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Abstract

Background: Oligonucleotide microarrays measure the relative transcript abundance of
thousands of mMRNAs in parallel. A large number of procedures for normalization and detection
of differentially expressed genes have been proposed. However, the relative impact of these
methods on the detection of differentially expressed genes remains to be determined.

Results: We have employed four different normalization methods and all possible combinations
with three different statistical algorithms for detection of differentially expressed genes on a
prototype dataset. The number of genes detected as differentially expressed differs by a factor of
about three. Analysis of lists of genes detected as differentially expressed, and rank correlation
coefficients for probability of differential expression shows that a high concordance between
different methods can only be achieved by using the same normalization procedure.

Conclusions: Normalization has a profound influence of detection of differentially expressed
genes. This influence is higher than that of three subsequent statistical analysis procedures
examined. Algorithms incorporating more array-derived information than gene-expression values
alone are urgently needed.
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Background

c¢DNA or oligonucleotide microarrays have made possible
the measurement of thousands of mRNA levels in parallel,
enabling researchers for the first time to generate compre-
hensive cellular gene-expression profiles. Among several
competing techniques, photolithographically synthesized
high-density oligonucleotides are widely used. Current chip
layouts allow for the parallel measurement of >12,000 gene-
expression levels on a single array. In this approach, every
gene is represented by a set of oligonucleotides perfectly
matching the target sequence (PM oligo) and by a corre-
sponding set with a 1 base-pair (bp) mismatch in a central
position (MM oligo). The latter serves as an internal control

for hybridization specificity. Relative transcript abundance
is reported as the so-called ‘average difference’ value, that is
the average of all PM-MM differences across the gene-
specific set of probes [1,2]. An alternative approach fits a
linear model onto the differences between PM and MM
hybridization intensities and takes a model-based expres-
sion value as a measure of transcript abundance [3,4].

The technique is standardized in such a way that generation
of gene-expression data is straightforward and quite easy to
do. Analysis of processed fluorescence-intensity data, in con-
trast, is not. Analysis of a typical microarray experiment
involves the following steps: pre-scaling of the fluorescence
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intensity across the different arrays belonging to one experi-
ment to correct for differences in probe labeling, probe con-
centration, hybridization efficiency, and potentially other
factors (in the context of microarray analysis, this process is
generally termed normalization); detection of differentially
expressed genes; in the case of experimental setups compar-
ing more than two conditions, a clustering step to group
together genes with similar expression patterns; and higher-
level analysis, for example by combining functional annota-
tions of genes having predefined interesting expression
patterns with previous knowledge about the experimental
system under investigation.

Most frequently, high-density oligonucleotide data are nor-
malized by a simple ‘global scaling’ procedure. This involves
multiplication of every gene-expression value with a con-
stant factor so that the mean intensities of the arrays to be
compared are identical. A conceptually related approach
involves fitting a linear regression model on the data and
scaling the fluorescence intensities so that the resulting
regression model has a slope of 1 and a y-intercept of o [5].
This approach suffers from two significant drawbacks: first,
it relies on the implicit assumption that the total mRNA
content of different cell types compared is the same. This is
not always the case, especially if cell types of different size
and/or cell-cycle status are compared. Control of this effect
is attempted by loading identical amounts of cRNA onto the
chips. However, it has been shown that the mean expression
level on any array can be subject to significant variation
across arrays [6]. Second, the normalization is linear and
cannot account for nonlinearity in the underlying data. Pre-
vious studies [7,8] show that simple linear regression
models incompletely fit the data and that two or more linear
models with different slope for different ranges of fluores-
cence-intensity values result in a better fit.

Two conceptually related solutions to these problems have
been proposed. They assume that an ‘invariant set’ exists,
containing genes that do not change significantly between
two experimental conditions. First, all fluorescence values
on the arrays are ranked according to intensity. Then, items
with similar ranks between two arrays are identified and
considered unchanged. These items are used for nonlinear
normalization. This procedure can be performed either on
the feature level (taking raw fluorescence values as input)
[3,4] or on the probe set level, taking average-difference
values as input [8].

