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ABSTRACT Cell surfaces are often heterogeneous with respect to the lateral distribution and mobility of membrane components.
Because lateral mobility is related to membrane structure, measurement of a particular component's local diffusion coefficient
within a distinct surface region provides useful information about the formation and maintenance of that region. Many structurally
interesting cell surface features can be described as narrow tubular projections from the body of the cell. In a companion paper, we
consider the thin "tethers" that can be mechanically drawn from the red blood cell membrane, and we measure the transport of
fluorescent integral proteins from the surface of the cell body onto the tether. In this paper we present an analysis to describe the
surface diffusion of membrane particles from a spherical shell onto a thin cylindrical process. Provision is made for different rates of
diffusion within the two morphologically distinct regions. The relative role of each region in controlling the diffusive flux between
regions is determined primarily by a single dimensionless parameter. This parameter incorporates the ratio of the two diffusion
coefficients as well as the dimensions of each region. The analysis can be applied to a fluorescence photobleaching experiment in
which the extended process is bleached. If the dimensions of the spherical cell body and the cylindrical extension are known, then
the diffusion coefficients of both regions can be determined from the experimental fluorescence recovery curve.

INTRODUCTION

The experimental technique of fluorescence recovery
after photobleaching (FRAP) has been used to charac-
terize the lateral mobility of membrane components in
numerous cell types. Rarely is the lateral mobility of an
integral membrane protein governed by the viscosity of
the lipid bilayer. Instead, protein motion is constrained
by interaction with structural elements underlying the
bilayer (Koppel et al., 1981; Tank et al., 1982; Wu et al.,
1982). Biochemical alterations of the "membrane
skeleton" can lead to changes in integral protein mobil-
ity (Golan and Veatch, 1980; Sheetz et al., 1980; Schin-
dler et al., 1980). Thus, the measurement of lateral
diffusion of integral proteins serves as an indirect but
very useful probe of membrane structure.

In many cases, morphologically distinct regions of the
same cell surface exhibit different rates of protein
diffusion (De Laat et al., 1979; Jacobson et al., 1984;
Angelides, 1986; Wolf et al., 1986). FRAP experiments
involving domains within the cell surface provide impor-
tant information about the structural development of
the cell and the mechanisms for creating and maintain-
ing a heterogeneous surface. The mobility of receptor
proteins within local regions may be of functional
significance as well.
The FRAP technique will continue to be a valuable

tool for studying membrane heterogeneity. Unfortu-
nately, as the surface domains of interest become
smaller and more topologically complex, the accurate
calculation of the lateral diffusion coefficient becomes

increasingly problematic. In a FRAP experiment, a
component of the membrane is fluorescently labeled,
and a portion of the surface is bleached with intense
light. The subsequent restoration of uniform fluores-
cence is monitored, and the diffusion coefficient is
calculated from the rate of fluorescence redistribution.
Most algorithms model the bleached region as a portion
of an infinite plane (Axelrod et al., 1976) or a spherical
shell (Huang, 1973; Koppel et al., 1980) or an ellipsoidal
shell (Koppel, 1985). A single diffusion coefficient is
assigned to the entire surface. In this paper we consider
the case of diffusion into a bleached region that projects
out from the body of the cell, forming a thin tubular
process. The surface of this region is clearly distinct from
the rest of the membrane in its geometric description.
Furthermore, the lateral diffusion coefficients for vari-
ous membrane components may have different values on
this surface than on the rest of the membrane.
The extension of thin processes from a cell body is

commonly observed. Various cells possess cilia, flagella,
or microvilli. Other cells interact with their environment
by extending "microspikes," pseudopods or filopodia.
The axonal processes of nerve cells are an example of
this surface geometry. The particular structure that has
motivated this analysis is the red blood cell tether that
forms when a red cell adheres to a surface and then is
pulled away, creating a filament of membrane material
between the cell body and the surface (Hochmuth et al.,
1973; Evans and Hochmuth, 1976). The formation of a
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tether involves the breakdown or rearrangement of
normal membrane structure. In a related paper (Berk
and Hochmuth, 1992), we describe a series of experi-
ments in which the structure of tether membrane is
characterized by its integral protein diffusion coefficient.
In these experiments, the entire tether surface is photo-
bleached and the subsequent return of fluorescence to
that surface is measured. For the experiment to provide
useful information about the tether membrane, it is
necessary that the recovery process be governed by the
diffusion on the tether membrane. From the theory
developed here, one can (a) determine the parameter
range for which this is true, and (b) derive a relationship
that permits the calculation of the tether diffusion
coefficient from the data.

