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ABSTRACT Rate processes in proteins are often not adequately described by simple exponential kinetics. Instead of modeling the
kinetics in the time domain, it can be advantageous to perform a numerical inversion leading to a rate distribution function f(\). The
features observed in f(\) (number, positions, and shapes of peaks) can then be interpreted. We discuss different numerical
techniques for obtaining rate distribution functions, with special emphasis on the maximum entropy method. Examples are given
for the application of these techniques to flash photolysis data of heme proteins.

INTRODUCTION

The elucidation of the relationship between the struc-
ture and function of proteins requires a detailed analysis
of the kinetic features, especially as functions of external
parameters such as temperature, pressure, and viscosity.
Since even the smallest protein molecules are complex
structures, rate processes (€.g., chemical reactions) are
often complicated. Therefore, discrete exponentials do
not, in general, adequately describe the observed kinet-
ics.

In Fig. 1 we give as an example the kinetics of the
binding of carbon monoxide to the separated B-chains of
the mutant hemoglobin Ziirich after photodissociation
at 300 K (1). The fraction N (¢) of molecules that has not
yet rebound a ligand within time ¢ after the photolysis
flash is plotted in two different ways. In Fig. 1 a we use a
logarithmic time scale. Two different features stand out:
the smooth decay in the region 10°s <t < 10°s
represents nonexponential rebinding kinetics. For ¢+ >
10~° s there is a more nearly exponential drop-off.
Fig. 1 b displays the same data on a linear time scale.
Obviously, plots that use linear time scales span at best
two decades in time and are not very useful for
reactions that proceed over many decades.

Any rate process may be described with a spectrum of
rate coefficients A,

N = [ dxmye™. )
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Here N(¢) is a normalized decay function, and A(\)dA
gives the probability that the process occurs with rate
coefficients between A and A + d\. As is evident from
Fig. 1, rate distributions #(\) of nonexponential pro-
cesses frequently spread over several decades in rate
space. Therefore Eq. 1 is inconvenient, and it is better to
introduce a rate distribution function f(\) on a logarith-
mic A-scale. We set A (A)d\ = f(A\)d log \ and obtain'

NGy = [ dlogrforye™. @)

The kinetic process is fully characterized by the time
function N(¢) or by the rate distribution function f(\).
To obtain a quantitative description of the kinetics, the
modeling of the data can be performed either in the time
domain or in the rate domain.

A parameterization in the time domain can be ob-
tained by fitting empirical model functions to the data.
This approach leads to a compression of the data to a
few parameters at an early stage of the data evaluation,
but details in the kinetic curve may be sacrificed. The
power law,

N@) = (1 + A1), &)

has been used to model the nonexponential rebinding of
ligands to heme proteins (2). The corresponding rate
distribution function is given by

A
fO) =10 (?(n)‘i))- e, ()

'We measure time in (s) and (first order) rate coefficients in (s™'). Thus
h(\) has the dimension (s), and f(A) is dimensionless. We shall omit
the units from the argument of the logarithm.
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FIGURE1 Flash photolysis kinetics of CO rebinding to separated
B-chains from the mutant hemoglobin Ziirich at 300 K plotted on (@) a
logarithmic, and (b) a linear time axis.

The Kohlrausch law (3, 4) or stretched exponential,

N(t) = exp [-(At)°], ©)

is another example of an empirical model function that
has been widely employed to parameterize nonexponen-
tial processes in the time domain (5-7). In contrast to
the power law, this function does not have a simple
analytical expression for the corresponding f(\) distribu-
tion (8, 9).

Instead of using model functions in the time domain,
Eq. 2 can be inverted numerically to obtain the rate
distribution function f(X\). The features of f(\) can then
be analyzed in detail. This approach has clear advan-
tages: theoretical models usually deal with rates; it is,
therefore, convenient to compare theory and experi-
ment on the basis of the rate distribution function f(\).
Furthermore, a good method of inversion will preserve
details of the experimental data N(¢) in f(\). Unfortu-
nately, the precise computation of the rate distribution
function f(\) is not a straightforward task. Whereas it is
easy to calculate N(f) from a given f(\) with Eq. 2 by
performing essentially a Laplace transformation, the
inverse operation is ill conditioned (10). Consequently,
the inverse transform of an experimental data set, which
is inevitably incomplete and noisy, leads to-ambiguity in
f(N). A multitude of distribution functions will agree
equally well with the experimental data. In some of the
solutions, f(A) will assume negative values, which is
physically unreasonable. Others will exhibit wild oscilla-
tions that are not justified by the experimental data. To
select a single distribution f(\), we must impose addi-