A similar multitude of strategies exist to detect differentially
expressed genes. The easiest approach is to define genes as
differentially expressed that change more than an arbitrarily
chosen threshold. More sophisticated analyses additionally
apply statistical tests such as Student’s t-test for compar-
isons between two experimental conditions. However, this
and other parametric tests rely on certain assumptions,
namely that the underlying data are normally distributed

with equal variances across experimental conditions [9].
These assumptions must not necessarily be met, and analy-
sis of our own (T.S. and R.H., unpublished observations) and
other [10] datasets show that they are often not fulfilled.
Non-parametric tests such as the Mann-Whitney test, in
contrast, do not rely on such strong assumptions, but a
larger number of replicate experiments is desirable.

A particular problem is the analysis of ‘multiclass experi-
ments’ containing more than two experimental conditions,
such as cellular developmental stages. Many researchers
carry out pairwise comparisons of all possible pairs of combi-
nations, resulting in a list of genes that are detected as differ-
entially expressed at least once. This leads to increased type-I
error rates, with the final data set having a type-I error rate
up to 1-(1-o)?, where « is the type-I error rate of individual
pairwise comparisons and n is the number of pairwise com-
parisons [9]. Five pairwise comparisons at the 95% confi-
dence level thus result in a confidence level for the resulting
dataset of 77%. Classical statistics offer ANOVA algorithms
for such problems. Here, differential gene expression is
detected by comparing variances within experimental condi-
tions to variances across experimental conditions [9]. Both
parametric (F) and nonparametric (H or Kruskal-Wallis)
tests exist, with the associated problems described above.

Recently, an alternative procedure for detection of differen-
tially expressed genes, called significance analysis of
microarrays (SAM), has been described [11]. Here, a relative
difference in gene expression is computed, incorporating
means and standard deviations across experimental condi-
tions. Next, the dataset is permuted several times, and the
relative difference is computed again, on the basis of the per-
muted datasets. For the majority of genes, these two values
are approximately equal. For some genes, however, the dif-
ference between the two scores exceeds a certain threshold
parameter. These genes are called differentially expressed. A
false-discovery rate [12] can be computed on the basis of
how many genes are called in the permuted datasets with the
given threshold.

Obviously, there are a large number of analysis options for
gene-expression data. The influence of normalization and
statistical analysis on the detection of differentially
expressed genes has not been investigated to date. In this
study, we carry out a thorough comparison of different nor-
malization and statistical procedures to define the key com-
ponents for detection of differentially expressed genes in a
multiclass experiment.

Results

The aim of the present study was to evaluate different nor-
malization and statistical analysis methods for their influ-
ence on detection of differentially expressed genes. We
focused on a typical multiclass experiment. The dataset used



comprises high-density oligonucleotide array-derived gene-
expression data of five consecutive cellular populations of an
ordered cellular differentiation pathway. The biology-
oriented analysis and interpretation of the dataset has been
described elsewhere [13].

Normalization

Figure 1 shows signal intensity scatterplots of one randomly
chosen array set, consisting of two arrays with different gene
content. Not normalized values are on the x-axis, and the
normalized counterparts on the y-axis. In all scatterplots,
the subA and subB arrays can easily be distinguished by the
different slopes of the respective data points. This under-
lines the necessity for separate normalization of different
subarrays of one set.

The two normalization methods based on invariant features
produce a significant amount of scatter compared to the not
normalized data (Figure 1a,b), especially the model-based
expression values as compared to the traditional average dif-
ference values. However, the model-based expression values
calculated after invariant feature normalization (y-axis in
Figure 1b) differ by two factors from the not normalized
average difference values (x-axis in Figure 1b). The scatter in
Figures 1a and b reflects data processing on the fluorescence
level with recalculation of gene-expression metrics after nor-
malization, in contrast to the other methods. Comparing
average difference and model-based expression values
derived after invariant feature normalization (Figure 1c), it
becomes evident that model-based expression values tend to
be higher than average difference values in the low-signal
area of the plot. Thus, low-abundance genes give higher
signals when model-based expression values are used. This
might reflect either a greater sensitivity of the model-based
approach or an overestimation of the expression level.

