An inositol 1,4,5-trisphosphate receptor-dependent cation entry pathway in DT40 B lymphocytes

Guillermo Vazquez, Barbara J.Wedel, Gary St J.Bird, Suresh K.Joseph¹ and James W.Putney, Jr²

Calcium Regulation Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences-NIH, PO Box 12233, 111 TW Alexander Drive, Research Triangle Park, NC 27709 and ¹Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19103, USA

²Corresponding author e-mail: putney@niehs.nih.gov

We examined the roles of inositol 1,4,5-trisphosphate (IP_3) receptors (IP_3R) in calcium signaling using DT40 B lymphocytes, and a variant lacking the three IP_3R isoforms $(\text{IP}_3\text{R-KO})$. In wild-type cells, B cell receptor (BCR) stimulation activates a cation entry route that exhibits significantly greater permeability to Ba^{2+} than does capacitative calcium entry. This cation entry is absent in IP_3R-KO cells. Expression of the type-3 IP₃R (IP₃R-3) in the IP₃R-KO cells rescued not only agonist-dependent release of intracellular Ca^{2+} , but also Ba^{2+} influx following receptor stimulation. Similar results were obtained with an IP_3R-3 mutant carrying a conservative point mutation in the selectivity filter region of the channel (D2477E); however, an IP3R-3 mutant in which this same aspartate was replaced by alanine (D2477A) failed to restore either BCR-induced Ca2+ release or receptor-dependent Ba2+ entry. These results suggest that in DT40 B lymphocytes, BCR stimulation activates a novel cation entry across the plasma membrane that depends upon, or is mediated by, fully functional IP_3R .

Keywords: B lymphocyte/calcium channels/inositol trisphosphate receptor/phospholipase C/plasma membrane

Introduction

Activation of the phospholipase C pathway in nonexcitable cells results in the generation of inositol 1,4,5 trisphosphate (IP₃), which stimulates the release of Ca^{2+} store in the endoplasmic reticulum (Berridge, 1993). This release of Ca^{2+} is generally associated with an increase in $Ca²⁺$ entry across the plasma membrane that can serve to replenish stores or to contribute to Ca^{2+} -dependent signaling. In the majority of instances, this entry of Ca^{2+} appears to be signaled through a poorly understood mechanism that is initiated by depletion of the $Ca²⁺$ stores (Putney, 1986), a process known as capacitative calcium entry (CCE) or store-operated calcium entry (Putney, 1997a).

Non-CCE mechanisms have been described in a variety of cell types (Fasolato et al., 1993; Byron and Taylor, 1995; Shuttleworth and Thompson, 1996; Carroll and Peralta, 1998; Broad et al., 1999). The mechanisms controlling Ca2+ channel activation in such instances are not known, but may involve other second messengers, for example arachidonic acid. One second messenger that has been considered as a signal for activating plasma membrane Ca^{2+} entry is IP₃ acting on plasma membrane IP₃ receptors (IP₃R). In fact, a number of studies have provided biochemical evidence for the presence of $IP₃R$ in the plasma membrane of cells (Guillemette et al., 1988; Fujimoto et al., 1992; Khan et al., 1992a,b, 1996; Feng and Kraus-Friedmann, 1993; Bush et al., 1994; Mayrleitner et al., 1995; Quinton and Dean, 1996; El-Daher et al., 2000; Tanimura et al., 2000). However, there is little physiological evidence that these receptors play a significant role in Ca^{2+} signaling at the plasma membrane. The one notable exception is vertebrate and invertebrate olfactory neurons, for which there is considerable functional evidence for the presence of plasma membrane IP₃-gated channels (Cunningham et al., 1993; Fadool and Ache, 1994; Okada et al., 1994; Kashiwayanagi, 1996; Lischka et al., 1999; Munger et al., 2000). A role for the IP₃R type-3 (IP₃R-3) has been proposed as responsible for capacitative Ca^{2+} entry in some cell types (Putney, 1997b), but it is clear this cannot be the case in all cell types (Wang et al., 2001).

Both T and B lymphocytes have been shown, by immunostaining, to possess plasma membrane IP_3R , and these receptors have been suggested to play a role in apoptosis (Khan et al., 1992a,b, 1996). We have investigated the role of IP_3R in plasma membrane calcium fluxes, utilizing the DT40 B lymphocyte cell line. This is an excellent model for investigating the function of IP_3R in B cell signaling because of the availability of a mutant DT40 line lacking all three IP_3R isoforms (Sugawara *et al.*, 1997). DT40 is a chicken B cell line expressing an IgM isotype B cell receptor (BCR) in the plasma membrane (Baba et al., 1985) that is linked to intracellular Ca^{2+} $([Ca²⁺]$ _i) signaling through phospholipase C γ (PLC γ) activation (Buerstedde and Takeda, 1991; Sugawara et al., 1997). PLC γ activation results in conversion of phosphatidylinositol 4,5-bisphosphate into IP_3 , which then releases Ca^{2+} from thapsigargin-sensitive intracellular stores by interacting with specific IP_3R in the endoplasmic reticulum (Berridge, 1993). This release results in transient elevation of cytosolic calcium concentration and is followed by a more sustained Ca^{2+} entry from the outside, which is mediated, at least in part, by the store-operated, CCE pathway (Putney, 1986; Berridge, 1995; Parekh and Penner, 1997; Barritt, 1999; Sugawara et al., 1997). In the present work we demonstrate that there is also a noncapacitative pathway for calcium entry in DT40 B lymphocytes, activated through the BCR. This entry pathway, while not mediated by store depletion, requires a

Fig. 1. The IP3R inhibitor xestospongin C effectively suppresses both BCR-induced Ca²⁺ release and calcium entry in DT40 cells B lymphocytes, but does not affect thapsigargin-induced Ca^{2+} release or entry. DT40 cells were incubated for 45 min in the presence of $25 \mu M$ xestospongin C. Cells were then bathed in nominally Ca^{2+} -free medium, exposed to 5 μ g/ml anti-IgM antibody (top) or 2 μ M thapsigargin (bottom), as indicated. Ca2+ (1.5 mM) was added where indicated. In this experiment, relatively higher ratio values were obtained as compared with other experiments due to the use of a different Ca²⁺ measuring system; in this series (and for experiments in Figure 3), a photon counting system was used, while in the other series, an imaging system was used. Black trace: control (no xestospongin C); gray trace, 25 μ M xestospongin C. Shown are representative traces from three independent experiments.

functional IP₃R. In light of previous work providing biochemical evidence for IP_3R in the plasma membrane of B cells and other cell types, we suggest that this entry of divalent cations may result from direct gating of plasma membrane IP_3R by IP_3 .