FORMULATION

cylinder. This junction is at x = -x0, where

X.= 1j- (R2IR2), (1)

and the range of x is -x0 < x < 1. A position on the
cylindrical surface is specified by the coordinate z. The
total length of the cylinder is L. This problem is
axisymmetric, so no azimuthal coordinate is required.
The surface concentration (molecules per unit area)

of diffusible particles at any point on the cell body
surface is denoted Nc(x, t). The spherical cell body
surface has a characteristic diffusion coefficient Dc, and
the diffusion equation has the form:

aNe D a [ aNc
at -R 2aX ax], (2)

Initially, the surface concentration is uniform over the
entire cell body:

We model the cell body and its tether or process as a
spherical shell of radius Rc that abruptly transforms into
a cylindrical shell of radius RT as shown in Fig. 1. The
position on the spherical membrane is specified by the
polar angle 0 or, more conveniently, by the variable x =
cos 0. At a position near x = -1, the surface forms a

N,(x, 0) = N.. (3)

On the membrane of the cylindrical tether, the lateral
diffusion coefficient has a value DT and the surface
concentration NT(z, t) obeys the simple one-dimensional
diffusion equation:

aNT D2NT
at a (4)

The tether is originally depleted of partices due to
photobleaching:

NT(z, 0) = 0. (5)

There can be no flow of particles past the far end of
the tether, so one boundary condition is established for
the cylindrical surface:

aNT- =0; z=L.
az (6)

Additional boundary conditions are imposed at the
interface between the cell body and tether. The concen-
trations and fluxes on the two surfaces must match at
this point:

RC z~~R
.........

RT
....................

RcXo

FIGURE 1 A spherical surface with a cylindrical extension. On the
sphere, the spatial coordinate is x = cos 0. On the projection, the
coordinate is z. At the interface of sphere and cylinder, x = -x0, z = 0.

NC(-x0, t) = NT(O, t)

D, Za aN
1-_x2 -i -DT T, x = .X0, z = 0.RC ax az

(7)

(8)

The total number of particles on the cylindrical
surface is determined by integrating over that surface:

M(t) = fo 2ITRTNT(Z, t) dz.
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Another quantity of interest is the concentration at the
boundary between sphere and cylinder

NB(t) = NC(-xO, t) = NT(O, t). (10) C2 -
-= -A x= -xo, y=O.ax "y' (20)

The scaled form of Eq. 9 for the total number of
particles on the tether is:

Three dimensionless parameters appear in this problem.
One parameter, x0, has been introduced by Eq. 1. The
other parameters are the square root of the diffusivity
ratio,

M(T) 1 reM(T) = 2R LN = e nT(y, T) dy. (21)

This expression gives the average concentration on the
tether.

A= VT

and the scaled tether length,

L

(11)

(12)

We introduce the following dimensionless variables:

t
(13a)

(13b
z

y =

RcA

NT
T NO

Nc
nC =N.O

SOLUTION

We solve this problem using the LaPlace transform with
respect to T, given by

f(p) = f exp(-pT)f(T)dT. (22)

The transformed equation for the cell body is

pfc- 1 = d [(1 X2) dnj] (23)

'k' for the range -x_ < x < 1. The particular solution of this
equation is i/p. The homogeneous equation is Legen-

(13c) dre's equation, and the solution which is regular atx = 1
is a Legendre function of the first kind. Thus,

(13d)

In dimensionless terms, the problem has the following
form. On the surface of the cell body

1
jir0(p) = - APx)p

(24)

where

an; ar a)nl
= ( XI)

ax]'

and

n0(x, O) = 1.