The invariant set normalization method results in very
similar slopes for the subA and subB arrays, respectively
(Figure 1d). Since pre-computed average difference values
are used, the normalization does not result in recalculation
of the expression-level values from fluorescence data, result-
ing in less scatter than in Figure 1a,b. The global scaling
method, as expected, produces two ‘straight lines’ of data
points representing different normalization factors for the
two array types (Figure 1e).

To explore further the differential impact of the normaliza-
tion procedures, we compared the normalization curves gen-
erated by the two nonlinear (invariant feature and invariant
set) normalization schemes (Figure 2). In Figure 2a, all the
approximately 400,000 feature intensities from two different
arrays are plotted against each other; the invariant features
are displayed as red circles. The position of the invariant fea-
tures far off and below the diagonal (blue line) indicates sub-
stantial need for normalization. Figure 2b shows a
normalization curve for the same two non-normalized arrays
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obtained by the invariant set method. The invariant data
points are indicated by red circles. In contrast to Figure 2a,
the invariant sets are located very closely to or directly on
the diagonal (blue dots), indicating that normalization by the
invariant set method will affect expression level values
mildly. This illustrates that different normalization methods
will have a profound effect on the expression-level values,
even if normalization has been carried out to the same base-
line array.

Statistical evaluation and detection of differentially
expressed genes

The four normalized datasets were subjected to three popular
methods for identifying differentially expressed genes,
namely parametric and nonparametric ANOVA models and
the permutation-based SAM procedure. This resulted in 12
datasets containing data about probability of differential
gene expression.

At the 99% confidence level - a median false discovery rate
(FDR) of 1% in SAM, respectively - large sets of genes are
detected by each of the combinations of normalization and
statistical analysis methods. However, the number of genes
detected differs dramatically (Figure 3a). The combination
of linear global scaling with parametric ANOVA yields 1,526
differentially expressed genes. In contrast, the combination
of invariant feature normalization with calculation of
average difference values and SAM results in only 608 genes
with a median FDR of 1% or lower. Looking at the average
numbers of differentially expressed genes, it is highest with
the parametric ANOVA model and smallest with the SAM
procedure across different normalization procedures. Simi-
larly, linear global scaling yields the largest, and invariant
feature normalization with calculation of average difference
values smallest, set of differentially expressed genes across
the different statistical evaluations performed (Figure 3a).

However, the confidence level alone is seldom used for detec-
tion of differentially expressed genes. Usually, a fold-change
criterion as well as an absolute difference criterion is added.
Figure 3b shows what percentage of the genes shown in
Figure 3a also pass additional criteria (twofold change and
absolute difference of at least 100 units). These additional cri-
teria lead to a reduction of the number of detected genes in all
datasets, but to a markedly different extent. On average, 78,
82 and 88% of the genes detected using only the 99% confi-
dence criterion are still detected when applying the additional
criteria in the parametric ANOVA, nonparametric ANOVA,
and SAM datasets, respectively (Figure 3b). In contrast, this
holds true for only 63% of the genes normalized with the
invariant probe set method. Genes detected by the combina-
tion with parametric ANOVA are most significantly affected,
with only 54% fulfilling the additional criteria.

This effect reflects systematic differences in the datasets.
Table 1 shows fold-change and difference statistics for different
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subsets of the gene-expression datasets. Considering all genes
on the arrays (Table 1a), the dataset normalized by the invari-
ant probe set method contains the smallest fold changes with
the smallest differences between mean and median fold
change. Notably, the highest fold change achieved by any gene
is 72-fold in this dataset, as opposed to several hundred fold in
the other datasets. Similarly, the mean fold change of genes
detected with 99% confidence by any of the three methods is
three- to fourfold in the invariant probe set normalized
dataset, as opposed to around tenfold or higher in datasets
employing the other normalization procedures. Also, this
subset of genes shows the smallest difference between mean
and median (Table 1b). This indicates that the fold-change
values are less skewed toward small values in the dataset nor-
malized by the invariant probe set method. Analyzing the
absolute differences between the maximum and minimum
value across the five cellular stages examined, these effects are
still present, but markedly reduced (Table 1c,d).

