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ABSTRACT To describe the resistance of a bilayer to changes in curvature two mechanisms are distinguished which are termed bilayer
couple bending and single-layer bending. In bilayer couple bending, the resistance arises from the 2-D isotropic elasticity of the two
layers and their fixed distance. Single-layer bending covers the intrinsic bending stiffness of each monolayer. The two mechanisms are
not independent. Even so, the distinction is useful since bilayer couple bending can relax by a slip between the layers from the local to
the global fashion. Therefore, the bending stiffness of a bilayer depends on the time scale and on the extent of the deformation imposed
on the membrane. Based on experimental data, it is shown by order of magnitude estimates that (a) the bending stiffness determined
from thermally induced shape fluctuations of almost spherical vesicles is dominated by single-layer bending; (b) in the tether experiment
on lipid vesicles and on red cells, a contribution of local bilayer couple bending can not be excluded; and (c) at the sharp corners at the
leading and the trailing edge of tanktreading red cells, local bilayer couple bending appears to be important.

INTRODUCTION
Two notions
In their classical work on membrane mechanics, Evans
and Skalak (1979) start from the notion that a lipid
monolayer offers no resistance to bending. The observed
bending stiffness of lipid bilayers is attributed by these
authors to the coupling, i.e., the fixed distance normal to
the membrane plane, of the two monolayers and the re-
sistance ofthe lipid molecules to a change in their mean
lateral distance. In mechanical terms, this means that the
membrane reacts like a sandwich in which two thin
strata, responsible for most ofthe 2-D incompressibility,
are separated by a soft core. In view of the molecular
structure ofa lipid bilayer, the thin strata had to be iden-
tified with the headgroups and the core with the hydro-
phobic part of the lipid molecules.

In his first work on membrane bending stiffness Evans
(1974) assumed that the two monolayers are able to slide
relative to each other. He termed the resulting kind of
bending stiffness "global" because the bending energy is
determined by the average curvature ofthe whole mem-
brane envelope. In contrast, when slip ofthe two layers is
not allowed the bending energy at each point on the
membrane depends on the local curvature. Accordingly,
the respective kind of bending stiffness was termed
"local."

Helfrich (1973), on the other hand, by analogy to liq-
uid crystals considered the resistance of the lipid mole-
cules against a relative tilt. Here, the resistance to bend-
ing is distributed over the whole thickness of the mono-
layer. This resistance gives rise to an intrinsic bending
stiffness of a single monolayer which is local in the sense
defined above.
A combination of both notions was suggested by Sve-

tina et al. (1982), Stokke et al. (1986), and Waugh and
Hochmuth (1987).

Nomenclature
For the bending stiffness emanating from the coupling of
layers, I will use the term bilayer couple bending, follow-

ing Sheetz and Singer (1974). The respective stiffness pa-
rameter (Bj) depends, according to Evans and Skalak
(1979), on the isotropic moduli (K1, K2) of the constitu-
ent layers and their distance (h);

Bc = h2 K1K2K1 + K2
(1)

For the intrinsic bending stiffness of a monolayer, I will
use the term single-layer bending. Each monolayer has
its own stiffness parameter in single-layer bending.
These sum up to the total value of the bilayer (Be). The
distance does not enter.

Interlayer slip
Except for the very recent work of Waugh et al. (1992)
the bending stiffness of vesicles or red cell membranes
was determined by fitting to models based on local bend-
ing (Servuss et al., 1976; Evans, 1983; Schneider et al.,
1984; Bo and Waugh, 1989; Faucon et al., 1989; Evans
and Rawicz, 1990; Mutz and Helfrich, 1990; Duwe and
Sackmann, 1990). According to the notion ofEvans and
Skalak (1979), this would correspond to the absence of
interlayer slip. This, however, is hard to reconcile with
the well known lateral diffusivity of lipid molecules in a
bilayer as demonstrated in the following gedanken ex-
periment. Fig. 1 shows schematically an unstressed plane
piece of membrane in cross-section (Fig. 1 A) which is
bent cylindrically into a positive and a negative half
wave (Fig. 1 B). The edges ofthe piece are kept flush. We
assume the bending was so fast that no lateral rearrange-
ment of lipids could occur. The compressed lipids are
shown in light shading (Fig. 1 B). At the line separating
the two half waves, the isotropic tension in each mono-
layer changes the sign. The resulting step in 2-D pressure
drives a lateral flow of lipids which is equivalent to a slip
between the layers (Fig. 1 C).

