. Pi in general is discontin-
uous across a step in potential. However, the variables P2 and
P3 are continuous. Hence

P3(0) = PO3(T)
P2(0) = Pc2(T).

(24)

k,23 is expressed only in terms of experimentally measurable
quantities. k,32 is given by

k,32 = {k,23[(a, + bc) - k23] - a,b,[1 - PC3(oo)]I/k23, (25)

and

23= akc23 -

32 = ak'c32.

(26)

(27)

The remaining rate constants can be obtained from Eqs. 16
and 14 for V, and from analogous expressions for V,. Again,
there are two roots.
Once a solution has been obtained for the first pair of

potentials, Vand Vc, P 2(0) can be computed from k32 and k23 or
from kc12 and k,21.Values can then be obtained for any other
potential using Eq. 13.
A modified procedure is required when P (0) = P3(0) = 0.

In this case Eq. 11 provides no information about the rate
constants, and the time course of the membrane current is
completely defined by just three terms (a, b, and P3(oo)). Steps
from reference to V and Vc now provide only six equations,
while eight are needed (the four rate constants at each
potential, P2(0) is now known and equal to zero). Two
additional experimental values can be obtained by proceeding
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as above but now observing the effects of two different
durations of V1 on the currents during V. One duration could
be steady state as before, and the other need only be far
enough from steady state for P,2(T) to be clearly different from
Pc2(o). We solve Eqs. 8-10, an analogous set for V1, Eq. 18 and
for the current during V following V, of duration T < steady
state

P3(O) = [k,2(k32Ik*2) - k3P3(0) + (k32/kC32)P.3(T). (28)
PC3(T) can be computed from

P'3(T) = -[abAPc3(oo)/(ar-bc)I exp (-aCT)

+ [acbcP,(oo)I(ac - bJ)] exp (-brT). (29)
Values for the rate constants can be obtained from Eqs. 19-27
as before except that a now has the value aT given by

aT = [PT(0)P'3(X) - P3(0)P3(0)J/P.3(T)Pc3(oo). (30)

Alternatively, a different holding potential can be selected
such that P3(0) . 0 when P3(0) = 0.

Alternatively, the tail current time course at OFF can be
used. If the potential preceding and following the test step is
not the same then there are eight equations in nine unknowns.
However, if the holding potential preceding and following the
test step is the same then there are just eight unknowns (four
transition rate constants each for the test and holding poten-
tials) for the eight equations. Proceeding as above a solution is
obtained by making use of the continuity of P2(t) and P3(t) at
both ON and OFF. This approach cannot be used when the
steady-state values of P2 and P3 at the holding potential are
both zero or even if only that for P3 is zero. In the first case
there are only six equations for the seven unknowns (k2, at the
holding potential is now zero). In the second, the coefficient on
the exp (-at) term vanishes, and the relaxation rate constant,
a, is not experimentally determinable. The conditioning pulse,
test pulse method of Eqs. 19-24 is valid for all values of P3(0).

This problem has also been solved for a generalized three-
state scheme in which k3, and k,3 are not assumed to be zero
(Goldman and Hahin, 1979), but only for the case that
P2(O) = P3(0) = 0. For the generalized scheme P3(0) is not
zero under these initial conditions. If the steady state is a true
equilibrium (detailed balance) there are only five independent
rate constants at each potential, and the two durations of V,
method of Eq. 30 provides a solution.

This method can be applied to schemes with any number of
closed states if they extend in a straight chain with only a single
closed state directly coupling to the open and with no nonzero

rate constants connecting nonadjacent closed states. In this
case for N states there are 2 (N - 1) rate constants plus N - 1
initial conditions for V and again 2 (N - 1) rate constants for
Vc from the same reference initial conditions. The current time
course at V provides [2(N - 1) + 1] experimental values, and
that at Vc an additional 2 (N - 1). N - 2 durations of Vc are
then needed while up to 2 (N - 1) are available from this
current time course. Hence a finite number of roots always
exists when the number of initial conditions rather than the
number of test potentials is increased. Numerical methods can
be used for schemes with many states where analytical solu-
tions are too cumbersome.
For fully generalized schemes there are N (N - 1) rate

constants at both V and VK and again N - 1 initial conditions.
This approach, then, does not permit a solution for three or
more states in the fully generalized case when observations of
the occupancy of only a single state are possible. For various
special cases the outcome depends on the detailed properties
of the proposed scheme, i.e., the number of nonzero rate
constants assumed, the number of independent rate constants
needed assuming detailed balance, the number of states with
zero occupancy at reference initial conditions, the number of
states whose occupancy can be directly observed, and whether
single channel recording can provide additional values.
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