Results

As shown in Figure 1, activation of the BCR in DT40 B lymphocytes, in the absence of extracellular Ca^{2+} , results in an oscillatory $[Ca^{2+}]$ _i signal, presumably due to cyclical release of Ca^{2+} from intracellular stores. In the current study, Ca^{2+} responses to BCR activation were observed in 60-70% of cells tested ($n = 195$). Restoration of extracellular Ca^{2+} to the responsive cells revealed a stimulated entry of Ca^{2+} in 80% of the BCR-responsive cells. Both the release and entry of Ca^{2+} appear to depend on IP₃R in some manner, because both phases of the response are lost in cells lacking IP₃R (Sugawara *et al.*, 1997), and both phases are completely blocked by the potent membrane permeant IP3R inhibitor, xestospongin C (Gafni et al., 1997;

Fig. 2. BCR activation, but not store depletion, induces Ba^{2+} entry in DT40 B lymphocytes. (A) Fura-2-loaded WTDT40 cells were incubated in nominally Ca²⁺-free medium and then exposed to 2 μ M thapsigargin in order to deplete intracellular Ca^{2+} stores. After cytosolic Ca^{2+} returned to basal levels, Ba²⁺ (10 mM) was added to the medium. A representative trace from at least five independent experiments is shown. (B) Wild-type (WTDT40) or IP₃R-KO (broken line) DT40 cells were maintained in nominally Ca^{2+} -free medium, exposed to 5 µg/ml anti-IgM antibody, and then Ba^{2+} (10 mM) was added where indicated. Representative traces from at least five independent experiments are shown.

Figure 1, top). Release of Ca^{2+} by the SERCA inhibitor, thapsigargin, and the resulting CCE, were not inhibited by xestospongin C (Figure 1, bottom).

The function of IP₃R in the Ca²⁺ entry phase could be due to their role in the release of store Ca^{2+} and activation of store-operated channels, or alternatively there may be some other, distinct mechanism for regulation of Ca^{2+} by IP₃R. If the latter were the case, then one prediction is that BCR stimulation should activate an entry in addition to that, dependent solely on Ca^{2+} store depletion. Furthermore, this response should be absolutely dependent on the presence of IP₃R. This appears to be the case, as shown by results in Figure 2. In these experiments, we took advantage of the fact that under our experimental conditions, the store-operated Ca^{2+} entry pathway involves either no detectable Ba^{2+} entry or, in some experiments, a small Ba²⁺ entry (Vazquez *et al.*, 2001; data not shown; Figure 2A). However, unlike thapsigargin-activated CCE, BCR stimulation results in a substantial entry of Ba^{2+} entry (Figure 2B). This clearly indicates that BCR-dependent cation entry involves not only store-operated channels, but also a population of somewhat less selective cation channels requiring signals other than, or in addition to, store depletion.

In experiments utilizing Ba^{2+} to assess entry, 102 of 127 anti-IgM responsive cells showed Ba^{2+} entry. Note that in a previous publication, Venkatachalam et al. (2001) failed to observe agonist-activated Ba^{2+} entry. This difference is most likely due to the fact that Venkatachalam and colleagues used 1 mM Ba^{2+} , while in our experiments the concentration of Ba2+ was 10 mM.

Fig. 3. Activation of the G-protein-coupled M5 muscarinic receptor results in stimulation of Ba2+ entry in wild-type but not in IP3R-KO DT40 cells. Ba²⁺ influx was measured in single Fura-2-loaded wildtype (WTDT40) or IP3R-KO (dotted line) DT40 cells transfected with the human M5 muscarinic receptor. The cells were maintained in nominally Ca²⁺-free medium, exposed to 100 μ M carbachol, and then Ba²⁺ (10 mM) was added where indicated. The relatively higher ratio values in this experiment are due to the use of a different Ca^{2+} measuring system; in this series, a photon counting system was used, while in the other series, an imaging system was used. Representative traces from three independent experiments are shown.

The failure to observe cation entry in all anti-IgMresponsive cells could result from rapid desensitization of the receptor-phospholipase C pathway. In fact, desensitization of the B cell antigen receptor may occur with as few as 5% of the receptors occupied, resulting in blockade of the signaling pathways derived from receptor activation by a mechanism apparently involving a short-term action of PKC (Vilen *et al.*, 1997). There was no detectable Ba^{2+} entry in those cells unable to respond to BCR crosslinking (68 of 68 cells). Importantly, the receptor-dependent Ba^{2+} entry was never observed in IP_3R knockout cells (IP₃R-KO, a variant lacking the three IP₃R isoforms, IP₃R-1, -2 and -3) (Figure 2B), indicating that the receptor-activated cation influx is dependent on the presence of IP_3R rather than depletion of Ca^{2+} stores.

In the remaining experiments, we took advantage of the apparent higher Ca^{2+} selectivity of the endogenous storeoperated channels in order to assess BCR-dependent cation (Ba^{2+}) entry into the cells without contribution from receptor activated endogenous CCE channels (see for example Vazquez et al., 2001). In addition, as Ba^{2+} is a poor substrate for endoplasmic reticulum or plasma membrane calcium pumps (Vanderkooi and Martonosi, 1971; Yamaguchi et al., 1989) and thus is not readily cleared from the cytoplasm, it provides a reliable way to monitor unidirectional cation entry that avoids potential complications derived from changes in cellular Ca^{2+} metabolism or Ca2+-dependent regulation of the cation channels (Byron and Taylor, 1995).