We next asked how well different combinations of normaliza-
tion and statistical-analysis strategies agree in detecting dif-
ferentially expressed genes. Figure 4 shows how many genes
are detected as differentially expressed by how many data-
analysis combinations. All three criteria for filtering the data
(confidence, fold change, absolute difference) were applied as
above. Interestingly, a large proportion (382 genes) is
detected by all 12 combinations. An almost equally large
number is detected by one particular combination only.
Among 201 genes detected by two combinations, these two
combinations involve the same normalization procedure in
155 cases, in contrast to 40 cases that involve the same statis-
tical algorithm. Similarly, among 208 genes detected by three
combinations, the same normalization is involved in all three
detecting combinations in 145 cases (whereas the same statis-
tical algorithm is involved in 11 cases only). This might indi-
cate that the normalization procedure has a profound
influence on which genes are detected as differentially
expressed in a subsequent statistical analysis step. The sharp
drop between three- and four-method combinations is most
likely due to the fact that three statistical algorithms have
been employed. The sharp rise between 11 and 12 method
combinations is most likely due to the fact that genes detected
by 11 combinations form a very stable subset already, and thus
are more likely to be detected by the twelfth method as well.

We thus investigated how many genes are detected simulta-
neously when comparing any two different combinations of
methods. Table 2 shows the percentage of genes identified as

http://genomebiology.com/2002/3/7/research/0033.5

differentially expressed by the method combination defined
by the column header out of the combination defined by the
row designation. Again, all three filter criteria were applied.
Values range from 41% (of the genes identified by global
scaling and parametric ANOVA which are also found by
application of invariant feature normalization with calcula-
tion of average difference values and SAM) to 100%. Strik-
ingly, the genes identified by SAM are always a subset of the
genes identified by parametric ANOVA, if the same normal-
ization procedure has been employed (figures of 100% in
Table 2). A high proportion (>93%) of the genes identified
by nonparametric ANOVA are also identified by parametric
ANOVA, and a similar high proportion of the genes identi-
fied by SAM are also identified by nonparametric ANOVA
using the same normalization (Table 2). Thus, a type of hier-
archy evolves: genes detected by SAM generally are a subset
of genes detected by nonparametric ANOVA, and genes
detected by nonparametric ANOVA generally are a subset of
genes detected by parametric ANOVA. Interestingly, the
genes detected after invariant probe set normalization gen-
erally are a subset of the genes detected after global scaling,
with the hierarchy as described above (values marked by
asterisks in Table 2).

These results point to a pronounced role for the normalization
process in the detection of differentially expressed genes. We
sought to determine which one of the two steps (normalization
versus statistical analysis) has a greater influence on the detec-
tion of differentially expressed genes. We thus calculated rank
correlations for probabilities of differential expression for all
genes represented on the arrays between pairs of all 12 combi-
nations of normalization and statistical analysis procedures
(Table 3). Strikingly, a correlation of >0.9 can only be
achieved between two statistical analysis methods if the same
normalization has been carried out. Rank correlations
between probabilities for differential expression are markedly
lower (as low as 0.4 to 0.5 in some instances) if two different
normalization procedures are compared, irrespective whether
the same statistical analysis method has been used. This indi-
cates that the normalization procedure employed has a
tremendous effect on the subsequent detection of differen-
tially expressed genes. The importance of the normalization
step has not been properly regarded in the past.

Discussion
The present study examined the influence of normalization
and statistical analysis on detection of differentially

Figure | (see the figure on the previous page)

Pre- and post-normalization signal intensity scatterplots. The x-axis in all panels except (c) represents the not normalized average difference values (AD)
derived from the Affymetrix GeneChip software after scanning. (a) y-axis is invariant-feature normalization with calculation of AD values. (b) y-axis is
invariant-feature normalization with model-based expression values (MBEV). (c) x-axis is invariant-feature normalization with calculation of AD values;
y-axis is invariant-feature normalization with MBEV. (d) y-axis is invariant probe set normalization. (e) y-axis is global scaling. Blue dots, subA-array; pink

dots, subB-array.
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Figure 2

Invariant sets and normalization curves generated by nonlinear normalization methods using identical randomly chosen arrays. (a) Invariant-feature
method. x-axis, Mature B cells, replicate 3, not normalized; y-axis, baseline: pre-Bl cells, replicate 3. Black dots, feature intensities; red circles, invariant set
of features (connected by the green line). The blue line forms the diagonal with slope of |. (b) Invariant set method. Cells as in (a). Black dots, probe set
average difference values; red circles, invariant set. Blue dots form the diagonal with slope of |. Axes are labeled with average difference intensities.




