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ABSTRACT The spatial distribution of ion channels over the surface of a neuron is an important determinant of its excitable properties. We
introduce two measures of channel clustering for use in patch-clamp experiments: a normalized chi-squared statistic (n) and the number
of zero-channel patches in a data set (Z). These statistics were calculated for data sets describing the distribution of A-type potassium
channels on neurons of the nudibranch Doriopsilla and measurements of Ca-dependent outward current channels on bullfrog hair cells,
as well as simulated channel distributions. When channels are clustered, q is approximately equal to the amount of current in a cluster.
The analysis shows that somatic A-channels in the nudibranch are distributed in clusters of -50 channels each. The clusters are <2 ,um
wide and are separated, on average, by 3.2 ,m. Outward current channels on hair cells occur in clusters of -27 channels each, in
agreement with the original analysis. Channel clustering may reflect properties of the insertion or regulation of channels in the membrane.

INTRODUCTION

Mature neurons express a number of different voltage
dependent ion channels; the spatial distribution of dif-
ferent channels in particular regions of the cell is an im-
portant determinant of neuronal function. Considerable
evidence has accumulated showing that ion channels in
mature neurons are not randomly distributed but tend
to occur in higher densities at specific locations (Almers
and Stirling, 1984; Poo, 1985; Thompson and Coombs,
1988; Premack et al., 1989). Good examples include the
clustering of Na channels at the site of spike initiation
(Catterall, 1981; Ellisman and Levinson, 1982) and the
distribution of Ca channels, which are found in den-
drites and presynaptic terminals but are scarce in axons

(Katz and Miledi, 1969; Llinas and Nicholson, 1971) .

When patch-clamp techniques are used to record ion
channel activity on a fine spatial scale, one often ob-
serves a high degree ofheterogeneity in channel number.
Some membrane patches contain no channels, whereas
other nearby patches on the same neuron contain numer-
ous channels. This suggests that channel proteins tend to
occur in clusters rather than being distributed randomly
over the neuronal surface. A rule is emerging that ion
channel proteins in mature cells are distributed in stable,
nonuniform patterns and their lateral mobility is quite
limited (Almers et al., 1982; Stuhmer and Almers, 1982;
Beam et al., 1985; Angelides, 1986). Channel clustering
has implications for the mechanisms involved in the tar-
geting of ion channels to specific membrane regions and
anchoring them in place. Moreover, clustering of chan-
nels and their anchoring to skeletal elements can influ-
ence channel function and excitability (Brehm et al.,
1983; Young and Poo, 1983; Roberts et al., 1990).
There is a need to develop suitable statistical methods

for evaluating the extent of channel clustering using
patch-clamp data. We introduce two simple statistics
that can be applied to this problem and illustrate their

application to patch-clamp data sets from the literature.
The experimental design that is most appropriate for us-

ing these statistics is described.

MATERIALS AND METHODS
The statistical treatment is applied to two experimental data sets. The
spatial distribution of transient potassium current, IA, on neuron cell
bodies ofthe nudibranch Doriopsilla was measured using a loose patch
method (Premack et al., 1989). These data include examples in which
multiple patches were made on a single neuron, including one experi-
ment where 31 patches were made (see Fig. 3). Whole-cell current was
measured concurrently with the patch measurements. Single-channel
current was determined by gigaseal patch. Roberts et al. ( 1990) pro-
vided a second data set that is appropriate for analysis and described
the spatial distribution of Ca-dependent outward current channels in
the basolateral region of vertebrate hair cells. The experimental meth-
ods are detailed elsewhere (Johnson and Thompson, 1989; Premack et
al., 1989; Roberts et al., 1990).
These data sets include the following measurements to make them

appropriate for the present analysis: (a) currents and accurate, un-
stretched patch areas; (b) the time and voltage dependence of opening
probability so one can scale the patch data; and (c) the mean current
density in the whole cell, either from whole cell clamp or from averag-
ing a number of patches on a single cell. In addition, knowledge of the
single channel current allows conclusions on the nature ofcurrent dis-
tributions to be converted to units of channels.