The failure of BCR stimulation to activate entry in IP_3R-KO cells indicates the importance of the IP_3R in this response, but does not rule out contributions of other elements of the BCR signaling pathway. Thus, we next transiently transfected DT40 cells with the human M5 muscarinic receptor, which would activate a different PLC, PLCβ, through a G-protein rather than tyrosine

Fig. 4. BCR-dependent activation of Ba^{2+} entry in wild-type but not in IP₃R-KO DT40 cells. Fura-2-loaded wild-type (WTDT40) and IP₃R-KO DT40 cells were incubated in nominally Ca²⁺-free medium and then exposed to 2 µM thapsigargin. After complete store depletion, Ba^{2+} (10 mM) was added to the medium where indicated, and 2 min later anti-IgM $(5 \mu g/ml)$ was added. Representative traces from three independent experiments are shown.

kinase-dependent mechanism. As shown in Figure 3, carbachol stimulation of the M5-expressing cells resulted in a rapid and transient cytosolic calcium rise (12 of 17 EYFP+ cells), which rapidly declined to basal levels in \sim 2 min; addition of Ba²⁺ to the external medium resulted in significant cation entry, which was not observed in those cells unable to respond to muscarinic stimulation. Again, this receptor-dependent Ba^{2+} entry was never observed in IP_3R-KO cells transfected with the M5 receptor. These results indicate that the cation entry route following receptor activation was related to IP_3 production and IP_3R expression, but not linked to the type of receptor eliciting the signal.

We next considered the possibility that activation of Ba^{2+} entry following BCR crosslinking could be the consequence of activation of $Ca²⁺$ -activated non-selective cation channels due to the transient cytosolic Ca^{2+} rise that follows IP₃-mediated Ca²⁺ mobilization from inner stores. In order to demonstrate clearly the dependence of the Ba^{2+} entry on BCR stimulation, we utilized the following protocol. Both wild-type (WTDT40) and IP_3R-KO cells were treated with thapsigargin to discharge intracellular stores completely. Ba^{2+} was then added and, as shown previously, no detectable entry of Ba^{2+} occurred. Subsequently, anti-IgM was added, and in the WTDT40, but not in the IP₃R-KO cells, Ba^{2+} entry occurred almost immediately (Figure 4). Interestingly, with this protocol a greater proportion of the cells (67 of 71) exhibited significant cation entry upon BCR stimulation, probably due to the fact that Ba^{2+} entry is triggered almost as soon as the receptor pathway becomes activated, thus minimizing any possible desensitization of the receptor signaling route.

One interesting point that can be taken from the protocol shown in Figure 4 is that the delay in Ba^{2+} entry is noticeably briefer than that for release following BCR activation. The average delay for the increase in Ba^{2+} entry after anti-IgM addition from the experiments in Figure 4 was 18 ± 10 s, while the delay for release from various protocols varied from 40 to 60 s. This is perhaps not surprising, if the entry is due to IP_3 formed and acting at

Fig. 5. Transient expression of an IP₃R restores agonist-induced Ba²⁺ entry in IP₃R-KO DT40 cells. Ba²⁺ influx was measured in Fura-2loaded IP₃R-KO DT40 cells transfected with either the rat IP₃R-3 or its vector (Mock). The cells were maintained in nominally Ca^{2+} -free medium, exposed to 5 μ g/ml anti-IgM antibody, and then Ba²⁺ (10 mM) was added where indicated. Representative traces from three independent experiments are shown.

the plasma membrane, while release results from an action of IP_3 at the endoplasmic reticulum.

To confirm that it is the IP_3R that is necessary for the BCR-dependent Ba^{2+} entry in DT40 cells, we attempted to restore this entry mechanism in IP_3R -KO cells by transient expression of the rat IP₃R-3. As predicted, stimulation of BCR signaling in IP_3R-3 -expressing IP_3R-KO cells resulted not only in reappearance of the BCR-dependent, IP₃-mediated release of stored Ca^{2+} , but also in a significant Ba²⁺ entry following receptor activation (21) of 26 IgM-responsive EYFP+ cells; Figure 5). Similarly, carbachol stimulation of IP_3R-KO cells transiently cotransfected with the M5 muscarinic receptor and the rat IP_3R-3 resulted in rapid release of calcium from stores followed by activation of the Ba^{2+} entry route in response to carbachol (data not shown). Neither the transient Ca^{2+} release nor the Ba^{2+} entry was detected in mocktransfected IP₃R-KO cells. These results indicate that in DT40 B lymphocytes, activation of the BCR signaling pathway results in generation of IP_3 , which in turn activates not only the endoplasmic reticulum-located IP₃R that cause Ca²⁺ release from endogenous stores, but also a cation entry pathway in the plasma membrane strongly linked to IP_3R expression. Unlike the highly selective CRAC channels, the IP₃R is a relatively less selective cation channel more permeable to Ba^{2+} than to Ca^{2+} (Bezprozvanny and Ehrlich, 1994, 1995). Thus, the simplest explanation for this IP_3R -dependent entry is that it represents cation flux through plasma membrane IP_3R . Although this would appear to be the most straightforward explanation for the current observations, we cannot rule out an indirect regulation of a plasma membrane channel by IP_3R , as in the conformational coupling mechanism for TRP or store-operated channels (Irvine, 1990; Berridge, 1995; Kiselyov et al., 1998). In an attempt to resolve this issue we transiently expressed two different pore mutants of the IP₃R-3 into IP₃R-KO cells and tested their abilities