On the cylindrical extension

anT 2anT

nT(y, O) = O,

and

anTay=, y=.

a(a + 1) =-P(14)

(15)

(25)

with A to be determined by the boundary conditions.
The transform of the cylinder portion of the problem
gives

hfT(p) = B cosh [VF (4 -y)]. (26)

The LaPlace transform of the total number of particles
(16) on the cylinder is

B sinh (VPe)
mf(P) =(17) (27)

The coefficients A and B are determined by the
(18) matching conditions at the boundary between the two

surfaces (Eq. 19 and 20):

At the interface,

n( -X., T) = nT(O i), (19)
A =- XVp, tanh (v,p) 1

pA _
.AP(_X.)A
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and the concentration at the interface is given by

1 1

p cosh (Fpf)A
where

A = 1 - Pa(-xo)Xx/p; tanh (,pf)
P 'IM(-X )V11/ R.

(29)
00

nB(T) = M. - i exp [-T/ f]
k=l O~k/

(37)

The values of ¢k can be calculated by exploiting the fact
that (1 - x.) is small. As detailed in the Appendix, the

(30) accumulation of particles on the tether surface for all
but very short times (t R'-IDJ) is described by

Consequently, the total number of particles on the
tether is

tanh (sit)
mn(p) = (31)

K

m(t) = mx - z ak exp [-okDTt/L'I
k=l

where

and the concentration at the boundary between cell
body and tether is

1
iiB(P) = p

2132
ak= ak( + 2+ k )

and
(32)

Inversion of the transform solution is accomplished by
contour integration. One can show that the only singular-
ities of the functions imi(p) and ni, p) are simple poles at
p = 0 and at the zeros of the function A (see the
Appendix for more details). The poles at the zeros of A
lie on the negative real axis of the complex p plane and
are denoted by

DC L
A DTRTfn [2RcIRT]

The values of uk are the roots of

ck tan ak = P.

The upper limit of the sum is

L
K RT -

Pk = -Uk/fe (33)
where (k must be determined. The inverted solution is
the sum of the residues at these poles.
As shown in the Appendix, the polep = 0 corresponds

to the steady-state solution given by

limit m(t) = limit nR(t)
c

) = M..
mt tB-O R2(1 +x0) +R TL

(34)

This is the expected result. The concentration at the
boundary is equal to the average concentration, and this
uniform concentration is proportional to the surface
area of the cell body divided by the entire surface area,
reflecting the complete redistribution of particles.
To determine the time course of the diffusional

recovery, m(t), the remaining residues, corresponding to
zeros of the function A, must be calculated. Let

[ 1 ] (35)

Then the total number of particles on the tether can be
expressed as

mX rktanok
m(T) = M.

- 1: -/2kexp [-_k2T/21 (36)

The concentration at the interface is given by an

equation identical to Eq. 38 except that the coefficient ak
is replaced by

2
bk

+ p2 + 0Mk
(43)

In these equations, the previously defined dimensionless
time and length have been recast in their dimensional
form.
Note that when diffusion on the cell body is very fast

(DTIDC-* 0), the term approaches infinity, crk ap-
proaches (2k - 1)'r/2, and ak approaches (2/oi). In this
limit the solution is independent of Dc.
At the other extreme, when is very small due to slow

diffusion on the cell body (DT/DC -> om), the higher order
terms in Eq. 38 vanish. For the first term, Eq. 41
simplifies to or: = 13. The simplified solution is

m(t) = m- exp [RTLf(c/RT J (44)

The tether dimensions appear in this solution, but the
diffusivity in the tether DT, does not.