THEORY
Our two statistics for evaluating ion channel clustering
are a normalized chi-squared statistic (i7) and the num-
ber of patches in the data set that contain zero channels
(Z). We determine the expectation and variance ofthese
statistics for hypothetical models of the spatial distribu-
tion of ion channels. The square root of the variance is
used to define the confidence interval for both statistics.
We also give an approximation that allows the use of
standard chi-squared tables for evaluation ofconfidence.
These calculations allow us to test experimental data de-
rived from patch-clamp experiments against specific
models for channel distribution by computing X and Z
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FIGURE I Various models of channel distnbutions. Examples for all models are for the same channel density, 0.26 channel//Am2. (A) Randomly
distributed channels. (B) A mosaic oftwo channel densities (see model 1, text). The membrane is divided into zones ofareap and q with channel
densities d, and d2, respectively. (C) Randomly distnbuted clusters of channels (model 2). The clusters shown contain an average of 10 channels
each in a Poisson distribution and are 2 ,um in diameter. C is the best fit to the A-current loose patch data shown in Fig. 3. Boxes are 50 ,m on a side.

for the data sets and comparing them to the expected
values derived from the models.

A normalized chi-squared statistic
We call the ion channels on the surface of a cell "ran-
domly distributed" ifthe expected channel density is the
same everywhere and ifthere are no mechanisms to clus-
ter or disperse channels. If membrane patches of con-

stant area are sampled from randomly distributed chan-
nels, then xi, the number ofchannels observed in a set of
patches, will follow a Poisson distribution. One can test
the hypothesis that channels are randomly distributed
(Fig. 1 A) by calculating the ratio of the variance to the
mean channel number. For a Poisson distribution, the
variance-to-mean ratio is 1. Values >1 indicate cluster-
ing of channels, whereas values < indicate a more dis-
persed channel distribution than a random placement
process would yield.
When membrane patches in the data set vary in area,

as they normally do in patch-clamp experiments, this
statistic must be modified to reflect the fact that each
patch has its own expected number ofchannels. Custom-
arily, investigators normalize current measurements by
membrane area and report the results in units ofcurrent
density. However, the variance ofthe current density is a
function not only of the channel distribution but also of
the distribution ofpatch areas and so is not a direct mea-
sure of channel clustering.
An appropriate modification of the variance-to-mean

ratio that corrects for variability in patch area takes the
form

N. 1 e
1N- k , e, (1)

where xi and ei are the observed and expected amount of
current in the ith ofN patches. Eq. 1 is the definition of
X2 - /(N- k). k is the reduction in number ofdegrees of
freedom resulting from the calculation of the mean
current density on that cell, di. If expected current den-
sity is calculated by averaging patches on a cell, k is equal
to the number of cells. If current density is taken from
independent whole-cell measurements, k = 0. ei is calcu-

lated by using the relation e1 = Ai di, where Ai is mem-
brane area and di is the mean current density for the cell
from which the patch is taken. If xi and ei are to be
expressed as multiples of the single-channel current
(4ijngle = 1 channel), xi can be calculated by dividing
observed current by the single-channel current isingle to
get xi. The results of the analysis below are derived and
expressed most simply in terms ofthese "natural units."
For a random distribution of channels on a cell, the

expectation and variance of q are

<fl)l= isingle, Var (Ii) = N single +°(N .)isingle (2)

where o( 1 /N2x) denotes terms of order 1 /Nx.* In this
case, X is distributed as I /(N- I ) x21 (Cramer, 1945).

Analysis based on the number of
patches containing zero channels
In a given set ofNpatch recordings, define Z = (number
of patches with zero observed channels). Z is a sensitive
indicator of channel clustering. For a random distribu-
tion of channels,

N

(Z)> = , e-AAi/isingle
i=l

N

Var (Z) = z (e-AdA/isingl e-2AAi/isinsie). (3)
i=1

For random channel distributions and for the other
distributions we consider here, Z follows approximately
a binomial distribution and the second expression re-
duces to Var (Z) KZ> (I - KZ>/N). This greatly
simplifies the calculation of the confidence interval.