Fig. 6. Effect of single point mutations within the putative pore forming region of IP₃R-3 on restoration of agonist-induced Ba²⁺ entry in IP₃R-KO DT40 cells. The top of the figure shows an alignment of a region including the predicted pore of rat IP_3R-1-3 (the putative selectivity filter sequence is underlined). D2477 of rat IP₃R-3, which was mutated into glutamate (D2477E) or alanine (D2477A), corresponds to D2550 of rat IP₃R-1. In the experiment shown below, Ba²⁺ influx was measured in Fura-2-loaded IP3R-KO DT40 cells transfected with either the D2477E (solid line) or the D2477A (broken line) mutants of the rat IP3R-3 (see Materials and methods for details on the mutations). The cells were maintained in nominally Ca^{2+} -free medium, exposed to 5 µg/ml anti-IgM antibody, and then Ba^{2+} (10 mM) was added where indicated. Representative traces from three independent experiments are shown. At the bottom, immunolocalization of transiently expressed rat IP₃R-3 (pCB6⁺ vector) in DT40 B cells is shown. IP₃R-KO cells untransfected, or transfected with the wild-type rat IP_3R-3 (WT-IP₃R), or the rat IP₃R-3 mutant D2477A (D2477A-IP₃R; see text for details) were incubated with a mouse anti- IP_3R-3 monoclonal antibody and then with the secondary Alexa Fluor 488-labeled anti-mouse IgG antibody. The fluorescence images were acquired with a Zeiss 410 confocal microscope.

to restore BCR stimulation of the Ba^{2+} entry pathway. It has recently been shown that the aspartic acid residue at position 2550 of the rat IP₃R-1 plays a critical role in cation permeation through the channel (Boehning and Joseph, 2000). This amino acid is located within a highly conserved sequence in the IP₃R (GVGD) that is homologous to the selectivity filter in potassium channels (Doyle et al., 1998; see diagram in Figure 6). Replacing this aspartate by alanine (D2550A) results in an IP₃R that is still able to bind IP₃ but devoid of Ca^{2+} release activity, i.e. rendering an impermeable channel. A conservative mutation in which the aspartate is replaced by a glutamic acid (D2550E) fully preserves the IP₃-induced Ca²⁺ release activity of the channel. These mutations do not

Fig. 7. The D2477A mutant of the rat IP₃R-3 does not restore BCRdependent activation of Ba^{2+} entry in Ca^{2+} -depleted, IP₃R-KO DT40 cells. Fura-2-loaded IP₃R-KO DT40 cells transfected with either the wild type or the D2477A mutant of the rat IP_3R-3 were incubated in nominally Ca²⁺-free medium and then exposed to 2 μ M thapsigargin. After complete store depletion, Ba²⁺ (10 mM) was added to the medium where indicated, and 2 min later anti-IgM (5 µg/ml) was added. Solid line, wild-type IP3R; dashed line, D2477A IP3R. Representative traces from three independent experiments are shown.

alter the ability of the channels to express at high levels or to form oligomers (Boehning and Joseph, 2000). Unfortunately, we have not as yet successfully expressed the rat IP₃R-1 in DT40 IP₃R-KO cells. Thus, we engineered these same two point mutations in the equivalent aspartate residue at position 2477 in the rat IP_3R-3 (mutants D2477A and D2477E, respectively). As shown in Figure 6, the D2477A mutant, when expressed in IP_3R -KO cells, failed to restore either BCR-induced Ca^{2+} release or receptor-dependent Ba^{2+} entry. Heterologous expression of the D2477A IP₃R-3 mutant was confirmed by immunocytochemistry (Figure 6), and the extent of expression and localization of the mutant appeared to be identical to that of the wild-type IP_3R-3 . Unfortunately, because of the small size of DT40 and the expression of IP_3R-3 on endoplasmic reticulum through the non-nuclear regions, we were not able to definitively localize the receptor to the plasma membrane by immunocytochemistry.

Because we cannot be certain that depletion of stores is not required for activation of this pathway, we also tested the D2477A mutant in a protocol in which Ca^{2+} stores were first depleted by thapsigargin; again, no BCR stimulation of Ba^{2+} entry was observed (Figure 7). The inability of this mutant to restore receptor-stimulated, IP_3 mediated release of Ca^{2+} from intracellular stores is consistent with the expectation that replacement of the D2477 within the predicted selectivity region of the channel by a non-negatively charged amino acid would abrogate cation permeation through the channel pore. However, the D2477E mutant, in which the negative charge is preserved by replacing aspartate with glutamate, fully retained the phenotype exhibited by IP_3R-KO cells transiently expressing the wild-type IP₃R-3. Mutant or truncated IP_3R lacking functional pores are known to be fully capable of activating plasma membrane channels through the conformational coupling mechanism (Kiselyov et al., 1998, 1999). Thus, if the BCR-activated Ba²⁺-permeable pathway were mediated by plasma membrane cation channels conformationally coupled to IP_3R , then the D2477A IP₃R-3 mutant would be expected to gate the coupled Ba2+-permeable receptor-activated channel in the plasma membrane despite its inability to release calcium from the stores. However, only the D2477E mutant, with intact gating and permeation properties, was able to restore both the release and the cation entry pathways driven by BCR stimulation.

Discussion

WTDT40 B lymphocytes co-express three subtypes of IP₃R: IP₃R-1, -2 and -3 (Sugawara *et al.*, 1997), which functionally interact to produce the oscillatory Ca^{2+} pattern observed with BCR activation by antigen- or antibody-dependent crosslinking (Miyakawa et al., 1999). A variant of these cells has been generated in which the genes coding for the three IP_3R isoforms have been disrupted by homologous recombination (Sugawara et al., 1997). Such IP_3R-KO cells respond to PLC-coupled receptors with generation of IP_3 , but they do not generate PLC-linked cytosolic Ca^{2+} signals. It has been shown previously that store-operated Ca^{2+} entry occurs normally in both wild-type and IP3R-KO DT40 cells following passive depletion of endogenous stores with thapsigargin (Sugawara et al., 1997; Broad et al., 2001; Ma et al., 2001). This endogenous store-operated pathway is highly selective for Ca^{2+} and exhibits minimal permeability to Ba^{2+} or Sr^{2+} (Figure 2A; see also Vazquez *et al.*, 2001; Venkatachalam et al., 2001). Consistent with this conclusion, which is based on fluorescence measurements, Prakriya and Lewis have recently demonstrated that the store-operated entry in DT40 involves the highly selective calcium current, I_{crac} (Prakriya and Lewis, 2001).