In dynamic deformations of a lipid vesicle or of a red
cell, one has to consider time. The velocity oflateral flow
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dix). In contrast to 4,, (c is, in general, not uniform on the
membrane (see Appendix).

In global bilayer couple bending, the isotropic tension
in each monolayer is uniform on the surface (Fig. 1).
This means the lateral distribution of (c is such that (c -
(c) in Eq. 3 is uniform on the surface. The energy stored
in global bilayer couple bending (Egc) can therefore be
written as:

2BA [2
Egc C-A c ~dA (4)

C

FIGURE I Local and global bilayer couple bending. Schematic draw-
ing of an unstressed piece of a bilayer in cross section (A); after a cylin-
drical deformation in a positive and negative halfwave (B, C); no slip in
local bending, the compressed portions of the two leaflets are shaded
(B); slip in global bending (C).

of lipids depends on the gradient in 2-D pressure and on

friction. In lipid bilayers without embedded intrinsic
proteins exist two contributions to friction: (1) shear be-
tween the layers (the vorticity vector lies in the plane of
the membrane); and (2) shear within each layer (the vor-

ticity vector is normal to the plane ofthe membrane). In
the red cell membrane we have another contribution:
flow past the intrinsic proteins, which are to some extent
connected to the membrane skeleton (the vorticity vec-

tor is normal to the plane of the membrane).

Energy stored in bending
Following Helfrich (1973), the expression for the elastic
energy stored in (local) single-layer bending (Es) can be
written:

Es = 2BS (c -S)2 dA, (2)

where c is the local mean of the actual curvature of the
membrane and (, is the local mean of the spontaneous
curvature in single-layer bending. The definition of (,
differs by a factor of 2 from the definition of a spontane-
ous curvature introduced by Helfrich (1973). In the Ap-
pendix it is shown that (, is in accordance with what one

would call, intuitively, the spontaneous curvature. dA

denotes a surface element of the vesicle.
An analogous formula describes the energy (El,) stored

in local bilayer couple bending:

Elc = 2B, (c-()2 dA, (3)

whereb is the local mean of the spontaneous curvature

in bilayer couple bending (for a definition see Appen-

Aims of the paper

In this work, order of magnitude estimates are presented
to decide whether the published elastic constants are due
to bilayer couple or single-layer bending. I will estimate
whether slip is fast enough to follow the changes in cur-

vature imposed by the external forces in two typical ex-

periments set up for the measurement of membrane
bending stiffness. Based on these estimates, I will exclude
local bilayer couple bending as the kind of bending stiff-
ness resisting the thermal shape fluctuations offreely sus-

pended vesicles (Schneider et al., 1984; Faucon et al.,
1989; Duwe and Sackmann, 1990). Based on experimen-
tal observations it is then inferred that global bilayer cou-
ple bending does not contribute either and that conse-

quently single-layer bending dominates the elastic re-

sponse. This in turn indicates that the measured bending
stiffness corresponds to Bs. In case of the tether experi-
ment on lipid vesicles and on red cells (Hochmuth et al.,
1982; Bo and Waugh, 1989) local bilayer couple cannot
be excluded. This would mean that partially B, is mea-
sured in these experiments.
The considerations are then extended to the continu-

ous bending deformation of the red cell membrane dur-
ing the tanktread motion (Fischer, 1980).