Models of clustered channel
distributions
If v and Z do not fall within the confidence intervals
given by Eqs. 2 and 3, then the channels are not ran-

* Notation used in this paper: o(f ), terms oforder for lower; x, aver-
age value ofx; <x>, expected value of x.
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domly distributed in the membrane. The following mod-
els of nonrandom channel distributions make testable
predictions for X and Z.

Model 1: variable channel density
In this model, an electrode descending on the cell en-

counters a local current density d that varies with posi-
tion. This mosaic or quiltwork of different densities is
called a Cox process (Diggle, 1983).
For a given d and patch area A, the expected q can be

expressed as

K(d, A) = isir + A(d-d)2 + (d- d) (4)
d

K( d, A) can be used as a kernel for convolution with the
probability distribution of d to calculate the expected q
for any hypothetical Cox process.

Ifwe make the very general assumption that the proba-
bility distribution of d is symmetrical around its mean,

a simple expected value for q results:

=isinle + AVar (d) (S)

This simple result has the interesting interpretation
that in a broad range of models of variable current den-
sity, X increases linearly with patch area A, with an inter-
cept of q = isingle for zero patch area.

For purposes of fitting the observed molluscan loose-
patch data, we give the expected values of X and Z for
one simple, specific model of variable channel density.
In this model (Fig. 1 B), patches ofmembrane may have
one oftwo current densities, d, and d2, with probabilityp
and q, respectively. The expected values for n and Z are

-pd2 +qd2 -d2

<?1> = isingle + Ad- 2 (6a)

N

KZ> = z (pe-d1Ai/isinee + qe-d2A:/isinsc)e (6b)
i=l

When d2 = 0, this model takes its extreme form, in
which a fraction q of the membrane has no channels. In
this case, <Z > = Nq (for dA > 1). One can test whether
this condition applies to a given data set by dropping
zero-channel patches from the data set. Since all of the
remaining patches sample only the channel-containing
portion ofthe membrane, it is expected that X = 4iWe for
this edited data set.

Model 2: channel clusters
In this model (Figure 1 C), channels occur in multi-
channel clusters. The mean and variance of the number
of channels in a patch follow the relations (x> = Mm,

Var(x) = Mv + m2V(Pielou, 1977), where Mand Vare
the mean and variance of the number of clusters in
a patch, and m and v are the mean and variance of
the number of channels in a cluster. If clusters are posi-
tioned at random in the membrane, the number of clus-

ters found in a patch will follow a Poisson distribution.
In this case, M = V and (<> = Var(x) i0ingleKx> =

(m + V/m)isingle.
This shows that the expected value of q depends only

on the single-channel current iingle and the cluster param-
eters m and v. Furthermore, we have found that in most
cluster models, the term v/rm does not contribute signifi-
cantly to K7n>. When the number of channels per cluster
is constant, v/rm = 0. If the number of channels in a

cluster is uniformly distributed over the interval [0.5m,
1 .5m], then v/rm = m/ 12. Ifthe number ofchannels per

cluster is itself Poisson-distributed, then v/rm = 1. We
conclude that under a wide range ofmodels ofindividual
cluster composition, m dominates expectations for K71>
and Kn> is approximately equal to the amount ofcurrent
in a channel cluster.