The results of the current study demonstrate the presence of a novel mechanism for BCR-activation of divalent cation entry across the plasma membrane of B cells that requires fully functional IP_3R , and apparently does not involve a conformational coupling mechanism. The most likely scenario is that in DT40 B lymphocytes, stimulation of the BCR-associated signaling machinery results in generation of IP_3 , which, in addition to inducing calcium release from stores through activation of endoplasmic reticulum-located IP₃R, also activates plasma membrane located IP₃R. Ca²⁺ entry through this pathway may contribute to BCR-mediated Ca^{2+} signaling, or, possibly, cation fluxes may modify store-operated Ca^{2+} entry in other ways. For example, if substantial cation fluxes were to result in membrane depolarization, then store-operated entry might actually be inhibited. This would be consistent with the observation of Hashimoto et al. (2001), who, using a membrane potential-sensitive dye, observed membrane depolarization and inhibition of CCE by BCR activation in DT40 cells. Thus, it would be useful to demonstrate the presence of an agonist-activated membrane current with properties expected of an IP_3R . However, probably due to the small size of this current, we have not as yet succeeded in identifying a non-capacitative whole-cell current activated by agonist in either WTDT40 or IP_3R-3 transfected IP_3R-KO cells.

Although not the major focus of this study, the experiments involving transfection of IP_3R-KO cells with IP₃R-3 revealed interesting patterns of Ca^{2+} signaling in the release phase as well. Miyakawa et al. (1999) generated different combinations of single IP₃R-KO DT40 cells and evaluated the contribution of each of the IP_3R subtypes normally expressed in these cells $(IP_3R-1, -2$ and -3) to the oscillatory Ca^{2+} pattern observed upon BCR activation. Interestingly, those studies suggested that only mutants expressing the IP₃R-2 exhibited BCR-dependent $Ca²⁺$ oscillations comparable to the wild-type cells, whereas mutants expressing either IP₃R-1 or IP₃R-3 responded with a monophasic Ca^{2+} transient. In the present studies, we observed that transient expression of the rat IP_3R-3 in IP_3R-KO DT40 cells is sufficient to restore an oscillatory pattern for the Ca^{2+} response to BCR stimulation (26 of 42 EYFP+ cells). As differences in the expression level of the IP₃R isoforms may affect the Ca^{2+} signaling pattern, it is possible that transient overexpression of the IP₃R-3 could account for such a discrepancy. Our observations are also inconsistent with the suggestion from Hagar et al. (1998) that cells expressing predominantly type 3 IP₃R would not support Ca^{2+} oscillations due to a lack of Ca2+-dependent inhibition of the channel. In this context, the ability of the IP_3R-KO cells transiently and solely expressing the rat IP_3R-3 to respond to BCR stimulation with clearly defined cytosolic Ca^{2+} oscillations could be taken as indirect evidence for biphasic regulation of the IP₃R-3 upon cytoplasmic Ca^{2+} concentration; however, it is also possible that cyclical modulation of PLC activity could underlie these oscillations.

As discussed above, a number of publications have raised the issue of plasma membrane IP_3R , but, with the exception of invertebrate olfactory neurons, the significance of these observations is unclear (Fasolato et al., 1994). Confusion undoubtedly arises because in some instances, IP_3 appears to be capable of regulating storeoperated channels (Vaca and Kunze, 1995; Kiselyov et al., 1998; Zubov et al., 1999); this probably represents a conformational coupling mechanism, rather than the presence of plasma membrane IP_3R . In the current study, however, the use of Ba^{2+} as a surrogate for Ca^{2+} , as well as findings presented in Figures 3–5, clearly demonstrate that DT40 B cells express a novel entry pathway that is distinct from the store-operated pathway, does not appear to involve conformational coupling and is dependent on the presence of a cation-permeable IP_3R . Taken together with previous immunological evidence for the presence of IP_3R in the B cell plasma membrane (Khan *et al.*, 1996), it seems likely that this IP₃R-dependent pathway reflects Ba²⁺ entry through plasma membrane IP_3R cation channels.

Non-CCE mechanisms have been described in a variety of cell types (Fasolato et al., 1993; Byron and Taylor, 1995; Shuttleworth and Thompson, 1996; Carroll and Peralta, 1998; Broad et al., 1999). One of the hallmarks of non-capacitative pathways is their greater permeability of Ca^{2+} surrogates, as compared with Ca^{2+} (Byron and Taylor, 1995). In at least two different cell types, the receptor-activated, non-capacitative Ca^{2+} entry can be activated by arachidonic acid (Shuttleworth, 1997; Broad et al., 1999), leading to speculation that a receptorregulated phospholipase A_2 may be involved. However, in HEK293 cells, we previously found (Luo et al., 2001) that the non-capacitative Ca^{2+} entry activated by low concentrations of muscarinic agonists was inhibited by

2-aminoethoxydiphenyl borane, a compound that inhibits both store-operated channels, as well as IP_3R (Maruyama et al., 1997; Braun et al., 2001; Broad et al., 2001; Dobrydneva and Blackmore, 2001; Gregory et al., 2001; Iwasaki et al., 2001; Ma et al., 2001; Prakriya and Lewis, 2001). It is thus tempting to speculate that plasma membrane IP_3R may underlie, or at least contribute to, non-capacitative Ca^{2+} entry in cell types other than the B lymphocyte. This issue should be the focus of investigation in future studies in a variety of Ca^{2+} -regulated systems.

Materials and methods

Cell culture, transfection and measurement of intracellular calcium

The immortalized chicken B lymphocyte cell line, DT40 (RIKEN Cell Bank No. RCB1464), and its mutant variant lacking all three IP_3R types (RIKEN Cell Bank No. RCB1467) were kindly provided by Dr Tomohiro Kurosaki (Department of Molecular Genetics, Kansai Medical University). Cell culture and handling for intracellular calcium measurements using the calcium-sensitive dye Fura-2 were as described previously (Vazquez et al., 2001).