http://genomebiology.com/2002/3/7/research/0033.7

(a)

Global

-~ Invariant
scaling

Normalization

(b)

Percent Genes

Global . SAM
. Invariant .
scaling set Invariant Invariant
feature
feature
(MBEV) AD
Normalization (AD)

K o .
SAM Statistical algorithm
Invariant

feature Invariant
feature
(MBEV) (AD)

Statistical algorithm

Figure 3

Results of testing different combinations of analysis methods. (a) Numbers of genes reaching a 99% confidence level in all possible combinations of

normalization and statistical analysis algorithms. x-axis, normalization meth

ods; y-axis, statistical analysis algorithms. Column height, number of genes. (b)

Percentage of genes from Figure 2a that additionally reach a ratio of at least 2 and an absolute difference of at least 100 units. Layout is as in Figure 2a.
AD, average difference; F, F-statistics; KWV, Kruskal-Wallis; MBEV, model-based expression values; significance analysis of microarrays (SAM).

expressed genes in a oligonucleotide microarray experiment.
The dataset used describes five different cellular stages of an
ordered differentiation pathway [13,14]. We focused on sta-
tistical algorithms designed for proper analysis of such mul-
ticlass experimental designs.

A first striking observation is that the number of genes
detected as differentially expressed varies by a factor of
almost three, depending on which combination of normal-
ization method and statistical analysis has been carried out.

The genes detected by a confidence criterion alone show
large differences in mean and median fold changes, and thus
show different susceptibility to the use of additional criteria
for filtering. This affects primarily the dataset normalized by
the invariant probe set method. Also, genes in this dataset
show smaller fold changes, and the maximum fold change
achieved is 6- to 11-fold lower than in the other datasets.
Most probably, this is due to the shifting of data as a first
step in the normalization so that only 2% of the raw values
are below 20. This assigns a higher value to each data point
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Table |

Results of different methods of statistical analysis

Invariant Invariant Invariant Global
feature (AD) feature (MBEV) set scaling
(a) Mean 3.55 2.45 1.59 337
Median 2.09 1.46 1.30 2.12
Max 429.01 667.16 71.63 848.28
(b) Mean FC
F 15.05 9.69 3.06 10.28
Kw 18.48 12.24 3.35 12.21
SAM 2191 13.75 3.63 13.08
Median FC
F 5.77 2.97 2.08 3.89
KwW 7.89 3.63 2.25 4.77
SAM 9.20 4.11 241 492
(c) Mean 428.71 750.20 324.17 384.47
Median 85.52 259.83 122.04 102.37
Max 25141.89 24616.80 28650.70 24794.22
(d) Mean difference
F 2248.04 3346.51 1427.59 1784.93
Kw 2545.81 3881.37 1655.16 2044.61
SAM 3157.21 4451.51 1827.97 2216.36
Median difference
F 1116.52 1954.57 664.49 954.38
KwW 1328.38 2444.28 815.85 1138.39
SAM 1865.47 2927.57 952.92 1248.04

(a) Mean, median, and maximum fold changes (FC) of all genes on the
two array types normalized with different methods. AD, average
difference; MBEV, model-based expression values. The averages are given
across all genes of the ratio between the maximum and the minimum
value across the five different conditions, calculated after averaging
replicate arrays. (b) Mean and median fold changes (FC) of genes
detected as differentially expressed with 99% confidence by all possible
combinations of normalization and statistical analysis algorithms,
calculated as in (a). F, F-statistics; KW, Kruskal-Wallis; significance analysis
of microarrays (SAM), (c) Mean, median, and maximum signal differences
of all genes on the two array types normalized with different methods,
calculated by analogy with the ratios in (a). (d) Mean and median signal
differences of genes detected as differentially expressed with 99%
confidence by all possible combinations of normalization and statistical
analysis algorithms, calculated as in (c).

while preserving the difference between any two data points,
effectively reducing the ratio.