tional constraints on f(A). Various techniques have been
developed to obtain reasonable distributions f(\) (11).
In this paper, we shall discuss the numerical techniques
that we use to analyze flash photolysis data on heme
proteins. A sophisticated inversion method employs the
maximum entropy method (MEM), a data analysis
technique that has found wide application in various
fields, including radio astronomy (12), neutron scatter-
ing (13), fluorescence (14), and ligand rebinding (15, 16).
The basic idea of the MEM is simple (17, 18): a rate
distribution f(\) is represented by a discrete set of data
f(N;). The amount of uncertainty involved in the specifi-
cation of f(\)) is measured by the Shannon-Jaynes
entropy S. By maximizing S under the constraint that the
misfit statistic x* = 1, the MEM does not introduce
spurious correlations into f(A\) and yields the rate
distribution function having the smoothest features
compatible with both the experimental data and the
noise. We will demonstrate the capabilities of the
method by applying it to kinetic data taken with a large
dynamic range [four decades in N(¢)] over a wide range
of temperatures. Subtle undulations in the rebinding
curves are resolved into individual peaks describing
different rebinding processes.

The inversion of the data obtained in the time domain
into a distribution of rate coefficients is the first step in
the kinetic analysis; yet it alone does not lead to a full
understanding of the physical mechanisms that give rise
to the distribution. Although the mathematical structure
of Eqg. 2 may suggest parallel processes observed for an
inhomogeneous ensemble of molecules with different
rebinding rates, the distribution f(A\) may likewise arise
from sequential processes. The dependence of f(\) on
temperature and other external parameters gives addi-
tional information that may finally lead to a physical
model describing the kinetic process.

In the present paper, we shall discuss several numeri-
cal methods used to approximate f(\) from N(¢). Partic-
ular emphasis is given to the maximum entropy method.
Examples will demonstrate how these techniques are
applied to the analysis of flash photolysis experiments on
proteins.

NUMERICAL INVERSION TECHNIQUES
Derivative approximation

For broad rate distributions that extend smoothly over several de-
cades, there is a simple way of getting a rough idea of f(\) by using the
approximation (19)

dlog N
o = N e (6)
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Eq. 6 is justified with Eq. 2,

dlog N(t)

~N® dlogt

dN
" Tln 10d(tlz)gt = [d10grfOROT) ()

with
R\, ) = Me™™. (8)

If R(\, t) were a d-function on a logarithmic scale, Eq. 6 would be
exact. However, R(\, t) is an asymmetric, bell-shaped curve with a full
width at half maximum of M = 2.4 and a maximum at M = 1.
Therefore, the convolution of the distribution function f(A) with
R(X\, t) blurs sharp features. Furthermore, f(A) is obtained locally form
the slope of N(t). Numerical differentiation of noisy data results in a
large scatter of f(X).

Fit with model functions

In this method, the actual rate distribution function f(\) is approxi-
mated by simple analytic functions. These functions may be based on
theoretical considerations, as in the case of the Gaussian on a
logarithmic A-scale (20) or the gamma distribution (21). They can,
however, also be viewed as mere parameterizations of f(\) with a
minimal set of parameters. Multimodal distributions are represented
by a sum of discrete distributions. Nonlinear least-squares fitting varies
the parameters of the model function f(\) so that its transform with
Eq. 2 gives the best fit to the experimental N(f) curve. Here the
derivative approximation is useful to estimate the number of discrete
distributions and the initial parameters of the fit. In our work, we
frequently parameterize f(A) with a sum of Gaussians on a logarithmic
scale:

fO) = X a,exp [~b(log \ — log A))') ©)

The areas, widths, and center positions of the Gaussians are deter-
mined by a,, b, and \;, respectively.

Maximum entropy method

The MEM is quite general and can be used whenever the data one
measures represent some transform of the function of interest. From
the many solutions that fit the inevitably noisy and incomplete data
equally well, the MEM selects a unique distribution free of spurious
correlations.