DT40 cells were transiently transfected by electroporation (300 V, 500 μ F) with either the rat wild-type IP₃R-3 in pCB6⁺ (provided by Dr Graeme Bell, University of Chicago, Chicago, IL), its mutants (see below) or vector alone (mock-transfected cells), along with pEYFP-C1 (Clontech, Palo Alto, CA) as a transfection marker. In some experiments, cells were transfected with the human M5 muscarinic receptor (kindly provided by Dr Lutz Birnbaumer, National Institutes of Environmental and Health Sciences, Research Triangle Park, NC); the corresponding cDNA was subcloned into an expression vector (lcf201, provided by Drs Jean-Marie Buerstedde/Hiroshi Arakawa, Heinrich-Pette-Institute, University of Hamburg, Germany) under the control of the chicken β -actin promoter for expression in DT40 cells. Cells were assayed 18–30 h post-transfection. Fluorescence measurements were performed on EYFP+ cells selected by their green fluorescence when excited at 485 nm. The fluorescence intensity of multiple Fura-2-loaded DT40 cells was monitored with a CCD camera-based imaging system (Universal Imaging) mounted on a Zeiss Axiovert 35 inverted microscope equipped with a Zeiss $40\times$ (1.3 NA) fluor objective. A Sutter Instruments filter changer enabled alternative excitation at 340 and 380 nm, while the emission fluorescence was monitored at 510 nm with a Paultek Imaging camera (model PC-20) equipped with a GenIISys intensifier (Dage-MTI, Inc.). The images of multiple cells collected at each excitation wavelength were subsequently processed using the MetaFluor software (Universal Imaging Corp., West Chester, PA) to provide ratio images. In some experiments, responses of single cells were analyzed by utilizing a photomultiplier-based system, as described previously (Vazquez et al., 2001) (for example, Figures 1 and 3). Cells transfected with vector alone (mock-transfected cells) were used in parallel as controls. All experiments were performed at room temperature. The data are expressed as a ratio of Fura-2 fluorescence due to excitation at 340 nm to that due to excitation at 380 nm (F340/F380).

Mutagenesis

The cDNA of rat IP₃R-3 (Blondel et al., 1993) in pCB6⁺ (kindly provided by Dr Graeme Bell) was used as a template for mutagenesis. D2477A and D2477E point mutations were generated using the QuikChangeTM Site-Directed Mutagenesis Kit (Stratagene) according to the manufacturer's instructions. Mutations were verified by DNA sequencing.

Immunocytochemistry for IP₃R-3

DT40 cells attached to coverslips were fixed with 4% paraformaldehyde and permeabilized with 0.1% NP-40 in phosphate-buffered saline. Nonspecific sites were blocked with 3% bovine serum albumin in TBST (Tris±HCl pH 8.0, 150 mM NaCl, 0.05% Tween-20) at room temperature for 30 min, and the cells were then incubated with anti- IP_3R-3 monoclonal antibody (Transduction Laboratories, Lexington, KY) at 1:500 dilution. Secondary antibody was the Alexa fluor 488-labeled goat anti-mouse IgG antisera. The fluorescence images were acquired with a Zeiss LSM410 confocal laser scanning microscope (Carl Zeiss, Inc., Thornwood, NY) using an argon-krypton laser and excitation at 488 nm through a $40\times$ (1.2 NA, water immersion) objective lens (optical slice thickness $1.5 \mu m$).

Acknowledgements

We are grateful for Dr Lutz Birnbaumer for providing the human M5 muscarinic receptor cDNA, Dr Graeme Bell for the rat IP_3R-3 cDNA, Dr Tomohiro Kurosaki for the wild-type and IP₃R-KO DT40 cells, and Drs Jean-Marie Buerstedde and Hiroshi Arakawa for the lcf201 expression vector.