LIPID VESICLES

Analysis of thermally induced shape
fluctuations
First, we consider experiments in which thermally in-
duced shape fluctuations of almost spherical, freely sus-
pended vesicles (Duwe and Sackmann, 1990) were ob-
served. For the estimate we assume that a typical fluctua-
tion occurred so fast that a lateral flow of lipid could not
take place. From vesicle geometry, local changes in 2-D
pressure are calculated. Relaxation times (t) of lateral
pressure differences are then estimated for the two fric-
tional contributions. These times are compared to the
experimentally observed decay times (r) ofthe shape fluc-
tuations.

Observed shape fluctuations have been decomposed
in a combination of modes. Accordingly, the decay
times t were determined for each mode separately. To
estimate local changes in surface area and in linear di-

Fischer Bilayer Couple or Single layer Bending 1329

A

B

or=-.: m
m m

Fischer Bilayer Couple or Single-layer Bending 1 329



mensions ofthe monolayers the time-average contoui
a vesicle is assumed as flat. Deviations from the plane
considered as spherical segments (sphere radius p a
sector angle 2#). From the vesicle diameter (D = 20 ,u
the mode numbers (1), and the respective amplitudes
(Duwe, 1989) p and d are calculated according to:

[Dr/(21)]2+ a

8a 2

and

cos d = 1 - a/p.

r of
are

mnd
=As r

t Rb - (1 1)

II), The power dissipated per volume by the first frictional
(a) contribution (vorticity tangent to the membrane plane)

is approximated by qly2, where ill is the 3-D viscosity
and y a constant 3-D shear rate within the hydrophobic

(5) part of the bilayer. It is assumed that the shear flow is
distributed over one third of the membrane thickness,
according to the strong decrease of the order parameter
of the hydrocarbon chains (Seelig and Seelig, 1974) in

(6) this region. The shear rate is then

It will turn out below that the neutral fiber of a mono-
layer is approximately in its middle. The relative change
in surface area of a monolayer is then

AA/A = (d/2)/p, (7)

where d denotes the total thickness of the bilayer, taken
as 4 nm. The change in length (As) ofthe neutral fiber of
a monolayer along a meridian of the spherical segment
is:

As = fld/4. (8)

Both AA/A and As are given as absolute values. If we
consider a fluctuation to the outside of the vesicle both
changes are positive for the outer and negative for the
inner monolayer and vice versa for a fluctuation to the
inside.

We now assume that these changes prevail on the
curved surface ofthe vesicle. We neglect the difference in
curvature between outside and inside fluctuations and
consider a spherical segment of the time-average vesicle
surface. The altitude (H) and radius of base surface (Rb)
ofthe segment can be calculated from mode number and
vesicle diameter (D):

y = 6v/d. (12)

For q, a value of 1 P was assumed according to spectro-
scopic measurements (Best et al., 1987). The choice of y

and n, results in a coefficient for viscous friction which is
in the upper part ofthe range determined experimentally
by Merkel et al. (1989). The power dissipated per mono-
layer by the first frictional contribution (PD1) is obtained
by integration over the surface of the segment:

PDi=d7i y2Dr dh. (13)

The limits of integration are constant. This is equivalent
to a flow of material at the border of the segment from
one monolayer into the other. In reality material flows
across the border to an adjacent segment.
The power dissipated per surface area by the second

frictional contribution (vorticity perpendicular to the
membrane plane) is given by 2q2(vr/r)2 (Evans and Ska-
lak, 1979), where X2 is the 2-D viscosity of a lipid mono-
layer, and Vr the radial component of v. For a conserva-
tive estimate we used a value of 2.5 x 10-6 dyn s/cm
(Waugh, 1982) for X2. The power dissipated per mono-
layer by the second frictional contribution (PD2) is ob-
tained by integration:

H = (D/2)(1 - cos (p) (9)

and

Rb = (D/2) sin p, (10)

where (p = ir/(21).
We assume the pressure difference between adjacent

segments to decay by a time-independent flow of lipid
molecules and take the time for complete pressure equili-
bration as a measure for t. The velocity in meridional
direction of a segment is called v. At the border of the
segment its value is Aslt. To describe the distribution ofv
on the surface we use cylindrical coordinates: r for the
radial position and h for the position along the axis of
symmetry ofthe spherical segment. The distribution ofv
on the segment is assumed proportional to r. This keeps
the surface density of the molecules on the surface ap-
proximately uniform. The velocity is then

PD2= 2 fH (v D/2 hw)7D dh. (14)

The dissipated power is provided by the areal relaxation
of the layers. The energy stored per surface area is (K/2)
(AA/A)2, where K is the isotropic modulus of a lipid
monolayer. A value of 70 dyn/cm was used (Evans and
Rawicz, 1990). Multiplication with the surface area of
the segment and division by the time gives the available
power (PA):

PA = K(AA/A)2DirH/(2t). (15)

Equating the dissipated power with the available power
results in equations for the characteristic times t, (Eqs.
13 and 15) and t2 (Eqs. 14 and 15) for the two frictional
contributions. Their values for 1 = 2, 3, 4 are shown in
Table 1 together with the experimentally observed val-
ues (T). Higher order fluctuations are not shown because
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TABLE 1 Decay times in thermally induced shape fluctuations
of lipid vesicles

/ Mode number;
r Experimentally observed (Duwe and Sackmann, 1990)

decay times for shape changes;
tl, t2 Theoretically estimated decay times for curvature-induced

lateral pressure gradients;
Taking into account friction between layers;

t2 Taking into account friction within each layer;

I 'r (s) t, (ms) t2(ns)

2 2.6 35 32
3 0.7 15 34
4 0.4 8 35

no corresponding values forT have been reported (Duwe
and Sackmann, 1990).

Addition of cholesterol to phospholipids has been
shown to increase the isotropic modulus (K) of bilayers
by a factor of 5 (Needham and Nunn, 1990). This would
increase PA by the same factor. From spectroscopic mea-
surements (Shinitzky and Inbar, 1976) we can expect
and therefore PD1 to be increased by about a factor of 5
as well. It is, therefore, likely that the values for t, (Table
1) apply for this case also.

Exclusion of local bilayer couple
bending
It is obvious from Table 1 that the first frictional contri-
bution dominates the second. But even t, is orders of
magnitude smaller than r, indicating that there is plenty
oftime for slip. It is concluded that bilayer couple bend-
ing acts in these measurements only globally. It is likely
that this applies to the other methods as well which use

thermally excited shape fluctuations (Evans and Rawicz,
1990; Mutz and Helfrich, 1990; Kummrow and Hel-
frich, 1991).

Exclusion of global bilayer couple
bending
Having excluded one mechanism (local bilayer couple
bending), the question arises how much each of the re-

maining mechanisms (global bilayer couple or single-
layer bending) contributes or whether one ofthem domi-
nates. A hint comes from the observation ofshape fluctu-
ations on oligolamellar vesicles. The thickness of the
water layer between the lamellae depends on preparation
history. Usually vesicles are selected that show a single
contour under the light microscope. This means in large
undulations (as are used to determine the bending stiff-
ness) the lamellae are deformed in concert. In the small
undulations which cannot be resolved by the light micro-
scope, the lamellae may oscillate independently. This
would hold the interlamellar distance constant due to
the steric interaction introduced by Helfrich (1978).