From the kinetics experiment we obtain a set of data points 7(t;).
We assume that the 9™°(t,) have Gaussian errors with standard
deviations o(r;). We divide the log A axis into a large number of bins
with equal spacing on a logarithmic \-scale. The continuous f(\)
distribution is then discretized in J values f(\;). In our application,
where the data are linear in f()), the best fit to I data points 7°(t;) is
obtained by maximizing the Bayesian posterior probability distribution
that is proportional to (13, 17)

P = exp (aS — Ix*/2), (10)

where a is a dimensional coefficient that is not known initially. The
x’-statistic measures how well a trial set 7%(z,) fits the experimental

data set 7°(t,),
1 G 9™ —7°@)f
2= .
X 7T 2 [ o(t) : an
The Shannon-Jaynes entropy S (22) is defined by
< )
= - A)|[In =5 - 1. 12
5=~ 09 m oy -1 @2

The function F(\;) incorporates any prior knowledge we have about
the form of f(\,) into the fit. In the absence of any data, maximizing the
entropy yields f(A;) = F(\;), as can be seen by taking the derivative
a8/3f(N;), setting it equal to zero and solving for f(A;). In the absence
of any prior knowledge we choose a constant F distribution so as not to
introduce any structure into f not warranted by the data. The
distribution f(;) is quite insensitive to the constant value chosen for F
because of the high quality of the experimental data. For all the fits
shown in this paper F(\;) was set equal to 10~ or 10°.

Finding the maximum in% is equivalent to finding the maximum of
In® = aS — Ix*/2. Different algorithms have been applied to this task
(for a comparison see reference 18). Following the work of Gull and
Daniell (12), we use a simple algorithm that maximizes the function

Q=8-Lx. 13)

L, is a Lagrange multiplier that is chosen such that x* = 1. The fit to
the data at each time, t,, is calculated in transmittance space’

T = 10 M- 18 log 1 (erp(=Ayt). (14)

where AA4,,, is the maximum change in the absorbance of the sample
that occurs immediately after photolysis, and A log \; is the spacing
between neighboring f(\;) points. Setting 8Q/af();) to zero we obtain

7 -7

s )

I

fON) = F(v) exp |L 3.5
A number of coefficients are lumped together into L such that L =
21n 10 L,AA,,,,A log \;/I. The adopted sign convention requires that L
be positive for absorbing signals (A4,,,, > 0) and negative for bleach-
ing signals (AA4,,,, < 0). Eq. 15 represents J coupled nonlinear equa-
tions. For all the data in this paper J equalled 100. The task of solving
100 coupled nonlinear equations is done by iteration. Because of the
nonlinearity of the equations, successive iterations are combined,
where typically C = <0.1% of the current iteration was added to the
previous iteration of f();). L and the weight C are adjusted so that x’
approaches a value acceptably close to 1 while a convergence test
approaches 0:

2

. (16)

1

TEST=§

vs %%

VS| Vx|

The gradients in Eq. 16 are evaluated with respect to the f(A;) in the
J = 100-dimensional space. For a given value of x, TEST is zero at the
unique point in f();)-space where the gradients S and x’ are parallel;
there is no component of VS along the surface of constant x°. The
situation for the case of only two f()\) is illustrated in Fig. 2 where

’The transmittance is related to the kinetics signal N(f) by: 5 =
10~24mN O (see Applications). Because the noise is assumed Gaussian
in transmittance, it is necessary to fit in J-space rather than in
N (r)-space.
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FIGURE2 A contour plot of entropy, S, and the x’-statistic for a
two-dimensional f(\). The maximum entropy solution corresponds to
the point where the gradients of S and x’ are parallel, and x* = 1.

contour plots of S and x* are shown. The maximum entropy solution
corresponds to the point on the contour x> = 1 where S is maximal.
Because the statistical uncertainty, o(t;), is not known precisely, the
final x* is generally chosen somewhat larger than unity in order to be
conservative. Decreasing x” further tends to sharpen peaks with little
change of peak positions and areas. Experience also indicates that
maps producing a TEST greater than 0.001 may suffer from unaccept-
able artifacts, i.e., structure not justified by the signal-to-noise ratio of
the data. Lavalette et al. (16) recently suggested the addition of a
heavily weighted data point at early times to enforce the initial
condition N(0) = 1. We have chosen not to do so because the
normalization factor, A4, ,, is not known precisely. Our f(\) distribu-
tions, therefore, do not normalize to unity, and we do not interpret the
feature in f(A) that is related to the shortest times too seriously.