Regardless of the value for 13, there is a large portion
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of time in which the solution is adequately expressed
using only the first term of the series, k = 1, in Eq. 38. In
Fig. 2, a logarithmic plot of ou, vs. ,B reveals the relative
importance of cell body and tether to the recovery
process. When 13 is large, or, is a constant (rr2/4),
indicating that the dimensionless time tDT/L2 is appropri-
ate and that recovery times are independent ofDC. When
,B is small ir, and 13 are linearly related, indicating that
the recovery time is independent of DT and properly
scaled as tDc/[RTL(n(2RcIRT)], instead. In between
these two extremes is a transition region in which both
DT and DC have a significant effect on the recovery time.

0.1

DISCUSSION
0.01

This analysis finds its application in the design of a

fluorescence recovery experiment involving a thin mem-
brane process. A particular geometry can be evaluted to
determine whether the measured recovery rate can be
used to calculate the diffusivity on the membrane
process. Fig. 3 illustrates this concept by separating the
material and geometric variables of Eq. 40, which
defines 13. The line represented by = 1 divides the

log(o 2)

-1

-2

-3

-3 -2 -1

FIGURE 2 Dependence of i~on the F
diffusive transport from cell body to tet
of constant slope, [RTLfn(2RC/RT)I/DC i
the region of zero slope, L2/DT iS the
region, the diffusivities of both surfaces

1.0 1 0 100 1000 10000

L

RT In(2Rc/RT )

FIGURE 3 Effects of dimensions and diffusivities. The ratio of the two
diffusion coefficients and the geometry of the surfaces determine
which surface controls the flux from cell body to tether. In the region
3 > 1, the rate of diffusion is sensitive to the tether diffusion
coefficient DT.

tether- and cell body-dominated regimes. For example,
given a cell body radius of 3 ,um, a tether radius
of 0.05 ,um, and a tether length of 1 ,um, ratios of
DT/DC > 4 fall within the "cell-body zone." Thus, even if
it is suspected that the diffusivity on the tether mem-
brane is greater than that on the cell body, it will be
difficult to detect this increase in diffusivity. It will be
impossible to distinguish between a ten-fold and hun-
dred-fold increase in DT relative to DC. However, if the
tether in this example were drawn out to a length of 25
i,m or more, then the recovery time would depend on
the tether membrane diffusivity even when its value is
two orders of magnitude greater than the value of the

ll l l cell body.
A tether photobleaching experiment seems feasible

1 2 3 4 5 6 based on an expected ratio of diffusion coefficients, but
in the general case neither coefficient value is known.

Iog(B) We assume that the geometric parameters are known.
Although the radius of the process in many cases is

)arameter P3. The timescale of below the limits of resolution of a light microscope, a
ther is L2/(or2DT). In the region reliable measurement may be obtained by direct mea-
is the appropriate time scale. In surement using electron microsopy or by an indirect
proper scale. In the transition method (Hochmuth et al., 1983). The cell body diffusion
affect the diffusive flux. coefficient may be determined by a separate FRAP
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experiment (for instance, by bleaching a spot on the cell
body surface away from the process). If Dc is known,
then the remaining coefficient can be determined using a

straightforward iterative scheme.
In the absence of an independent measurement of Dc,

it may be possible to resolve both coefficients from the
same fluorescence recovery curve F(t). Given a set qf
data for the recovery of fluorescence, including the final
steady-state value F., the rate of recovery is predicted by

F(t) - F(o) m(t)

F.1--( ) .
(45)

A semilog plot of the experimental values for S(t) should
reveal a large linear region described by:

enS = en I(1 + I)[2 + - (o-DTIL2)t (46)

From the intercept and slope the two diffusion coeffi-
cients can be calculated. It should be emphasized that
this method is useful only when the values for the two
diffusivities are approximately equal. When the recovery

is dominated by only one of the surfaces, the coefficient
of the other surface will be highly sensitive to small
changes in the regression line fitted to the data and
therefore unmeasurable for that experiment.