Analysis of the identity of probe sets indicates that the nor-
malization method has a very high influence of detection of
differentially expressed genes. In those cases where one gene
is detected by two or more different combinations of normal-
ization and statistical analysis algorithms, these combina-
tions usually employ the same normalization. Moreover,
genes are detected as differentially expressed to a high
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Figure 4

Numbers of genes detected by one or more of the 12 possible
combinations between normalization and statistical analysis. x-axis, count
of different combinations between normalization and statistical algorithm,
y-axis, number of genes detected as differentially expressed in the
respective number of different analysis combinations. A total of 12
different analysis combinations (four normalization procedures times
three methods to detect differentially expressed genes) have been
investigated.

percentage in different combinations of analysis strategies
only when the same normalization has been applied. Apply-
ing the same statistical algorithms, in contrast, does not
have such a profound effect. Finally, a high rank correlation
for probability of differential expression can only be
achieved if the same normalization procedure has been
applied. Thus, normalization appears to have a higher influ-
ence on the set of differentially expressed genes than the
choice of statistical algorithm.

A few points should be kept in mind when interpreting the
results presented here. First, the dataset chosen consists of
five independent replicate experiments, a situation rarely
encountered in microarray experiments.

Second, the dataset has been derived from highly purified cell
populations. This situation is also different from most other
microarray experiments. It might therefore be that the effects
described here are even more pronounced in different experi-
mental settings investigating less well-defined materials.

Third, the samples have been subjected to two rounds of
RNA amplification. Samples prepared according to the stan-
dard Affymetrix protocols might behave differently.
However, we do not expect this to be a significant issue, as
the hybridization behavior of amplified and standard probes
has been shown by us and other groups [15,16] to be similar.
Moreover, we have high confidence in our dataset, as many
genes with known expression patterns are detected in con-
cordance with earlier results [13,17,18].

Fourth, the present analysis follows the general practice of
detecting differentially expressed genes solely on the basis of
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Percentage of genes identical among all genes detected by different combinations of normalization and statistical analysis

Invariant  Invariant Invariant Invariant Invariant

Invariant Invariant Invariant Invariant  Global Global Global

feature;  feature; feature;  feature;  feature; feature; set; F set; KW  set; SAM scaling; F scaling;  scaling;
AD, F AD, KW AD, SAM MBEV, F MBEV, MBEV, KW SAM
Kw SAM
Invariant feature; 93 100 78 83 92 81 83 88 64 74 78
AD, F
Invariant feature; 74 95 67 79 82 74 79 8l 55 67 69
AD, KW
Invariant feature; 56 66 51 59 74 58 61 66 41 50 54
AD, SAM
Invariant feature; 69 75 82 96 100 77 80 82 58 67 70
MBEV, F
Invariant feature; 62 74 79 80 95 71 75 77 51 62 64
MBEV, KW
Invariant feature; 56 63 8l 68 77 63 66 70 44 53 57
MBEV, SAM
Invariant set; F 59 69 77 63 70 76 98 100 56 67 70
Invariant set; KW 56 67 74 60 68 74 90 96 52 66 66
Invariant set; SAM 55 64 74 58 65 73 85 89 49 6l 66
Global scaling; F 80 87 92 8l 86 90 95% 96* 98* 100 100
Global scaling; KW 72 83 88 73 82 85 89 96* 95% 78 93
Global scaling; SAM 70 78 88 71 77 84 85 89 94* 72 86

Percentages are relative to the method defined in the column headings. Values of 100% and greater than 90% are highlighted in bold. *Percentage of
genes identified after invariant probe set normalization that are also identified after global scaling (see text for details).

differences in the average difference value. This represents
only a small proportion of the information generated by the
analysis of the fluorescence images. Additional information
about cross-hybridization, fractions of probe pairs contribut-
ing to the signal, and ‘presence’ or ‘absence’ of a transcript,
among others, is readily available [1,2]. Unfortunately, no
consensus exists on how to incorporate this additional infor-
mation in a setting that cannot be handled by the manufac-
turer’s software. Anecdotally, individual groups apply their
own, often arbitrarily chosen, criteria to increase confidence
in the results [19,20]. Data-analysis algorithms employing as
much information as possible with incorporation of replicate
experiments and the ability to analyze more than two condi-
tions simultaneously are urgently needed.