Our MEM algorithm has been tested using synthetic data with
signal-to-noise characteristics similar to that found in our flash
photolysis data. First a f(\;) distribution, shown as points in Fig. 3 c,
was generated and used to calculate transmittance data by Eq. 14.
Gaussian noise was added to the data. The maximum entropy
algorithm produced the distribution shown as the solid line in Fig. 3 c.
The fit is shown as a solid line in Fig. 3 a. The MEM does an excellent
job of recovering f(\;), particularly peak positions, given the limited,
noisy data. The residuals are shown in Fig. 3 b. (They are defined as
[7=*(t;) — F%(t,)])/o(t;) and should possess a standard normal distribu-
tion. Thus 68% of the data points should fall with +1, and 95% should
fall within +2.) As expected, where the signal-to-noise ratio is poor (at
large values of A), the f();) distribution is less accurately reproduced.

A second test shows the influence of noise on the sharpness of the
features in the rate distribution recovered by the MEM. The most
extreme case for f(\) is a 3-function on a logarithmic scale, correspond-
ing to an exponential N(¢). We simulated the transmittance signal
starting from 0.1 at ¢ = 0 and approaching 1 at long times. Different
amounts of Gaussian noise (independent of time) were added. Fig. 4
shows that with large amounts of noise the obtained rate distributions
are rather broad. As the signal-to-noise ratio increases, the rate
distribution approaches the 3-function.

These two tests clearly show that the MEM does not introduce
correlations that are not inherent in the data. Broad rate distributions
are obtained from limited, noisy data (see Fig. 4) because the MEM is
maximally noncommittal with regard to unavailable information. In
other words, a distribution is “presumed smooth until proven spikey.”

Coupled rate processes

The previous subsections addressed numerical inversion techniques
for single rate processes. Often, the kinetic schemes are more
complicated, involving coupled sequential and parallel processes. As
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FIGURE3 Test of the maximum entropy method. (a) Squares, syn-
thetic data with realistic signal-to-noise ratio (S/N) generated from
the rate distribution in c; solid line, fit with the maximum entropy
method; dashed line, 10~* x (S/N). (b) Residuals of the fit (in trans-
mittance). (c) Squares, rate distribution used to generate the data in a;
dashed line, rate distribution recovered by the MEM from the data in a.

an example we consider the following kinetic scheme:

B, — A4,
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FIGURE4 Test of the maximum entropy method. Synthetic data
simulating an exponential rate process were generated by calculating a
transmittance signal rising from 9 = 0.1 at¢ = 0 to 1 at long times.
Gaussian noise, independent of time, was added with standard
deviations of 107", 1072 10~%, and 107*. The corresponding rate
distribution functions f(A) are shown. As the signal-to-noise ratio
increases, f(\) approaches a 3-function.
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The processes B — A are coupled owing to an additional exchange
between A, and A4,. This scheme can be modelled with the following
two equations:

No(t) = [ d1og N £V - )] exp (M), (18)
M@ = [ dlog NI£Q) + of.M] exp (=N). (19)

The response functions Ny(t) and N,(f) decay from 1 to 0 during the
time course of the process and represent the populations that are to
move into states A, and A,. The rate distributions for the processes
B — A are denoted by f,(A) and f,(\); and f,(\) represents the exchange
process. The signs in front of f,(\) are chosen such that f,(\) is positive
when a net flow occurs from 4, to 4,. The coefficient a gives the ratio of
the two species A, A, in equilibrium. An example for such an exchange
process will be discussed later.

To perform the inversion of Eqgs. 18 and 19 with the maximum
entropy method, we cannot apply the entropy definition of Eq. 12
directly. We generalize Eq. 12 by defining

n )\i
S=-> IEf..("j) [log (;7(()\))) - 1]

This approach yields accurate results for (f, — f.) and (f, + of.), but
the individual distributions f,, f,, and f, cannot be extracted unambigu-
ously for the following reasons: (a) The entropy is maximized by
assigning the smallest possible exchange 4, — A4,; thus the exchange
peak determined by the MEM may be smaller than the true peak. (b)
The entropy is maximized by making the region where f,(\) and f,(\)
are both nonzero very small. The true distribution may have some
overlap of £.(A) and f,(\) giving rise to peaks in f.(\) that may be shifted
in position relative to the true position.

As an alternative to the MEM approach we can also use model
functions for f,, f,, and f, as described previously. For example, f, and f,
can be represented by a small number of Gaussians on a logarithmic
scale and the exchange distribution by an additional Gaussian:

fe()

—-1]. (20)

No(t) = [ dlogx
“;8(’\; ags by, Ny) — 8(N; a,, be, N7)| exp (—N1),  (21)
Nty = [ dlogh

J
. ;g(x;a,,,b,,, N)) + ag(A; a, b, N)| exp (—M). (22)

The parameters of the Gaussians are varied to find the best fit to the
data for Ny(f) and N,(t) using a Levenberg-Marquardt nonlinear
least-squares algorithm.

