Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Falke J. J., Dernburg A. F., Sternberg D. A., Zalkin N., Milligan D. L., Koshland D. E., Jr Structure of a bacterial sensory receptor. A site-directed sulfhydryl study. J Biol Chem. 1988 Oct 15;263(29):14850–14858. [PubMed] [Google Scholar]
- Gregory D. H., Gerig J. T. Prediction of fluorine chemical shifts in proteins. Biopolymers. 1991 Jun;31(7):845–858. doi: 10.1002/bip.360310705. [DOI] [PubMed] [Google Scholar]
- Huestis W. H., Raftery M. A. Bromotrifluoroacetone alkylates hemoglobin at cysteine beta93. Biochem Biophys Res Commun. 1978 Apr 14;81(3):892–899. doi: 10.1016/0006-291x(78)91435-3. [DOI] [PubMed] [Google Scholar]
- Huestis W. H., Raftery M. A. Use of fluorine-19 nuclear magnetic resonance to study conformation changes in selectively modified ribonuclease S. Biochemistry. 1971 Mar 30;10(7):1181–1186. doi: 10.1021/bi00783a014. [DOI] [PubMed] [Google Scholar]
- Kaplan N., Simon M. I. Purification and characterization of the wild-type and mutant carboxy-terminal domains of the Escherichia coli Tar chemoreceptor. J Bacteriol. 1988 Nov;170(11):5134–5140. doi: 10.1128/jb.170.11.5134-5140.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luck L. A., Falke J. J. 19F NMR studies of the D-galactose chemosensory receptor. 1. Sugar binding yields a global structural change. Biochemistry. 1991 Apr 30;30(17):4248–4256. doi: 10.1021/bi00231a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luck L. A., Falke J. J. 19F NMR studies of the D-galactose chemosensory receptor. 2. Ca(II) binding yields a local structural change. Biochemistry. 1991 Apr 30;30(17):4257–4261. doi: 10.1021/bi00231a022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luck L. A., Falke J. J. Open conformation of a substrate-binding cleft: 19F NMR studies of cleft angle in the D-galactose chemosensory receptor. Biochemistry. 1991 Jul 2;30(26):6484–6490. doi: 10.1021/bi00240a019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milburn M. V., Privé G. G., Milligan D. L., Scott W. G., Yeh J., Jancarik J., Koshland D. E., Jr, Kim S. H. Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science. 1991 Nov 29;254(5036):1342–1347. doi: 10.1126/science.1660187. [DOI] [PubMed] [Google Scholar]
- Moe G. R., Bollag G. E., Koshland D. E., Jr Transmembrane signaling by a chimera of the Escherichia coli aspartate receptor and the human insulin receptor. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5683–5687. doi: 10.1073/pnas.86.15.5683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newcomer M. E., Lewis B. A., Quiocho F. A. The radius of gyration of L-arabinose-binding protein decreases upon binding of ligand. J Biol Chem. 1981 Dec 25;256(24):13218–13222. [PubMed] [Google Scholar]
- Peersen O. B., Pratt E. A., Truong H. T., Ho C., Rule G. S. Site-specific incorporation of 5-fluorotryptophan as a probe of the structure and function of the membrane-bound D-lactate dehydrogenase of Escherichia coli: a 19F nuclear magnetic resonance study. Biochemistry. 1990 Apr 3;29(13):3256–3262. doi: 10.1021/bi00465a017. [DOI] [PubMed] [Google Scholar]