Finally, testing more than 13,000 hypotheses on only five
different conditions constitutes a significant multiple-testing
problem. It is commonly accepted in multivariate statistics
that the number of hypothesis should not exceed the number
of parameters. Thus, when testing such a high number of
hypotheses, the probability of at least one falsely rejected
null hypothesis (the so-called family-wise error rate) is high.
Although multiple solutions to this problem have been pro-
posed (like SAM, controlling the false-discovery rate rather
than the type-I error rate) [11,12], to date no consensus

exists on how to deal with that problem in the context of
gene-expression analysis.

The question naturally arises of which combination of algo-
rithms is ‘best’ for analyzing gene-expression data. There is
probably no general answer. One has to balance sensitivity,
which attempts to detect all differentially expressed genes,
against specificity, which attempts to reduce the number of
false positives as much as possible. This is nicely illustrated
by the set of genes mentioned above that are known to
change. All of the 21 genes examined so far are detected in at
least one method combination. However, two genes are
detected by only one combination, and only seven of the
genes known to change during B-cell differentiation are
detected by all 12 combinations of methods. Thus, the more
specific an algorithm is, the more likely is a loss of sensitiv-
ity. However, with the high number of differentially
expressed genes typically detected in a microarray experi-
ment, specificity might be a major issue.

As most of the genes detected by the permutation-based
SAM method are enclosed in the ANOVA models, this algo-
rithm appears to be inherently more specific than the classi-
cal ones. Regarding normalization, the invariant-feature
method with calculation of average difference values yields
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Table 3

Rank correlations for probability of differential expression between all possible combinations of normalization and statistical analysis

procedures
Invariant Invariant Invariant Invariant Invariant Invariant Invariant Invariant Invariant Global Global Global
feature;  feature; feature;  feature; feature; feature; set; ' set; KW  set; SAM scaling; F scaling;  scaling;
AD,F  AD,KW AD,SAM MBEV,F MBEV, MBEY, Kw SAM
Kw SAM
Invariant feature; 1.000 0.922 0.995 0.512 0.495 0.512 0.545 0.549 0.546 0.626 0.618 0.623
AD, F
Invariant feature; 0.922 1.000 0.915 0.487 0.487 0.487 0.540 0.555 0.541 0.604 0.621 0.600
AD, KW
Invariant feature; 0.995 0.915 1.000 0.517 0.500 0517 0.553 0.555 0.553 0.625 0.617 0.623
AD, SAM
Invariant feature; 0.512 0.487 0.517 1.000 0.941 1.000 0.440 0.435 0.440 0.443 0.444 0.446
MBEV, F
Invariant feature; 0.495 0.487 0.500 0.941 1.000 0.941 0.431 0.433 0.431 0.428 0.435 0.432
MBEV, KW
Invariant feature; 0.512 0.487 0.517 1.000 0.941 1.000 0.440 0.436 0.440 0.443 0.444 0.447
MBEV, SAM
Invariant set; F 0.545 0.540 0.553 0.440 0.431 0.440 1.000 0.933 1.000 0.738 0.730 0.749
Invariant set; KW 0.549 0.555 0.555 0.435 0.433 0.436 0.933 1.000 0.933 0.719 0.743 0.729
Invariant set; SAM 0.546 0.541 0.553 0.440 0.431 0.440 1.000 0.933 1.000 0.739 0.731 0.750
Global scaling; F 0.626 0.604 0.625 0.443 0.428 0.443 0.738 0.719 0.739 1.000 0.925 0.994
Global scaling; KW 0.618 0.621 0.617 0.444 0.435 0.444 0.730 0.743 0.731 0.925 1.000 0.918
Global scaling; SAM  0.623 0.600 0.623 0.446 0.432 0.447 0.749 0.729 0.750 0.994 0.918 1.000

Values of >0.9 are highlighted in bold.

the smallest set of genes. However, this set is not a subclass
of the genes detected after normalization with other
methods (Table 2), as is the case for SAM. Ideally, a
researcher would have a set of genes with known differential
expression and a set known not to be differentially
expressed. This could be used to define the conditions for
analysis. In the absence of such a training set, it is probably a
wise decision to use the algorithms likely to result in the
most specific analysis.