APPLICATIONS
Experimental approach

The kinetics of the binding reaction of carbon monoxide
to sperm whale myoglobin after flash photolysis,

Mb + CO = MbCO (23)

has been investigated in great detail. The covalent bond
between the heme iron and the CO ligand is broken with
unit quantum efficiency on absorption of a visible
photon (23). The subsequent ligand rebinding is accom-
panied by changes in the absorption spectrum of the
sample; therefore it can be followed in time by monitor-
ing the intensity of light, 7, passing through the sample
before and after the photolyzing laser pulse arrives at
time ¢ = 0. The transmittance 7(t,, T) at a temperature T
is recorded for a set of time #;:

H, T)
s, T)

where AA(t, T) = A(t, T) — A(07, T) is the change in
the absorbance of the sample. The fraction of proteins
yet to rebind a ligand is given by N(t, T) = AA(¢t, T)/
AA, . (T), where AA_,(T) is the initial absorbance
change upon complete photolysis. We use two different
flash photolysis systems to measure these absorbance
changes; one monitors the absorbance of the heme
group in the visible, and the other monitors the absor-
bance in the infrared ~ 1,950 cm™ (=5 wm) due to the
stretch vibration of the CO molecule.

In the visible, binding of Mb and CO in a 75%
glycerol/water solvent at pH 6.8 was measured in the
Soret band at 440 nm. The protein concentration was
~10 pM and the CO pressure either 0.05 or 1 bar. The
MbCO samples were dissociated with a 30-ns, 530-nm
pulse generated by a frequency-doubled, Q-switched,
Nd-doped phosphate glass laser. Two dichroic mirrors
preferentially guided the 530-nm light to the sample
while failing to reflect the 1,060-nm light. The energy of
the green pulse reaching the sample was ~250 mJ. A
24-V tungsten lamp (Oriel Corp., Stratford, CT) pro-
vided the monitoring beam. Before reaching the sample,
the monitor light passed through a monochromator set
at 440 nm. A 440-nm interference filter and two other
blue glass filters between the sample and the photomul-
tiplier tube (PMT) reduced the amount of 530-nm light
that scattered into the PMT, degrading the signal at
short times. The signal from the PMT (model R928;
Hamamatsu Corp., Middlesex, NJ) was amplified and
recorded by both a 10-ns digitizer (model TR8818,
LeCroy, Chestnut Ridge, NY) and a home-built 1-ps
digitizer (24) with logarithmic time base en route to a
DEC wPDP 11/73.

Flash photolysis experiments with monitoring in the
infrared were performed on MbCO samples in a 75%
glycerol/water solution at pH 5.7. The protein concentra-
tion was ~ 15 mM. Photodissociation was achieved using
a 300-ns, 530-nm pulse (broad band) from a dye laser
(model DL2100C; Phase-R, New Durham, NH). The
source for the monitoring beam was a lead salt laser

0, T) = = 107461 (24)
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diode (Laser Photonics, Analytics Div., Bedford MA)
that was tunable in the range between 1,900 and 2,000
cm™'. The laser diode and the sample were kept at
cryogenic temperatures with a closed-cycle helium refrig-
erator (CTI-Cryogenics Div., Helix Technology Corp.,
Waltham, MA). The IR beam was monitored with a
photovoltaic InSb detector (Infrared Associates, Cran-
bury, NJ). The output signal was amplified and digitized
by our home-built logarithmic digitizer.

Because the inversion of the data using the maximum
entropy method depends on the estimation of experimen-
tal uncertainties, we outline this procedure. The logarith-
mic digitizer uses two analog-to-digital converters (12
bit, 2 ws) that take turns measuring the detector signal,
thus acquiring a voltage sample every microsecond. A
number of voltage samples, always a power of two, is
averaged together in real time by the digitizer. P such
averages are performed during a period in which the
time after the start pulse doubles. Then the number of
voltage samples to be averaged is doubled, and the next
P averages are calculated. Each of these cycles is called a
doubling period. The extent to which the data are
averaged is changed by varying the parameter P, called
points per doubling. Typically, we use P = 12. This
method of data collection produces approximately equally
spaced points on a logarithmic time axis.