References

- Baba,T.W., Giroir,B.P. and Humphries,E.H. (1985) Cell lines derived from avian lymphomas exhibit two distinct phenotypes. Virology, 144, 139±151.
- Barritt, G.J. (1999) Receptor-activated Ca²⁺ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca²⁺ signalling requirements. Biochem. J., 337, 153-169.
- Berridge,M.J. (1993) Inositol trisphosphate and calcium signalling. Nature, 361, 315-325.
- Berridge, M.J. (1995) Capacitative calcium entry. Biochem. J., 312, 1-11.
- Bezprozvanny,I. and Ehrlich,B.E. (1994) Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: Conduction properties for divalent cations and regulation by intraluminal calcium. J. Gen. Physiol., 104, 821-856.
- Bezprozvanny,I. and Ehrlich,B.E. (1995) The inositol 1,4,5 trisphosphate (InsP₃) receptor. J. Membr. Biol., 145, 205-216.
- Blondel,O., Takeda,J., Janssen,H., Seino,S. and Bell,G.I. (1993) Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract and other tissues. J. Biol. Chem., 268, 11356-11363.
- Boehning,D. and Joseph,S.K. (2000) Functional properties of recombinant type I and type III inositol 1,4,5-trisphosphate receptor isoforms expressed in COS-7 cells. J. Biol. Chem., 275, 21492-21499.
- Braun,F.-J., Broad,L.M., Armstrong,D.L. and Putney,J.W.,Jr (2001) Stable activation of single CRAC-channels in divalent cation-free solutions. J. Biol. Chem., 276, 1063-1070.
- Broad,L.M., Cannon,T.R. and Taylor,C.W. (1999) A non-capacitative pathway activated by arachidonic acid is the major Ca^{2+} entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J. Physiol. (Lond.), 517, 121-134.
- Broad,L.M., Braun,F.-J., Lièvremont,J.-P., Bird,G.,St J., Kurosaki,T. and Putney, J.W., Jr (2001) Role of the phospholipase C-inositol 1,4,5trisphosphate pathway in calcium release-activated calcium current (I_{crac}) and capacitative calcium entry. J. Biol. Chem., 276, 15945±15952.
- Buerstedde,J.-M. and Takeda,S. (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell, 67, 179±188.
- Bush,K.T., Stuart,R.O., Li,S., Moura,L.A., Sharp,A.H., Ross,C.A. and Nigam,S.K. (1994) Epithelial inositol 1,4,5-trisphosphate receptors. Multiplicity of localization, solubility and isoforms. J. Biol. Chem., 269, 23694-23699.
- Byron, K.L. and Taylor, C.W. (1995) Vasopressin stimulation of Ca²⁺ mobilization, two bivalent cation entry pathways and $Ca²⁺$ efflux in A7r5 rat smooth muscle cells. J. Physiol. (Lond.), 485, 455-468.
- Carroll,R.C. and Peralta,E.G. (1998) The m3 muscarinic acetylcholine receptor differentially regulates calcium influx and release through modulaton of monovalent cation channels. EMBO J., 17, 3036-3044.
- Cunningham,A.M., Ryugo,D.K., Sharp,A.H., Reed,R.R., Snyder,S.H. and Ronnett,G.V. (1993) Neuronal inositol 1,4,5-trisphosphate receptor localized to the plasma membrane of olfactory cilia. Neuroscience, 57, 339-352.
- Dobrydneva,Y. and Blackmore,P. (2001) 2-Aminoethoxydiphenyl borate directly inhibits store-operated calcium entry channels in human platelets. Mol. Pharmacol., 60, 541-552.
- Doyle,D.A., Cabral,J.M., Pfuetzner,R.A., Kuo,A., Gulbis,J.M., Cohen,S.L., Chait,B.T. and MacKinnon,R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 280, 69-76.
- El-Daher, S.S. *et al.* (2000) Distinct localization and function of $^{1,4,5}IP_3$ receptor subtypes and the 1,3,4,5 IP₄ receptor GAP1^{IP4BP} in highly purified human platelet membranes. Blood, 95, 3412-3422.
- Fadool,D.A. and Ache,B.W. (1994) Inositol 1,3,4,5-tetrakisphosphategated channels interact with inositol 1,4,5-trisphosphate-gated channels in olfactory receptor neurons. Proc. Natl Acad. Sci. USA, 91, 9471–9475.
- Fasolato, C., Hoth, M., Matthews, G. and Penner, R. (1993) Ca²⁺ and Mn²⁺ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc. Natl Acad. Sci. USA, 90, 3068-3072.
- Fasolato,C., Innocenti,B. and Pozzan,T. (1994) Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol. Sci., 15, 77-83.
- Feng, L. and Kraus-Friedmann, N. (1993) Association of the hepatic IP₃ receptor with the plasma membrane: relevance to mode of action. Am. J. Physiol., 265, C1588-C1596.
- Fujimoto,T., Nakade,S., Miyawaki,A., Mikoshiba,K. and Ogawa,K. (1992) Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J. Cell Biol., 119 , 1507-1513.
- Gafni,J., Munsch,J.A., Lam,T.H., Catlin,M.C., Costa,L.G., Molinski,T.F. and Pessah,I.N. (1997) Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron, 19, 723±733.
- Gregory,R.B., Rychkov,G. and Barritt,G.J. (2001) Evidence that 2 aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem. J., 354, 285-290.
- Guillemette,G., Balla,T., Baukal,A.J. and Catt,K.J. (1988) Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in hepatic plasma membrane fraction. J. Biol. Chem., 263, 4541-4548.
- Hagar,R.E., Burgstahler,A.D., Nathanson,M.H. and Ehrlich,B.E. (1998) Type III InsP₃ receptor channel stays open in the presence of increased calcium. Nature, 396, 81-84.
- Hashimoto,A., Hirose,K., Kurosaki,T. and Iino,M. (2001) Negative control of store-operated Ca^{2+} influx by B cell receptor cross-linking. J. Immunol., 166, 1003-1008.
- Irvine, R.F. (1990) 'Quantal' Ca²⁺ release and the control of Ca²⁺ entry by inositol phosphates $-$ a possible mechanism. FEBS Lett., 263, 5–9.
- Iwasaki,H., Mori,Y., Hara,Y., Uchida,K., Zhou,H. and Mikoshiba,K. (2001) 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5 trisphosphate receptors. Receptors Channels, 7, 429-439.
- Kashiwayanagi,M. (1996) Dialysis of inositol 1,4,5-trisphosphate induces inward currents and Ca2+ uptake in frog olfactory receptor cells. Biochem. Biophys. Res. Commun., 225, 666-671.
- Khan,A.A., Steiner,J.P., Klein,M.G., Schneider,M.F. and Snyder,S.H. (1992a) IP₃ receptor: Localization to plasma membrane of T cells and cocapping with the T cell receptor. Science, 257, 815-818.
- Khan,A.A., Steiner,J.P. and Snyder,S.H. (1992b) Plasma membrane inositol 1,4,5-trisphosphate receptor of lymphocytes: selective enrichment in sialic acid and unique binding specificity. Proc. Natl Acad. Sci. USA, 89, 2849-2853.
- Khan,A.A., Soloski,J.J., Sharp,A.H., Schilling,G., Sabatini,D.M., Li,S., Ross,C.A. and Snyder,S.H. (1996) Lymphocyte apoptosis: Mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science, 273, 503±507.
- Kiselyov,K., Xu,X., Mozhayeva,G., Kuo,T., Pessah,I., Mignery,G., Zhu,X., Birnbaumer,L. and Muallem,S. (1998) Functional interaction between InsP₃ receptors and store-operated Htrp3 channels. Nature, 396, 478-482.
- Kiselyov,K., Mignery,G.A., Zhu,M.X. and Muallem,S. (1999) The N-terminal domain of the IP₃ receptor gates store-operated hTrp3 channels. Mol. Cell, 4, 423-429.
- Lischka,F.W., Zviman,M.M., Teeter,J.H. and Restrepo,D. (1999) Characterization of inositol-1,4,5-trisphosphate-gated channels in the plasma membrane of rat olfactory neurons. Biophys. J., 76, 1410±1422.
- Luo,D., Broad,L.M., Bird,G.,St J. and Putney,J.W.,Jr (2001) Signaling pathways underlying muscarinic receptor-induced $[Ca²⁺]$ _i oscillations in HEK293 cells. J. Biol. Chem., 276, 5613-5621.
- Ma,H.-T., Venkatachalam,K., Li,H.-S., Montell,C., Kurosaki,T., Patterson,R.L. and Gill,D.L. (2001) Assessment of the role of the inositol 1,4,5-trisphosphate receptor in the activation of transient receptor potential channels and store-operated Ca²⁺ entry channels. J. Biol. Chem., 276, 18888-18896.
- Maruyama,T., Kanaji,T., Nakade,S., Kanno,T. and Mikoshiba,K. (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of $Ins(1,4,5)P_3$ -induced Ca²⁺ release. *J. Biochem.*, 122, 498±505.