In a bilamellar vesicle, the distance between the two
outer lipid monolayers is at least twice as large as the
interlayer distance in a bilayer. It is reasonable to assume
that the velocity ofinterlamellar slip is at least as large as

that of the interlayer slip estimated above. Due to the
quadratic dependence on h (Eq. 1), Bc as measured from
global bilayer couple bending would, therefore, be at
least four times as large compared to a unilamellar vesi-
cle. In contrast, values for the bending stiffness were
measured in the various kinds of experimental setups
that were two, three, and four times as large as the mini-
mal value (Duwe and Sackmann, 1990; Mutz and Hel-
frich, 1990; Schneider et al., 1984). This indicates that
global bilayer couple bending does not appreciably resist
the shape fluctuations. The only mechanism remaining
is single-layer bending where the values for the bending
stiffness of the lamellae simply add up, which is in keep-
ing with the experimental observations.

Molecular basis of bending rigidity
With the dominance of single-layer bending the resis-
tance against area changes cannot, as in the sandwich
model, be ascribed exclusively to the headgroup region.
On the contrary, the headgroups appear to contribute
very little as indicated by the geometrical data on phos-
pholipids in the various liquid cristalline phases. Upon
transitions between these phases the area per headgroup
changes about 10 times as much as the thickness of the
layers and the thickness in turn changes 10 times as

much as the volume of the layers (Kirk et al., 1984).
These observations suggest that each layer behaves as an

incompressible continuum of finite thickness. In such a

layer both a change in surface area and in curvature in-
volve a transverse shear deformation. It, therefore, ap-

pears that the resistance of the hydrocarbon chains
against transverse shear is responsible for the resistance
of a monolayer against area change as well as bending.

Here, we assume the properties of a monolayer to be
uniform in thickness direction. A similar approximation
was made by Waugh and Hochmuth (1987) for small
radii of curvature. The neutral fiber of such a layer lies
approximately in its middle.

It can easily be shown that in a membrane assembled
by tight apposition oftwo such layers Bc = 3B,. An exper-

imental determination of both parameters in lipid vesi-
cles gave approximately this relation (Waugh et al.,
1992).

Interpretation of data
Because Eqs. 2 and 3 are formally identical, bending
stiffness parameters obtained from the measurement of
thermally induced shape fluctuations that were previ-
ously interpreted as BC can now be interpreted as Bs.
With this reinterpretation, it is possible to explain a

discrepancy noted by Evans and Rawicz (1990). The val-
ues determined experimentally by these authors for the
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bending stiffness were an order of magnitude lower than
the values expected from Eq. when a value of4 nm was
taken for h. The isotropic moduli (K) to be inserted had
been determined experimentally in the same experi-
ment. Instead of using the whole bilayer thickness for h
we now use half this value according to our assumption
of the location of the neutral fiber of the individual
monolayers. This reduces the calculated value for Bc by a

factor of4. The remaining discrepancy which averages to
2.8 for the five kinds of lipids and lipid mixtures used by
Evans and Rawicz (1990) compares well with the ex-

pected ratio of Bc/Bs.
Considering just the data on pure lipids collected by

Evans and Rawicz (1990), the values of BCJBS correlate
with the degree of unsaturation of the hydrocarbon
chains. The deviation of BC/BS from the mean value be-
comes even larger when instead ofa common value for h
individual values (Rand and Parsegian, 1989) are used
for each kind of lipid. These deviations can be explained
when the curvatures ofthe monolayers are accounted for
individually (Fischer, 1992a).

Analysis of tether extension
The measurements are performed in mechanical equilib-
rium, i.e., at small rates of change in tether length (Bo
and Waugh, 1989). It is, however, not guaranteed that
the lateral position of the lipids in the membrane is in
equilibrium as well. This is checked by the following esti-
mate using the published experimental data.
For simplicity it is assumed that the rate of increase in

tether length (called tether velocity in the following) is
constant during the experiment. As can be seen from the
time registration in Fig. 4 of Bo and Waugh (1989) the
mean tether velocity (vp) is - 5 um/s. The relative differ-
ence in surface area between outer and inner layer ofthe
tether membrane is d/(2R,), where Rt denotes the radius
of the tether.