Ifthe number ofchannels in a cluster is Poisson-distri-
buted with mean m, then the resulting Poisson-Poisson
distribution has the following expected values for q and
Z:

<> = (m + 1 ) inge

Var (q) = ]2 + N i2 (7a)

<Z > = exp. ((1 e m)e AAlmisie. (7b)
i=l Mlsinge il1

If N or x is >10, is distributed approximately as

+ 1) X2NI /(N - 1 ); this allows the use of stan-
dard tables of the x2 distribution to evaluate values of X
in this model. The approximation in Eq. 7b is valid with
m > I and is exact when the number of channels per

cluster is constant (v = 0). (Z> is dependent on the
particular distribution of patch areas and thus must be
calculated from experimental measurements. Note that
the exponent in Eq. 7b, Ai di / Misingle, is the number of
clusters expected in patch i.

In patch-clamp experiments, it is not always possible
to distinguish between patches containing few channels
and patches that are completely devoid of channels be-
cause of measurement noise (see Roberts et al., 1990).
As a result, Eq. 7b may underestimate the number of
zero-channel patches expected if few-channel patches
are misidentified as having no channels. However, calcu-
lations show that the expected number of patches with
few channels is insignificant in this model and need not
be considered so long as m > 1.

Clusters of nonzero radius
The assumption that channels are distributed in clusters
containing m channels each gives <K> = m4ingle. This
only applies, however, if channel clusters are so small
that a given cluster always falls entirely inside or outside
of the patch. Ifwe postulate instead that the characteris-
tic cluster size AC is significant with respect to patch area

Ap, the statistic X7 will approach iingleas Ac/AP becomes
large. In this limit, patches do not sample sufficiently far
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FIGURE 2 Theoretical dependence of q on patch and channel cluster
area. (A) Monte Carlo analysis of 1,000 patches for m = 5, 10, 15, and
20 channels per cluster. q is plotted in units of channels against patch
area in units ofcluster area (Ap/A,). v drops offwith small patch areas.
(B) The same analysis, plotted in coordinates of log (q - 1 ) against log
cluster area [log (AI/Ap)]. Half-maximal values are reached when Aj/
AP= 1.

A transformation of this simulation to log-log coordi-
nates reveals a striking resemblance to a Lorentzian
function (Fig. 2 B). Previous theoretical and experimen-
tal work (Anderson and Stevens, 1973) led to an analysis
of endplate current noise spectra. These spectra, plotted
as a function of frequency, also followed a Lorentzian
function; the corner frequency ofthe function was inter-
preted by them as reflecting the mean open time ofsingle
channels in their system. Our interpretation of the clus-
tering simulations is analogous and is as follows.

Patch experiments will only fully reveal the presence
ofchannel clustering when a patch samples channel clus-
ters in their entirety. If clusters are large with respect to
patch area, it is more likely that a given cluster will
straddle the boundary of the patch so that parts of clus-
ters are measured rather than all or none. In the limit
Ac > Ap, clustering will go undetected and thus X ap-
proaches isingle*

This property of q can be turned to advantage if data
are available spanning a large range of patch areas Ap. If
data are binned by patch area and i calculated for each
bin, the clustering model predicts that X will be constant
for patch areas greater than l0Ac. At Ap I0AC, the

expected value of q is - 10% below the large-patch value.
The expected X7 is -50% its large-patch value when AC
Ap. So just as the corner frequency of noise spectra is
interpreted as the characteristic duration of a channel
opening, the turning point of the spectra in Figure 2 B
gives the characteristic area of a clustering "event."
We emphasize that the simulation does not give a Lo-

rentzian function. The particular form of the curves in
Fig. 2 depends on the shape of clusters and patches pos-
tulated in the model. Otherwise we would have been able
to derive the function analytically, instead of being
forced to resort to numerical simulation.

from any one channel to detect an increased local den-
sity of channels and statistics calculated from them will
fail to detect clustering. Therefore, ifv is calculated from
a data set grouped into bins according to patch area, a

drop-off in n for small patch areas might indicate that
these patches are smaller than the cluster area.

This prediction is borne out by Monte Carlo simula-
tion of loose patch recording (Fig. 2 A). In this simula-
tion, clusters ofm channels each are assumed to be dis-
tributed randomly in the membrane. Furthermore, the
clusters are assumed to be circular with area Ac. X was
calculated in units of channels for a range of patch areas

Ap, from patches much larger than a cluster (Ac/Ap =

0.001) to very small patches (Ac/Ap = 10). This simula-
tion was done for m = 5, 10, 15, and 20 channels per
cluster.