This analysis shows that in many cases it is feasible to
measure the lateral diffusion coefficient on the mem-

brane of a tubular process by photobleaching the entire
process and measuring the recovery of fluorescence. The
feasibility of this experiment is favored by a long process

length, a narrow process radius and a slow diffusion on

the process as compared to the cell body surface. Of
course there are many circumstances in which other
photobleaching techniques are possible. When the pro-

cess is sufficiently long, a spot or pattern photobleaching
approach is preferable (Koppel et al., 1986). However,
there are a number of situations in which this technique
of bleaching the whole process may be useful. If the
process only extends one or two microns, then a laser-
illuminated spot will cover the entire structure. It may
also be necessary to illuminate the entire process to get a

measurable signal if the fluorescent labeling of the
surface is weak. Finally, bleaching the entire process

makes it possible to use a conventional light source in
place of laser illumination in certain cases. Because the
recovery time of a long cylinder of membrane is much
larger than that associated with micron-size laser-
bleached spots, a conventional light soure (arc lamp) can

photobleach the membrane over the course of several
seconds rather than over milliseconds.

APPENDIX

Inversion of LaPlace transform
solution
The steady-state solution for both the average and boundary concentra-
tion is obtained from Eqs. 31 or 32 as

rO = limit
P-0o A',

(Al)

where the function A is given by Eq. 30. From Eq. 25, a approaches -p
asp -0 ; therefore,

limit PF(-X. ) = Ph(-Xe ) =e

From the recurrence relation

(A2)

=a[z (Z) Pa-(Z)]
P,(z=~ i2-i1 (A3)

it can be shown that for small values of a,

oa(z 1)P.(z) a

P'()
Z2-_l z+ 1'

and, therefore,

P (-x.) 1 -x.

P-0 P a(-xO) -P

It now follows that

limit A = 1 + Xe
P-0 1 +x.'

(A4)

(AS)

(A6)

and the steady state solution is

(1 +X.)

(1 +X.) + Ae-
(A7)

This is the dimensionless form of the result given by Eq. 34.
Additional terms for the transient portion of the solution corre-

spond to zeros of the function A, as expressed in Eqs. 35-37. At this
point, we introduce the assumption that x0 is close to one by replacing
the Legendre function and its derivative with the following asymptotic
expressions (Lebedev, 1965):

sin asr ri-x0]
P,(-x.) n ,

sin a7r 1
Pa(-x.) en l'EXn .

a'Trr-X

(A8)

(A9)

Thus

P.(-X.) nx0 [1 -X0]

P' (-x.) 1-x V 1 +x 2]

O [1 x0

2 2 (AlO)
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In terms of cell dimensions,

R2T
XO Z 1 - 2R2 s (All)

c

and the approximation becomes:

P.(-X.) RT rRTAP(- X R tI2R-I* (A12)
P'Q(-x0) 1 x0 ~ LI~

The function A is now given by:

A Z 1 - A(RT/RC) en (RT/2RC) p tanh (v'f) (A13)

and its zeros (Pk = - ok/t2) must satisfy

c,k tan ok = (A14)

with

L

X2RT(n(2RC/RT) (A15)

The residue defined in Eq. 35 is

rk = Res [lla]p= e2[1 + p2 + ( (A16)

from which follow the solutions given by Eqs. 38 and 43.
The approximations given in Eqs. A8 and A9 are not uniformly valid

for all values of a. Using formulas developed by Hobson (1931), it can
be shown that a better approximation for P. is

sin aor
P0(-XO) = (Cl + C2) (A17)

C, =In( 20) + 24i(1 + a) + cot al + 2-y (A18)

C2 = X2 (,-aoa + 1) fn

-a(a + l) [24(a + 1) + cot ar + 2-y] (A19)

where i is the Digamma function and y is Euler's constant. For large
values of a the second term C2 becomes significant when

(1 -XO)t2 1. (A20)
When a (andp) is sufficiently large, the simple approximation of Eqs.
A8 and A9 breaks down. Thus, the upper limit K in the approximate
solution, Eq. 38, is determined by (1 - xo)a2 1, or (1 - x0)p - 1.
From Eqs. 33 and A9 we get the restriction

RC
(Uk < UK =-e (A21)

T

Eq. 41 implies that for large k, ork approaches 7r(k- 1), so the
acceptable values of k are given by

R f
kr < K =(A22)

RT7T
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