If vp were infinitely large the area per headgroup would
increase in the outer layer of the tether and decrease in
the inner one by d/(4R,). At finite vp the lipid flow pro-
ducing the tether will be faster in the outer than in the
inner layer, leading to a relative change (AA/A) in area

per headgroup in each layer the absolute value of which
is smaller than d/(4Rt). The deviation (Vd) from the aver-

age flow velocity (vp) at the border between tether and
body of the vesicle is obtained from a flow balance. For
an approximate calculation we use the linearized form:

Vd dV( h) (16)

The difference in lateral pressure between vesicle and
tether that drives in each layer the deviation from the
average flow is considered to be proportional to AA/A.
The difference in isotropic tension between inner and
outer layer that accumulates in the body of the vesicle
with increasing tether length is neglected in this estimate.

This is equivalent to the assumption that the surface area
of the vesicle is much larger than that of the tether.
At constant tether velocity, AA/A will be constant

along the tether. Accordingly, the slip between the layers
occurs in the body of the vesicle, which is approximated
by a flat disk of radius D, D being the diameter of the
vesicle. The distribution ofthe velocity (v) on this disk is
assumed to be proportional to 1/r. This choice makes the
flow incompressible. With the boundary condition at the
border between tether and vesicle we obtain:

v(r) = vdRdr. (17)

From AA/A, the force (F) at the border between the
tether and the body of the vesicle is calculated:

F= (AA/A)K27rRt. (18)

F is balanced by the force emanating from friction. For
the first contribution we obtain:

D

F,= n,,y2,xr dr. (19)

Equating Eqs. 18 and 19 and using Eqs. 12, 17, and 16
results in an equation for /AAA. It is interesting to note
that R, drops out. Inserting the numerical values gives a
value of 0.18 for AA/A relative to d/(4R,). As above, it
can be shown that the influence of the second frictional
contribution is much smaller.

Interpretation of data
As such, this result indicates that 18% of bilayer couple
bending is local. Because of the approximative nature of
the calculations, no quantitative statement can be made.
It is, however, instructive to look at the consequences if
this number were true. First, we neglect global bilayer
couple bending against single-layer bending in accor-
dance with Waugh and Hochmuth (1987). We are left
with two local contributions and assume that the stiff-
ness in bilayer couple bending is 0.2B,. With the approx-
imate relation Bc = 3Bs, it follows that the measured
bending stiffness would be equal to 1.6BS. This could be
an explanation for the relatively large value that was ob-
tained by Song and Waugh (1990) and Waugh et al.
(1992) compared to others (Faucon et al., 1989; Mutz
and Helfrich, 1990; Evans and Rawicz, 1990).

RED CELLS
Before we apply the results obtained for vesicles to the
red cell case we have to deal with the presence of (intrin-
sic) proteins embedded in the bilayer. The flow of lipid
molecules past these proteins gives rise to the third fric-
tional contribution in which the vorticity is again perpen-
dicular to the membrane plane. The force (F) on a single
protein is adopted from calculations of the flow past an
infinite periodic array of cylinders (Drummond and Ta-
hir, 1984):
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F 8=8r2v (20)
In (1/e) - 1.4975 + 2e - e2/2

where 2 is the 2-D viscosity of the lipids, v the average
flow velocity past the proteins, and e the surface fraction
of the intrinsic proteins within the bilayer.
Only bands 3 and 4.5 were taken into account in this

estimate. The glycophorins were neglected because of
their smaller size and number. It is not clear whether
band 3 and band 4.5 exist as dimers or tetramers in the
red cell membrane. The calculation of their surface den-
sity (a) was based on a trimeric state (number ofcopies =
7.1 X 105 and surface area ofthe red cell = 135 Mm2). For
simplicity, an equidistant arrangement of the intrinsic
proteins was assumed although the laterally mobile ones