It was found that X equals approximately the value of
m for large Ap, until Ap approaches Ac. When Ac = Ap
drops to approximately m/2. For patch areas much
smaller than the clusters (Ac/AI 1 ), i falls off asymp-
totically to 1.

RESULTS

Fig. 3 shows a loose patch data set from a giant neuron in
the pedal ganglion of the nudibranch Doriopsilla. This
data set was generated by recording the IA current den-
sity in 31 patches on a single neuron cell body in voltage
clamp experiments. This was done using a loose patch
current recording method and four patch electrodes
ranging from 4 to 15 ,tm in tip diameter. Due to mem-
brane infolding (Mirolli and Talbot, 1972; Johnson and
Thompson, 1989), each electrode produced patches that
were quite variable in area. The average channel density
for this data set is 0.26 channel/MIm2 and the average
patch area is 1 133m2, giving an average of29.3 channels
per patch. The single channel current is 0.33 pA.

After correction for measurement uncertainty (see
Appendix), the computed statistics for this data set are
X = 3.28 pA = 9.95 channels and Z = 3. The hypothesis
that channels are distributed at random fails since the
expected values under that assumption are < 7> = 1.00 ±
0.26 channel and <Z > = 0.00035 ± 0.00035. From this
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FIGURE 3 Loose patch data from a single molluscan neuron. IA chan-
nel density is plotted against patch area for 31 patches. Data were ob-
tained as described in Premack et al. ( 1989). The dotted line shows the
mean channel density for all patches (0.26 channel/Mm2).

we conclude that IA channels are not randomly distrib-
uted over the surface of these molluscan somata.
Model 1, a quiltwork ofvariable channel densities, can

be tested by calculating q as a function ofpatch area. Fig.
4 shows this calculation for 140 patches drawn from 29
cells. Contrary to the prediction of model 1, X is not
proportional to patch area but is relatively constant for
patch areas ranging from 31 to 2,750 ,um2. A further test
of this model can be made by assuming a simple specific
model, a quiltwork oftwo channel densities. The parame-
ters of this model can be determined by solving Eqs. 6a
and 6b forp and q, the fractions ofmembrane with chan-
nel densities d, and d2, respectively. The unique solution
for this data set isp = 0.273, d, = 0.0010 channel/,um2,
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FIGURE 4 Dependence of n on patch area. Area and IA channel num-
ber measurements are from 140 patches on 29 cells. Values of the
squared deviation (x, - ei )21 ei were calculated in units of channels
and corrected for measurement error. Horizontal axis labels indicate
the maximum patch area used in each bin. Patch areas ranged from 31
to 2,750 /m2. Error bars were calculated as (Var (17))l/2 from Eq. 7a.
The horizontal dotted line shows the average t, 16.6. The area depen-
dence expected from the simulation ofFig. 2 A does not appear even for
the smallest bin of patch areas, indicating a very small cluster area.
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FIGURE 5 Expected mean and variance of Z for a clustered channel
distribution. Expected mean ofZ was calculated form = 1-20 channels
per cluster, using Eq. 3 and the patch areas and channel density from
the molluscan data set of Fig. 3. The dotted lines indicate the envelope
of±a errors ( vertical bar), with a = (Var (Z)) 1/2 as calculated from Eq.
7b. An estimate ofm in this model can be made by finding the experi-
mentally determined Z on the solid curve and interpolating a range of
values for m (horizontal error bar). For Z = 3, m = 10.7 ± 2.9 chan-
nels.