Normally, several files containing P points per dou-
bling are averaged down to a single file containing M
points per doubling with 1 < M < P. M is chosen so as to
maximize signal averaging while maintaining sufficient
time resolution. Typical values of M range from 1 to
4. Since the number of samples averaged together by
the logarithmic digitizer changes only at the doubling
period boundaries, each doubling period has its own
intrinsic signal-to-noise ratio and is treated indepen-
dently. A line is fitted to all points in a doubling period,
giving a calculated transmittance 7(t). The scatter
about the line is used to estimate the standard devia-
tion in the data. The uncertainty is estimated as o(t,) =
VM 3217 %(1) — T (t)I"/[P(P - 2)]. Here, Q is the
total number of points from all data files that are
averaged together to give M final data points in a
particular doubling period.

Model for ligand binding

The simplest kinetic scheme that describes the basic
features of the binding reaction of ligands to heme
proteins involves a single adiabatic energy surface for
the protein-ligand system that has three sequential wells
along the reaction coordinate: the bound state A, the
pocket state B, and the solvent state S. Neglecting
distributed barriers and thermal dissociation of the

ligand from the heme (k,; = 0), we obtain the system
depicted in Fig. 5 (25).

Initially, the ligand is bound to the heme iron. A short
laser pulse breaks the Fe-CO bond and the ligand moves
into the heme pocket. There the ligand has two choices:
either it rebinds internally (process I) or it escapes into
the solvent. Subsequently, a ligand from the solvent will
enter the protein molecule and bind to the iron. We call
this process S.

Protein molecules are complex systems that can as-
sume a large numbers of conformational substates (CS)
(2, 26-28). CS vary slightly in their three-dimensional
structures and generally function with different rates.
Consequently, the rate coefficients for the processes
sketched in Fig. 5 are not single valued but are character-
ized by distributions. Experiments suggest that the CS
are arranged in a hierarchy of tiers (28-31). Sperm
whale MbCO possesses three substates in the highest
tier (CS0). These substates are called A substates and
characterized by different infrared absorption bands
(~1,950 cm™) because of the stretch mode of the bound
CO ligand. Both x-ray crystallography (32) and linear
dichroism (33) have resolved structural inhomogeneity
in the orientation of the bound CO molecule.

Monitoring in the infrared allows us to measure the
binding kinetics of the three CS0O separately. They
perform the same function but with different rates: A,
rebinds CO faster than A, which rebinds faster than A,
(34). The geminate rebinding to each of the A substates
at lJow temperatures is nonexponential and is character-
ized by a distributed enthalpy barrier. This inhomogene-
ity is explained by conformational substates of tier 1,
CS1. Enthalpy distributions and preexponentials of the
three A substates have been measured in the infrared
using two different techniques: Ansari et al. (34) moni-
tored the transmittance at a fixed temperature and a
single infrared wavelength with a microsecond flash-

V(rc)

- - rc
reaction coordinate

FIGURES The 3-well model. The protein-ligand system may occupy
one of three states along the reaction coordinate, rc. The ligand may be
bound at the heme iron (4), be dissociated in the pocket (B), or be in
the solvent (S).
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photolysis system. Berendzen and Braunstein (35) used
temperature-derivative spectroscopy to monitor rebind-
ing across the entire A substate spectrum while ramping
the temperature.

Low-temperature rebinding
monitored in the Soret band

At temperatures below 200 K, the ligand cannot leave
the protein molecule and rebinds via the internal pro-
cess I. The rebinding rate is governed by an enthalpic
barrier of height Hy,. The reaction occurs either by
quantum-mechanical tunneling (36, 37) (dominant be-
low ~50 K in MbCO) or by thermal activation. In the
latter case, the rate coefficient A = ky,(Hy,, T') is given
by the Arrhenius relation (1):

ksa(Hpa, T) = Apa(T/ To)e ™™™, (25)

where Ay, (T/T,) is the frequency factor and 7, is set to
100 K. For a unique value of the preexponential and the
enthalpic barrier we expect exponential rebinding accord-
ing to

N () = etontimaTy, (26)

In contrast, process. I is clearly nonexponential. We
explain this observation by postulating that the protein
molecules exist in many conformational substates with
different rebinding barriers Hy,. Below 160 K, each
molecule is frozen in a particular substate with a certain
barrier height Hj, on the time scale of the experiment.
Instead of describing the kinetics with rate distribution
functions f(\) as in Eq. 2, we can model the reaction
with a single, temperature-independent distribution
g(Hsy,) of enthalpic barriers,

NGT) = [ dHug(Hye ™. (@7)

The temperature dependence of N(t, T) enters solely
through the Arrhenius relation for the rate coefficient.
For the activation enthalpy distribution, g(Hy,), model
functions are usually employed (20, 21). The enthalpy
distribution and the Arrhenius prefactor 4, can be
determined by fitting a single g(Hg,) to a series of
rebinding curves taken at various temperatures.

