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INTRODUCTION

The linear gramicidins are a class of prototypical chan-
nel formers that are used to elucidate general aspects of
ion channel function (for a review see Andersen et al.,
1991). Gramicidin channels are formyl-NH-terminal-to-
formyl-NH-terminal dimers of f`63-helices, as originally
suggested by Urry (1971). The channels are stabilized by
6 intermolecular C = 0 * * * HN hydrogen bonds, and
the channel appearances are usually denoted by stable
(on the ms to s timescale) rectangular current transitions
with a single predominant conducting state (e.g., Sawyer
et al., 1989). (Gramicidin channels exhibit brief "flickers"
to a low-conductance state with an average duration of
- 1 P,s (Heinemann and Sigworth [1991]; these events

will not concern us here.) Gramicidin channels are
generally presumed to be voltage independent, but we
have recently found that some types of asymmetrical
(heterodimeric) gramicidin channels exhibit voltage-
dependent transitions between (at least) two conduc-
tance states.
These channels were discovered in an attempt to

discern why heterodimers formed by [F6Val']gramicidin
A ([F6Val']gA, in which Val' is replaced by 4,4,4,4',4',4'-
hexafluorovaline), and [Val']gA are energetically desta-
bilized relative to the symmetrical parent channels
(Russell et al., 1986; Durkin et al., 1990). From the
heterodimer appearance rate it could be concluded that
[F6Val']gA forms p63-helical channels. Once formed
however, these hybrid channels have very short dura-
tions, which could suggest that there were a "strain" at
the join between the two chemically dissimilar p6-_
helices (Durkin et al., 1990).
To examine this question further, we studied the

behavior of heterodimers formed between [F6Val1]gA
and [Gly']gA, in which Val' (with its ,3 branch) had been
replaced by a Gly. This substitution should introduce an
additional flexibility of the peptide backbone, which
might relieve any strain at the join. Heterodimers did
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indeed form between these two analogues, but they were
still destabilized relative to the symmetrical channel
types. More importantly, however, these hybrid chan-
nels had a fundamentally different appearance than all
other heterodimers between two 15-residue analogues:
they showed transitions between two "stable" conduc-
tance levels. This behavior was examined in detail in
relatively solvent-depleted diphytanoylphosphatidyl-
choline (DPhPC)/n-hexadecane bilayers, in which the
average channel durations were 100-fold longer than
in DPhPC/n-decane membranes.

RESULTS AND DISCUSSION

Fig. 1 shows the basic channel behavior. The top two
current traces show the two symmetrical and the two
asymmetrical channel types. The two different het-
erodimers correspond to the two orientations of the
[F6Val']/[Gly']gA channels: in the high-conductance
heterodimers, the [F6Val']gA monomer is toward the
positive solution; in the low-conductance heterodimers,
the [Gly']gA half of the channel is at that position. The
lower two traces show the two hybrid channel types in
greater detail. For either channel type, channel forma-
tion is visible as a discrete current change, and there are
rapid transitions between two conducting states: a high-
conductance state (H) and a low-conductance state (L).
Both conductance states are rectifying, but in opposite
directions.
For either heterodimer orientation, the relative time

the channels were in the H and L states were deter-
mined from current amplitude histograms (Fig. 2). The
fraction of time spent in the H state (fh) varied as a
function of potential: when the [F6Val']gA half is posi-
tive, most of the time is spent in the L state (fh 0.1);
when the [Gly']gA half is positive, slightly less than half
the time is spent in the H state (fh 0.4).

F6Val possesses a dipole moment (,u) of - 1.6 Debye
(cf. Russell et al., 1986). A priori one would thus expect
that the transitions between H and L could result from a
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FIGURE 1 Single-channel current traces obtained with [F6Val']gA
and [Gly']gA. The top two traces were filtered at 100 Hz. The upper
trace shows the homodimers, the channels with the higher conduc-
tance being [Gly']gA channels. The lower trace shows the het-
erodimers. They are less stable and show "flickery" behavior. The
lower two current traces (filtered at 1 kHz) show the two forms in
which the heterodimers occur. They correspond to the two possible
heterodimer orientations (shown in experiments where each analogue
was added to only one side of a preformed bilayer). Experimental
conditions: 1.0 M CsCl; 200 mV; the bilayers were formed from
DPhPC + n-hexadecane monolayers at the tip of a silanized bilayer-
punch pipet.

reorientation of the F6Val side chain between two
relatively stable rotameric states. In the simplest version
of this model, the voltage dependence offh would result
from the difference in electrostatic energy between the
two rotamer states (dipole orientations). But side chain
reorientation alone cannot account for the results: one

can estimate the magnitude of this electrostatic energy
difference (AE) from the fh estimates at ±200 mV
(taking the [F6Val']gA side as the electrical reference),

fh(+200)/fh(-200) = exp {-2- AEIRT}. (1)
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FIGURE 2 Results at higher time resolution. The top part of the figure
shows results obtained in the F6Val - Gly direction, the bottom part
shows results obtained in the Gly - F6Val direction. The current
traces denote consecutive sweeps. The current histograms to the right
show results obtained without (top) and with a channel (bottom). In the
latter case, there are two peaks, corresponding to the H and L states.
Even in the F6Val -* Gly direction, the L state has a finite conduc-
tance. The area under each peak is proportional to the time spent in
each state. The average conductances and durations of H and L were:
for F6Val -- Gly, 22.8 and 0.9 pS, 2.8 and 26 ms; for Gly -> F6Val, 19.7
and 2.9 pS, 5.3 and 12 ms. Experimental conditions as in Fig. 1; filtered
at 3kHz.

fh(+200)/fh(-200) - 4; AE is thus estimated to be
-3.4 kJ/mol. This is sixfold larger than can be

accounted for by the electrostatic field interacting with
the F6Val dipole (rotating it 1800): 0.5 kJ/mol (- 0.2
kT at 25°C) for a field of 8 * 10 7 V/m. Nevertheless, from
the sign of AE, it appears that the H state is stabilized
when the two CF3 groups point away from the [F6Val']gA
monomer and toward the [Gly']gA monomer.
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There is little doubt that the F6Val side chain "triggers"
the conductance changes; these H *- L transitions must,
however, result from a larger conformational change
because we cannot account for the necessary energy by
invoking only the F6Val side chain reorientation. It is in
this respect important that the heterodimers have a
finite conductance in the L state (Fig. 2) because this
implies that the basic channel structure remains intact
(the pore has not collapsed), which constrains the
possible conformational rearrangements. (If the
"missing" energy results from the reorientation of addi-
tional dipoles, the conformational change involves at
least two peptide groups [p - 3.6 Debye] or 4 water
molecules [p, 1.8].)
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