q = 0.727, and d2 = 0.356 channel/,um2. With these pa-

rameter values, 99.9% of the channels are concentrated
in 73% ofthe surface ofthe cell, with the remaining 27%
of the surface area being nearly devoid of channels (Fig.
1 B). Given that zero-channel patches fall nearly exclu-
sively in the low-density zone of this model then, it
would be expected that dropping zero-channel patches
would reduce the calculated q to 1 since all remaining
patches would be sampled from the high density ofchan-
nels. In fact, excluding zero-channel patches, the calcu-
lated value of q is 8.94 channels. These tests show that for
these neurons, the observed distribution of IA channels
cannot be explained by models in which channels are

randomly distributed with variable density.
The values for q and Z calculated from this data set are

consistent with model 2, the Poisson-Poisson clustered
model for channel distribution. For this data set, the q
statistic predicts m = q - 1 = 9.0 ± 2.3 channels per

cluster, and the Z statistic predicts that m = 10.7 ± 2.9
channels per cluster. The estimate from Z was made by
plotting Z against m for this data set (Fig. 5) and finding
the range of m that fell within the error in Z. These
analyses give two independent estimates of the number
of channels per cluster, and the average of the two is
9.8 ± 1.8 channels per cluster. At the activation voltage
used in these experiments, the probability that an individ-
ual IA channel will open during the voltage step is -0.2.
Accordingly, the total number of activatable IA channels
per cluster is 49 ± 9 channels per cluster.
We made an attempt to estimate the spatial dimension

of channel clusters. The loose patch data from 29 cells
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(2-31 patches per cell, 140 patches) were pooled and
grouped by patch area into eight bins (Fig. 4). From the
Monte Carlo simulations, we expect a drop-off in the
value of n as patch area decreases. The binned data do
not exhibit a drop-offas the area ofthe patch diminishes
even for the smallest bin, which corresponds to an aver-
age patch area of 49 OM2. We used the error bars on the
bins for Ap < 100 ,gm2 and the model of Fig. 2 B to
calculate thatAC < 3.1 tm2 with 90% confidence. Assum-
ing circular channel clusters, this corresponds to a cluster
radius of <1.0 ,um. This is smaller than the mean dis-
tance between randomly distributed clusters (cluster
density)-112/2 = 3.2 ,um. The fact that Z = 3 also sup-
ports the conclusion that cluster size is smaller than in-
tercluster distance, since larger clusters would give a data
set with fewer or no zero-channel patches. Computer sim-
ulations of Z did not impose a stronger limit on cluster
area (data not shown).
The same statistical techniques were applied to the

patch-clamp data set provided by Roberts et al. ( 1990)
on the spatial distribution of calcium-dependent K
current in bullfrog hair cells. In their analysis, a scatter
plot of relative patch current density versus patch area

was fit to a maximum likelihood model with an arbitrary
measurement noise parameter. If we follow Roberts et
al. and omit one patch in which 23% of the whole-cell
IK(Ca) was found in 1.4% of the basolateral membrane
area, we calculate a value of v = 38.4 channels for their
data set. We use their assumption that a, = 0.32 and Eq.
A to correct this to a "true" value of27.9. This is consis-
tent with a Poisson-Poisson model for channel clustering
with m = 26.9 ± 5.3 channels per cluster. This value is in
good agreement with their conclusion that calcium-de-
pendent K channels are distributed in clusters of -29
channels each, with -24 clusters per cell. Note that al-
though the noise estimate is a freely varying parameter of
their model rather than a measured variable, our esti-
mate of the number of channels per cluster matches
theirs without adjustment of this parameter.