The maximum entropy method offers a different
strategy of analyzing the barrier distribution. The rate
distribution functions f(A) = f(\, T) can be determined
individually at each temperature and then converted
into enthalpy distributions using the relations

AT
TO

Hg, = RTIn 10 |log —log A|, (28)

dlog\ \NT
EHpa, T)=f(\, T) -‘71% = I];;l—nl)() . (29)

We have added the variable T in g(Hyg,, T) to indicate
that it is determined separately at each temperature.

Fig. 6 shows the g(Hg,, T) distributions obtained by
the MEM for the temperatures 60, 70, 80, and 90 K.
They are in good agreement with each other and support
the temperature independence of g(Hy,). We also plot
the gamma distribution that was obtained by fitting all
kinetic traces between 60 and 160 K. It gives a good
overall representation of the g(Hy,) distribution, espe-
cially the high-enthalpy tail, but details differ. The MEM
distribution is much more symmetric than the gamma
distribution. The major part can be described by a
Gaussian with a peak enthalpy of 10.5 kJ/mol and a
width of 6 kJ/mol.

The systematic deviation from a Gaussian at high
enthalpies is explained by the A, substate, which has a
peak enthalpy of ~18 kJ/mol (34, 35). However, the
kinetics monitored in the visible are in fact the sum of
the contributions of the three A substates having dif-
ferent preexponentials A,, and enthalpy distributions
g(Hg,) (25). For the calculation of the g (Hy,,, T') distribu-
tions, we used an overall A, = 10*® s™' that was
determined from fitting a gamma distribution to all the
kinetic traces between 60 and 160 K. The simplified
treatment of the Soret kinetics using Eqs. 25 and 27
introduces errors. It nevertheless is a good approxima-
tion because 4, and A4, have similar preexponentials,
10*” and 10*° s™', respectively, and because they account
for ~90% of the population at pH 6.8. Using 4,, = 10°°
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FIGURE6 Enthalpy barrier distributions g(Hg,, T') calculated from
the rebinding kinetics of MbCO at 60 K (---), 70K (—-—), 80K
(-+-), and 90 K (— -~ —), using the MEM. The solid line represents
the g(Hp,) that was obtained from a least-squares fit of a gamma
distribution to rebinding data betwen 60 and 160 K (25). The heavy
dashed line is a Gaussian fit to the g(Hg,, T') distributions obtained
with the MEM.
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s”, instead of the actual value 10" s™' for A, (25),
results in an apparent peak enthalpy of 15-16 kJ/mol.

Rebinding above 200 K monitored in
the Soret band

Above 200 K, the ligands can surmount the barrier
between B and S and escape from the protein molecules.
The fraction of proteins that rebind subsequently via
process S increases with temperature. Fig. 7 a shows a
rebinding curve of MbCO monitored in the Soret band
at 250 K. Process I is nonexponential and extends from
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< 04
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FIGURE7 MbCO kinetics at 250 K and the corresponding rate
distribution function f(\). () Rebinding monitored in the Soret band
at 440 nm. The rate distribution function f(A) was computed using (b)
the derivative method, (c) a fit by Gaussians on a logarithmic scale, and
(d) the maximum entropy method.

the earliest times to ~107 s. Process S is close to
exponential and responsible for the rapid drop-off around
107? s. In Fig.7b-d, we show the rate distribution
functions f(\) that were obtained with the numerical
inversion techniques presented in previous subsections.

Fig. 7b shows f(\) obtained with the derivative
approximation (Eq. 6). It has large scatter at early times
where the statistical error of the data is large. Although
the method involves an intrinsic blurring of sharp
features, three maxima in the rate distribution function
are easily distinguished. Using these data as start param-
eters, a fit with three log-Gaussians was performed
(Eq. 9). The resulting f(\) is shown in Fig. 7 ¢ and has, as
expected, narrower peaks than the f(\) obtained with
the derivative approximation. The f(\) calculated with
the maximum entropy method (Fig. 7d) also shows
three maxima. The middle peak is markedly broader
than for the Gaussian fit. While the Gaussian fit chooses
the three Gaussians most compatible with the experimen-
tal data, the MEM imposes no number or shapes of
peaks, but rather yields the smoothest, broadest features
compatible with the data.

