Abstract
Time correlated single photon counting measurements of tryptophan (Trp) fluorescence intensity decay and other spectroscopic studies were performed on glutamine-binding protein (GlnBP) from Escherichia coli. Using site-specifically mutated forms of the protein in which tyrosine (Tyr) and phenylalanine (Phe) substitute for the Trp residues at positions 32 and 220, we have examined whether wild-type (Wtyp) intensity decay components may be assigned to specific Trp residues. Results indicate that: (a) two exponential intensity decay components are recovered from the Wtyp protein (6.16 ns, 0.46 ns); (b) the long decay component arises from Trp-220 and comprises greater than 90% of the total fluorescence emission; (c) the short component arises from Trp-32 and is highly quenched; (d) all four single-Trp mutants exhibit multiexponential intensity decays, yet equimolar mixtures of two single-Trp mutants yield only two decay components which are virtually indistinguishable from the Wtyp protein; (e) the recovery of additional components in protein mixtures is obscured by statistical noise inherent in the technique of photon counting; (f) various spectroscopic measurements suggest that Trp-Trp interactions occur in the Wtyp protein, but the Wtyp intensity decay may be closely approximated by a linear combination of intensity decays from single-Trp mutants; and (g) inferences derived independently from fluorescence and NMR spectroscopy which pertain to the presence of Trp-Trp interactions and the relative solvent exposure of the two Trp residues are in agreement.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alcala J. R., Gratton E., Prendergast F. G. Fluorescence lifetime distributions in proteins. Biophys J. 1987 Apr;51(4):597–604. doi: 10.1016/S0006-3495(87)83384-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beechem J. M., Brand L. Time-resolved fluorescence of proteins. Annu Rev Biochem. 1985;54:43–71. doi: 10.1146/annurev.bi.54.070185.000355. [DOI] [PubMed] [Google Scholar]
- Brochon J. C., Wahl P., Charlier M., Maurizot J. C., Hélène C. Time resolved spectroscopy of the tryptophyl fluorescence of the E. coli LAC repressor. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1261–1271. doi: 10.1016/0006-291x(77)91142-1. [DOI] [PubMed] [Google Scholar]
- Grinvald A., Steinberg I. Z. The fluorescence decay of tryptophan residues in native and denatured proteins. Biochim Biophys Acta. 1976 Apr 14;427(2):663–678. doi: 10.1016/0005-2795(76)90210-5. [DOI] [PubMed] [Google Scholar]
- Hedstrom J., Sedarous S., Prendergast F. G. Measurements of fluorescence lifetimes by use of a hybrid time-correlated and multifrequency phase fluorometer. Biochemistry. 1988 Aug 23;27(17):6203–6208. doi: 10.1021/bi00417a002. [DOI] [PubMed] [Google Scholar]
- Ilich P., Axelsen P. H., Prendergast F. G. Electronic transitions in molecules in static external fields. I. Indole and Trp-59 in ribonuclease T1. Biophys Chem. 1988 Apr;29(3):341–349. doi: 10.1016/0301-4622(88)85056-7. [DOI] [PubMed] [Google Scholar]
- Mérola F., Rigler R., Holmgren A., Brochon J. C. Picosecond tryptophan fluorescence of thioredoxin: evidence for discrete species in slow exchange. Biochemistry. 1989 Apr 18;28(8):3383–3398. doi: 10.1021/bi00434a038. [DOI] [PubMed] [Google Scholar]
- Privat J. P., Wahl P., Auchet J. C., Pain R. H. Time resolved spectroscopy of tryptophyl fluorescence of yeast 3-phosphoglycerate kinase. Biophys Chem. 1980 Apr;11(2):239–248. doi: 10.1016/0301-4622(80)80026-3. [DOI] [PubMed] [Google Scholar]
- Ross J. B., Schmidt C. J., Brand L. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase. Biochemistry. 1981 Jul 21;20(15):4369–4377. doi: 10.1021/bi00518a021. [DOI] [PubMed] [Google Scholar]
- Royer C. A., Gardner J. A., Beechem J. M., Brochon J. C., Matthews K. S. Resolution of the fluorescence decay of the two tryptophan residues of lac repressor using single tryptophan mutants. Biophys J. 1990 Aug;58(2):363–378. doi: 10.1016/S0006-3495(90)82383-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Royer C. A., Tauc P., Hervé G., Brochon J. C. Ligand binding and protein dynamics: a fluorescence depolarization study of aspartate transcarbamylase from Escherichia coli. Biochemistry. 1987 Oct 6;26(20):6472–6478. doi: 10.1021/bi00394a027. [DOI] [PubMed] [Google Scholar]
- Shen Q. C., Simplaceanu V., Cottam P. F., Ho C. Proton nuclear magnetic resonance studies on glutamine-binding protein from Escherichia coli. Formation of intermolecular and intramolecular hydrogen bonds upon ligand binding. J Mol Biol. 1989 Dec 20;210(4):849–857. doi: 10.1016/0022-2836(89)90112-5. [DOI] [PubMed] [Google Scholar]
- Shen Q. C., Simplaceanu V., Cottam P. F., Wu J. L., Hong J. S., Ho C. Molecular genetic, biochemical and nuclear magnetic resonance studies on the role of the tryptophan residues of glutamine-binding protein from Escherichia coli. J Mol Biol. 1989 Dec 20;210(4):859–867. doi: 10.1016/0022-2836(89)90113-7. [DOI] [PubMed] [Google Scholar]