may be dragged towards the border ofa "corral" (Sheetz,
1983). The cross-section ofthe membrane spanning por-
tion of the proteins was estimated by assuming a close
packing of alpha helices (diameter = 1 nm). This results
in a value of 15% for e.
The value for 72 was estimated from lateral diffusion

measurements of lipid probes using a relation given by
Saffman and Delbruck (1975). The diffusion constant
was adopted from the measurements of Cribier et al.
(1990) on artificial vesicles made oflipids extracted from
red cells. Correction for the difference between the tem-
perature at which the diffusion measurements were done
(37°C) and room temperature (23°C) at which the me-

chanical experiments were performed was made using
the data ofBloom and Webb (1983). For the viscosity of
a monolayer (average between inner and outer one) we
obtained 1.7 x 10-5 dyn s/cm. This is much larger than
the value reported by Waugh (1982) for vesicles made
from egg-phosphatidylcholine. But note that for this
lipid, Cribier et al. (1990) obtained a smaller value than
Waugh (1982) which is, in keeping with the assessment
of this author, that his data represent an upper bound of
the real value.
Comparison of the force per surface area resulting

from the first frictional contribution (i7ry) with that re-

sulting from the third one (Fo) shows that the third one is
larger by more than an order of magnitude.

Tether extension
In applying the vesicle analysis to the red cell we use the
following experimental values: a tether velocity of 0.5
,um/s (Hochmuth et al., 1982), an equivalent red cell
diameter of6.6,um, and an isotropic modulus ofa mono-
layer of225 dyn/cm (Evans and Skalak, 1979). From the
third and dominating frictional contribution the force F3
emanates:

rD
F3 Fa2r-r dr. (21)

Rt

From Eqs. 18, 20, and 21 we obtain 4.6% for AA/A rela-
tive to d/(4R.). For this estimate it was assumed that the

whole membrane flows unchanged from the red cell
body into the tether. Experimental evidence (Berk and
Hochmuth, 1992) indicates, however, that the mem-

brane skeleton is strongly disturbed within or may not
even enter the tether. Concomitant with this disturbance
a concentration of intrinsic proteins could occur at the
location where the tether is pulled from the red cell body.
To make a rough estimate of this effect we assume that
no intrinsic proteins enter the tether but that they are

collected in the red cell body at twice their normal den-
sity in a ring concentric to the tether. This would in-
crease the above ratio from 4.6% to 5.9%. Again, these
numbers are approximate. Ifindeed 6% ofbilayer couple
bending were local, the bending stiffness deduced for the
red cell membrane would be 1.2BS.

Membrane tanktreading
In the tanktread motion of the red cell, the membrane
flows with high velocity around a sharp corner at the
leading and the trailing edge ofan elongated red cell. It is
therefore, interesting to ask whether bilayer couple bend-
ing is local or global at this location.
For an estimate, we consider the flow of a plane mem-

brane around a half cylinder to make a 180° bend. The
radius ofthe cylinder (RC = 1,im) and the velocity ofthe
membrane (vm = 50 ,um/s) are adopted from an experi-
ment (Fischer, 1980) where a cell is subjected to a shear
rate of 42/s. In the cylindrical portion the lipids are com-
pressed in the inner and expanded in the outer layer by
d/(4 RC). In dynamic equilibrium there is a flow v1 of
lipids relative to the membrane skeleton between regions

of different surface pressure. For simplicity we assume
the lipids to move down a constant gradient within a

strip that separates the flat and the curved region. v1 is
obtained from a flow balance:

V1 = vmd/(4RC). (22)

The force balance for the third frictional contribution
reads:

Kd/(4Rc) =F-Ay, (23)

where Ay is the width of the strip. Inserting v1 for v into
Eq. 20, and using the same numbers as before results in a
value of 1.4,um for Ay. As such this result means that in
about half ofthe curved region bilayer couple bending is
local. In the transition regions between the different sur-

face pressures the elastic energy is between that for pure
local and for pure global bilayer couple bending. We
conclude that local coupling should be important in this
case.