Fig. 8 shows rate distributions f(\) obtained with the
MEM from flash photolysis experiments at 240, 250, and

04

=
*0.2-

Zost

-8 -6 -4 -2 [6)
-Log A

FIGURES High-temperature features resolved by the MEM. Rate
distributions for rebinding measured in the Soret band at 240, 250, and
260 K. Solid lines, MbCO sample with CO pressure of 1 bar; dashed
lines, CO pressure 0.05 bar. The fastest kinetic process is not
recovered well because of the limited time range and uncertainties in
the normalization factor A4, ..
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260 K. Two MbCO samples with different CO concentra-
tions were used. It is obvious that only the position of the
rightmost peak depends on the CO concentration: for
samples with higher CO concentration this peak shifts to
the left. Therefore, it is attributed to rebinding from the
solvent, process S. At first glance, the time dependence
of process I at 250 K resembles a straight line in the log
N(¢) versus log ¢t plot, Fig. 7 a, which is described by a
power law. The corresponding rate distribution is unimo-
dal (see Egs. 3 and 4). In contrast, the rate distribution
function clearly reveals two peaks for process I at 250 K.
These are reflected in the time domain as subtle undula-
tions on the N(¢) curve. These undulations have already
been noticed by Austin et al. in 1975 (2), who attributed
them to multiple wells along the reaction coordinate.
Application of the MEM to ligand rebinding data at 5-K
intervals reveals three peaks between 230 and 245 K in
addition to the peak for process S. At T > 250K, the two
peaks with the larger rate coefficients merge into a single
peak.

Flash photolysis with monitoring in
the CO stretch bands

In Fig. 9 we show the rebinding signal of 4, and A4, at 250
K. (In this sample, which has a pH of 5.7, only a minor
fraction of molecules are in the A, substate. For simplic-
ity, we shall neglect A, in the following discussion.)
While N,(f) decays monotonically, Ny(t) decays up to
107* s after the photolysis flash, then it increases again
before decaying finally. This novel behavior can be
explained by invoking an exchange between A;and 4,, as
previously discussed. At 250 K, the A substates are in
dynamic equilibrium. After photodissociation, ligand
rebinding to A, is faster than to A4,. Therefore, A4, will
become overpopulated with respect to equilibrium. This

Log N(t)

-2.

-3

FIGURE9 Rebinding at 250 K of MbCO monitored in the 4, (1,966
cm™') and A4, (1,947 cm™") CO stretch bands. The solid lines give the fits
obtained with the MEM.
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FIGURE 10 Maximum entropy fits at 250 K for the coupled rebinding
process of A, and A, showing f,(\), (M), and the exchange distribution,
f V). @) f(N) and £.(N); (B) f(A) — f(M); (€) fi(A) and f.(A); and (d)
FiA) + of (M)

nonequilibrium situation prevails for times shorter than
the inverse rates for thermal fluctuations between A4,
and A4, At longer times, these transitions establish
equilibrium between A, and A4, and lead to identical
kinetics for 4, and 4,.

The inversion of the kinetic traces in Fig. 10 was
performed using the maximum entropy algorithm for
coupled rate processes already presented. Three peaks
stand out for both 4, and 4,. The dashed peaks in Fig.
10, a and ¢, correspond to the exchange process. The
peaks to the left with rate coefficients around 10°s™' are
the internal processes, while the peak for the solvent
process is located around 10* s'. Essentially identical
results were obtained when fitting the data with parame-
terized distributions according to Egs. 21 and 22.

CONCLUSIONS

Kinetic processes in proteins are often not adequately
described by a small number of exponential compo-
nents. When analyzing the data, it is advantageous to
transform the experimental data numerically from the
time domain into rate space. Different techniques are
available to perform this task. The inversion technique
employing the maximum entropy method is particularly
useful, because the resulting rate distribution function
f(X\) has the minimal features compatible with both the
data and the statistical errors. No additional correla-
tions are introduced. The physical interpretation of f(\),
therefore, needs to consider only features that are
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warranted by the experimental data. A note of caution
must be added to these remarks. No technique can
derive unambiguous conclusions from noisy data. As the
tests discussed previously show, data of high quality are
required to distinguish a distribution from a ‘“single
exponential.” A multifaceted approach is consequently
recommended for analyzing complex reaction phenom-
ena as in biomolecules. Features that emerge essentially
unchanged when employing different techniques, such
as fits with parameterized distributions, the maximum
entropy method, and global (e.g., multiple temperature)
models, can then be used to elucidate the physics behind
the observed kinetic processes.
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