Materials and methods

Gene-expression dataset

The B-cell precursor gene-expression dataset described here
has been published in detail previously [13]. Total femoral
bone marrow cells of 5-6-week-old C57/BL6 mice (n = 4 per
experiment) were divided into into three equal samples. Cells
were stained and five populations representing consecutive
cellular differentiation stages were sorted. These stages were:
pre-BI cells (c-Kit* B220%), large pre-BII cells (surface
immunoglobulin (sIg)- CD25* B220+ large), small pre-BII cells
(sIg- CD25* B220* small), immature B (sIgM* B220°) and
mature B cells (sIg* B220h) [14]. A total of 50,000 (pre-BI,
large pre-BII) or 150,000 (small pre-BII, immature and
mature B cells) cells were sorted directly into TRIzol RNA

isolation reagent (Life Technologies) at 50,000 cells/500 pl
TRIzol. A cell purity of >98% was routinely achieved. RNA was
then subjected to two rounds of in vitro transcription-based
RNA amplification as described earlier [13,16,21]. Affymetrix
Muiik subA and subB GeneChip® arrays were hybridized,
washed, stained and scanned according to the manufacturer’s
specifications. Five independent replicate experiments were
performed; thus, a total of 50 chips is included in the current
analysis (5 conditions x 5 replicates x 2 chip layouts). Scanned
raw data images were processed with Affymetrix GeneChip
v3.2 software, resulting in processed image (.cel) and numeri-
cal (.chp) files. The entire dataset can be obtained from the
NCBI at [22] under accession GSE13.

Normalization

Four different normalization procedures were used. All nor-
malizations were carried out separately for the subA and
subB arrays, respectively. After normalization, all gene-
expression values below 20 were set to 20 to eliminate low-
level signals. SubA and subB chip types were combined into
one gene-expression matrix.

Global scaling
For global scaling, average difference values were extracted
from the .chp files. All average difference values of every



chip were summed up, and the mean of these sums across all
chips of the same layout was calculated. The ratio of the
actual average difference sum for any given chip and the
mean of all average difference sums across all chips with the
same layout served as a correction factor for this chip, with
which all the average difference values were multiplied.

Invariant feature normalization and model-based expression values
For invariant-feature normalization, the program dchip
[3,4] was used. Processed image (.cel) files served as input,
and normalization was carried out according to the develop-
er’s specifications. Briefly, the program first identified a
baseline array with median overall fluorescence intensity.
Next, for every array, invariant features (defined as all the
features with similar ranks of fluorescence intensity between
two arrays) were identified. Finally, a piecewise linear
running median line based on the invariant features was cal-
culated and used as the normalization curve. After normal-
ization, both traditional average difference values and
model-based expression values (MBEV) were calculated and
exported to Microsoft Excel.

Invariant set normalization

For invariant-set normalization on the probe-set level, all
average difference levels were extracted from the .chp files
and imported into ‘The Equalizer’ [8]. Normalization was
performed according to the developer’s specifications.
Briefly, all values were first shifted (by adding a constant
value) so that only 2% of the data points had an intensity
below 20. Next, values with similar ranks (+ 15) between two
arrays were identified, taking the first array of the set as
baseline. A curve was fitted on this similar-rank subset.
Finally, all data points were shifted so that the original
similar-rank subset has a slope of 1. Normalized values were
exported to Microsoft Excel.

Statistical analysis

Three different methods were used for detection of differen-
tially expressed genes. The F-test for parametric ANOVA and
the H (Kruskal-Wallis) test for nonparametric ANOVA were
implemented in Microsoft Excel using standard formulas
[9]. The permutation-based method SAM [11] is freely avail-
able to academic researchers as an add-in for Microsoft
Excel. To enable comparisons between SAM and the two
ANOVA approaches, we considered a median false-detection
rate of 1% in SAM as comparable to a 99% confidence level
in ANOVA. Maximum fold changes and maximum differ-
ences in gene expression were calculated from the minimum
and the maximum of the population-wise means across the
five cellular populations examined.
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