It is interesting to ask whether the power dissipated in
the transition region would contribute appreciably to the
total energy dissipation in the red cell membrane. From
velocity times force the dissipated power (PD3) is ob-
tained as:
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PD3 = 2v,FoA,, (24)

where At denotes the surface area of the transition re-
gions on the red cell membrane. It was taken as 60 ,um2
which is one third ofthe total surface area ofthis particu-
lar cell. The factor of 2 in Eq. 24 is to cover both mono-
layers. Inserting the numbers into Eq. 24 gives a dissi-
pated power of 1o-8 erg/s. For the power dissipated due
to shear deformation ofthe membrane a value five times
as large was calculated (Fischer, 1980). It therefore ap-
pears that the friction involved in the continuous mem-
brane bending during tanktreading contributes apprecia-
bly to the overall energy dissipation.

CONCLUSIONS
The general conclusion reached in this paper is that the
bending stiffness of a bilayer depends on the time scale
and the extent of the deformation imposed on the mem-
brane. The particular results are summarized as follows.
(a) The bending stiffness determined from thermally in-
duced shape fluctuations of quasispherical vesicles is
dominated by single layer bending. The published values
have to be interpreted as Bs (b) In the tether experiment
on lipid vesicles and on red cells, a contribution of local
bilayer couple bending can not be excluded. If local bi-
layer couple bending would actually contribute B. would
be smaller than the published value for the bending stiff-
ness. (c) At the sharp corners at the leading and trailing
edge of tanktreading red cells, local bilayer couple bend-
ing appears to be important. The energy dissipation in-
volved in bilayer couple bending can not be neglected
against that from shear deformation.

APPENDIX

Definition of spontaneous curvatures
The spontaneous curvatures used above can be operationally defined
as follows. We consider a circular piece of the membrane of a vesicle
(Fig. 2). It should be large enough for continuum mechanics to apply
and small enough to have uniform actual curvature.
We now imagine to cut the piece out of the closed membrane enve-

lope and neglect edge effects. The piece will then assume a uniform
curvature. There is good evidence that the deviatoric part ofthis curva-
ture vanishes (Fischer, 1992b). The isotropic part (or mean value) I
choose to call the spontaneous curvature.

If the two lipid layers are kept flush at the rim (no slip) one would
observe the net spontaneous curvature (c). If a slip between the two
layers but no separation of them is allowed one would observe the
spontaneous curvature due to single-layer bending Q.). The spontane-
ous curvature due to bilayer couple bending (Q) could be obtained
from the difference (Fig. 2) taking into account that t is the sum ofthe
two contributions (c and (, weighted by their share in total bending
stiffness.

It follows from this definition that (c is a local value. Due to inter-
layer slip, its distribution on the membrane depends on shape history of
the whole membrane envelope. Its value averaged over the membrane
surface, on the other hand, is a constant that depends on the surplus in
surface area of one of the two layers. As to single-layer bending, it can
be shown by thermodynamical reasoning that in the absence of strong
intermolecular attraction different molecular species remain essen-

measured "

calculated: EC =E(Bc + Bs) - s Bs

FIGURE 2 Spontaneous curvatures of a vesicle membrane. Schematic
drawing of an operational definition of the spontaneous curvatures (Q
in bilayer couple bending and (, in single layer bending). For details see
text.

tially uniformly distributed on the surface, i.e., (s is a constant. Each
layer has an extra spontaneous curvature which depends on the pack-
ing properties of the molecules in this layer.
The sign convention is such that the spontaneous curvatures are

positive in a spherical vesicle irrespective of the orientation of the
monolayers within the bilayer. (, is equal to the sum of the values of
both monolayers weighted by their share in Bs. It is clear that (s is zero
for symmetrical membranes while this is not necessarily the case for the
average value of (c
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