DISCUSSION
A normalized chi-squared statistic for channel number,
tq, and the number ofobserved zero-channel patches in a
data set, Z, provide good statistical indicators ofnonran-
dom channel distributions in data generated by patch-
clamp experiments. By using these statistics on the data
of Premack et al. ( 1989), we conclude that IA channels
are arranged in clusters averaging about 50 channels
each, distributed randomly over the surface ofthe cell. A
drop-off in q versus decreasing patch area is not ob-
served, indicating that these clusters are smaller than 2
,um in diameter. A graphical representation ofthis model
is given in Fig. 1 C.
The following conditions are sufficient to apply our

analysis: (a) patches must not overlap each other, to en-
sure independence of samples; (b) no gradients in

current density are observed over the surface of the cell;
and (c) if data are to be pooled from different cells,
current density must be known for each individual cell.
In the experimental design, electrodes should be as small
in area as possible so that variations in current will be
large relative to measurement errors; this also maximizes
the likelihood of observing zero-channel patches. Using
a range of electrode areas will allow a test of variable
channel-density models such as model 1 in this paper. A
range of electrode areas also allows determination of
cluster size; the smallest cluster dimension detectable
will be within an order of magnitude of the smallest
patch areas obtained. Finally, if single-channel measure-
ments are available, then current clustering can be con-
verted to units of channels to determine how many
channels are present in a cluster.
Another prerequisite for this analysis is the accurate

determination of patch area and current. These condi-
tions are not always met in gigaseal patch recording, in
which membrane-distorting suction is often needed to
make the seal. Karpen et al. ( 1991 ) observed apparent
clustering of cGMP-dependent cation channels in ex-

cised patches from salamander retinal rods; this effect
disappeared when they switched to a loose-patch record-
ing method. For this reason we regard our analysis as

applicable principally to measurements not requiring
suction before measurement ofpatch capacitance. A gen-
eral treatment of the theoretical effects of measurement
errors on the present analysis is given in the Appendix.
We have derived expected values for v and Z for sev-

eral alternative models of channel distribution. These
statistics provide two separate tests to apply to models of
nonrandom channel patterning. They are not indepen-
dent ofone another, but in the present analysis we found
that the calculated X was the same with or without zero-
current patches. A satisfactory model ofchannel pattern-
ing must match predictions for both X and Z. Although
more complex models of channel clustering than those
presented in this paper are certainly possible, the simplic-
ity of the models presented here allows general conclu-
sions on the nature of channel patterning to be made.
One benefit of this approach is that more complex mod-
els of channel patterning can in most cases be reducible
to one of the two nonrandom models presented here.
Note that the present analysis supersedes a less-than-ade-
quate analysis made by us previously (Premack et al.,
1989).

If the data set is sufficiently large and spans a range of
patch areas, an upper limit on channel cluster dimension
can be set by looking for a drop-off in 77 versus decreasing
patch area. This interpretation is analogous to those in-
ferred from spectral noise analysis, with patch area

rather than time as the independent variable (Anderson
and Stevens, 1973).
Treatment ofthe data ofRoberts et al. using our tech-

nique supports the conclusions they have drawn. Their
conclusions were based on an iterative computer model
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that varied the number of channels per cluster (m) and
the measurement uncertainty (a,). The compatibility of
any given model was assessed by a log-likelihood calcula-
tion. In our analysis, a calculation ofv and Zcan be done
using a hand calculator and judicious consideration of
experimental techniques. However, our analysis requires
an independent measurement of the current measure-
ment uncertainty, O,.
Why are A-channels clustered on these molluscan cell

bodies? Unlike Ca-dependent K channels, the electro-
physiological contribution ofA-current to membrane ex-
citability is not expected to be influenced by channel
clustering on the scale demonstrated here. It may be that
observed channel clustering here reflects packaging of
channels and vesicle insertion in the membrane. The
clustering we observe would be accounted for if, once
inserted, channels were anchored in the membrane to
each other or to a cytoskeletal network, as has been ob-
served for sodium channels (Angelides et al., 1988). Ac-
cumulation of channels in clusters would reduce the
later metabolic energy needed to fabricate channel hot-
spots. This would be especially useful in the case of so-
dium channels, which are concentrated in spike-initiat-
ing zones. However, we have no evidence yet that the
clusters we observe are static or have their origins at the
time of channel insertion in the membrane.