G.Vazquez et al.

- Mayrleitner, M., Schäfer, R. and Fleischer, S. (1995) IP₃ receptor purified from liver plasma membrane is an $(1,4,5)IP_3$ activated and $(1,3,4,5)IP_4$ inhibited calcium permeable ion channel. Cell Calcium, 17, 141-153.
- Miyakawa,T., Maeda,A., Yamazawa,T., Hirose,K., Kurosaki,T. and Iino, M. (1999) Encoding of Ca^{2+} signals by differential expression of IP₃ receptor subtypes. $EMBO$ J., 18, 1303–1308.
- Munger,S.D., Gleeson,R.A., Aldrich,H.C., Rust,N.C., Ache,B.W. and Greenberg,R.M. (2000) Characterization of a phosphoinositidemediated odor transduction pathway reveals plasma membrane localization of an inositol 1,4,5-trisphosphate receptor in lobster olfactory receptor neurons. J. Biol. Chem., 275, 20450-20457.
- Okada,Y., Teeter,J.H. and Restrepo,D. (1994) Inositol 1,4,5 trisphosphate-gated conductance in isolated rat olfactory neurons. J. Neurophysiol., 71, 595-602.
- Parekh,A.B. and Penner,R. (1997) Store depletion and calcium influx. Physiol. Rev., 77, 901-930.
- Prakriya, M. and Lewis, R.S. (2001) Potentiation and inhibition of Ca^{2+} release-activated Ca^{2+} channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J. Physiol. (Lond.), 536, $3 - 19$.
- Putney,J.W.,Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium, 7, 1-12.
- Putney,J.W.,Jr (1997a) Capacitative Calcium Entry. Landes Biomedical Publishing, Austin, TX.
- Putney,J.W.,Jr (1997b) The type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry. Cell Calcium, 21, 257-261.
- Quinton,T.M. and Dean,W.L. (1996) Multiple inositol 1,4,5 trisphosphate receptor isoforms are present in platelets. Biochem. Biophys. Res. Commun., 224, 740-746.
- Shuttleworth,T.J. (1997) Arachidonic acid activates the noncapacitative entry of Ca²⁺ during $[Ca^{2+}]$ _i oscillations. J. Biol. Chem., 271, 21720±21725.
- Shuttleworth,T.J. and Thompson,J.L. (1996) Evidence for a noncapacitative Ca2+ entry during [Ca2+] oscillations. Biochem. J., 316, 819±824.
- Sugawara,H., Kurosaki,M., Takata,M. and Kurosaki,T. (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5 trisphosphate receptors in signal transduction through the B-cell antigen receptor. $EMBO$ J., 16, 3078-3088.
- Tanimura,A., Tojyo,Y. and Turner,R.J. (2000) Evidence that type I, II and III inositol 1,4,5-trisphosphate receptors can occur as integral plasma membrane proteins. J. Biol. Chem., 275, 27488-27493.
- Vaca, L. and Kunze, D.L. (1995) IP₃-activated Ca²⁺ channels in the plasma membrane of cultured vascular endothelial cells. Am. J. Physiol., 269, C733-C738.
- Vanderkooi,J.M. and Martonosi,A. (1971) Sarcoplasmic reticulum. XII. The interaction of 8-anilino-1-naphthalene sulfonate with skeletal muscle microsomes. Arch. Biochem. Biophys., 144, 99-106.
- Vazquez,G., Lièvremont,J.-P., Bird,G.,St J. and Putney,J.W.,Jr (2001) Trp3 forms both both inositol trisphosphate receptor-dependent and independent store-operated cation channels in DT40 avian B-lymphocytes. Proc. Natl Acad. Sci. USA, 98, 11777-11782.
- Venkatachalam,K., Ma,H.-T., Ford,D.L. and Gill,D.L. (2001) Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J. Biol. Chem., 276, 33980-33985.
- Vilen,B.J., Famiglietti,S.J., Carbone,A.M., Kay,B.K. and Cambier,J.C. (1997) B cell antigen receptor desensitization: disruption of receptor coupling to tyrosine kinase activation. J. Immunol., 159, 231-243.
- Wang,Y. et al. (2001) Crucial role of type 1, but not type 3, inositol 1,4,5-trisphosphate (IP3) receptors in IP3-induced Ca2+ release, capacitative Ca 2+ entry and proliferation of A7r5 vascular smooth muscle cells. Circ. Res., 88, 202-209.
- Yamaguchi,D.T., Green,J., Kleeman,C.R. and Muallem,S. (1989) Properties of the depolarization-activated calcium and barium entry in osteoblast-like cells. J. Biol. Chem., 264, 197-204.
- Zubov,A.I., Kaznacheeva,E.V., Alexeeno,V.A., Kiselyov,K., Muallem,S. and Mozhayeva,G. (1999) Regulation of the miniature plasma membrane Ca²⁺ channel I_{min} by IP₃ receptors. J. Biol. Chem., 274, 25983±25985.

Received April 24, 2002; revised July 4, 2002; accepted July 16, 2002