APPENDIX
It is necessary to consider the effect of experimental error in the mea-
surement of patch current density on the expected values of q and
Var (nq). This was done by expressing the uncertainty in observed and
expected current, xi and e,, as fractions a, and ae of their measured
values. The magnitude ofthese errors depends on uncertainty in chan-
nel number, patch area, and expected channel density. Here we apply
standard methods of error propagation to the formulas for Q and
Var( X) to give the dependence of these expressions on a., and ae. The
result of this analysis is two correction terms. One, ,i', must be sub-
tracted from x1 computed from the data set to give a true value, and one,
[Var (nX) ]', must be added to the theoretical Var (i7) to give a variance
that reflects measurement uncertainty.

In our error analysis, uncertainty in the number of channels in a
patch is represented as a fraction a., of the current measured in the
patch, x. In the A-current data considered here, the main contributor
to a, is the stochastic nature of channel gating. If the probability of
channel opening is p under the conditions in which the patch current
density is measured, the number ofchannels in the patch has fractional
uncertainty a2 = (1 - p)/x. To minimize this uncertainty, experi-
ments should be designed to set the probability of channel opening as
high as possible. Other contributions to a., include noise terms to the
recording apparatus, stray capacitance, and the finite resistance of the
seal formed between the electrode and the membrane. In the A-current
data, these errors are less than ±5% ( 10% peak-to-peak) (Johnson and
Thompson, 1989). A separate source of potential error is the uncer-
tainty in determining the single-channel current amplitude, which
must be known to determine the number ofactive channels in a patch.
If each of these error sources is independent of the others, the individ-
ual uncertainties may be added in quadrature to give a total u,,(Beving-
ton, 1969).
The fractional uncertainty in the expected current is similarly repre-

sented as ae. In this case, uncertainty in current density di and patch
area Ai both contribute to ae. In loose patch recordings, the channel
density is calculated by pooling all patches for a single cell and dividing
the total number ofchannels by the total patch area. We were unable to

use whole-cell measurements in estimating somatic channel density,
owing to the high density of A-current in the axon. Uncertainties in d
and A are added in quadrature to give a,
The result of theoretical error analysis using a. and a, is that experi-

mentally determined values of v are larger than the values of v that
would be obtained in an experiment with no channel measurement
error (oa. = 0). The additional component q', which must be subtracted
from the calculated value of q, is

v ¢xgsile+ [2ae In I ae
1 +(?7+x)lsigne. (Al)

The second term was computed for a uniform error distribution for e;
it is insignificant if ae < 0.1.
The errors ax and Ue also affect the confidence intervals for each of

the individual models of channel patterning. The corrections in this
case depend on both ax and ge and are different for the different mod-
els. Correction terms must be added to the theoretical variance
Var (i7) to arrive at a new confidence interval for the model in question.
The correction term [Var (X)]' is

[Var (n)]' = 4ax Var (Xq) + aUe2. (A2)

For the A-current data set, the probability ofchannel opening was at
most 0.2. The resulting uncertainty in channel numbers accounted for
over 98% of the correction term 7', which was between 0.8iji,g, and
1 2i,j W, for all experiments. For the data of Roberts et al. (1990) on
hair cells, we based our corrections on their fit to a model that included
uncertainty in current measurements. This uncertainty, which stems
from the high minimum uncertainty associated with the method of
variance-mean measurements of current, is al = 0.32, and we assume
ax = al for our analysis of their data.

In summary, when Eqs. Al and A2 are applied to the data sets at
hand, we find that the correction i' is significant for both data sets
analyzed here: molluscan loose patch and bullfrog hair cell data. The
correction [Var (n) ]' is not significant, except in experiments in which
channel density was not known accurately for individual cells.

Finally, it must be noted that all conclusions drawn from t7 are in
units of observed channels. Clustering parameters can be normalized
by a factor equal to the open probability of a channel under the condi-
tion oftime and voltage at the time the current measurement is taken.
This correction requires accurate knowledge ofthe voltage dependence
and kinetics of channel gating derived from voltage clamp experi-
ments.
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