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We recently described the isolation and structural characterization of 2�-fluoropyrimidine-substituted RNA
aptamers that bind to gp120 of R5 strains of human immunodeficiency virus type 1 and thereby potently
neutralize the infectivity of phylogenetically diverse R5 strains. Here we investigate the physical basis of their
antiviral action. We show that both N-linked oligosaccharides and the variable loops V1/V2 and V3 are not
required for binding of one aptamer, B40, to gp120. Using surface plasmon resonance binding analyses, we
show that the aptamer binds to the CCR5-binding site on gp120 in a relatively CD4-independent manner,
providing a mechanistic explanation for its neutralizing potency.

The entry of human immunodeficiency virus type 1
(HIV-1) into target cells depends on the sequential interac-
tion of the surface envelope glycoprotein, gp120, with the
primary receptor, CD4, and the coreceptor, CCR5 (1, 5, 7,
9, 15, 29), and is an attractive target for antiviral interven-
tion. However, gp120 is a challenging target because of the
conformational flexibility and sequence variability it has
evolved to counter host antibody responses (21, 37). The
CD4-binding site is recessed and partially obscured from
antibody access by the V1/V2 hypervariable loops and asso-
ciated carbohydrate structures (37). Considerable confor-
mational flexibility of the CD4-unbound state of gp120 fur-
ther masks the conserved receptor binding site and hinders
antibody access (19, 22, 27). The coreceptor binding site on
gp120, which is thought to be composed of highly conserved
elements of the �19 strand and parts of the V3 hypervari-
able loop (28, 29, 39), is also protected by the V1/V2 loops
from antibody access in the CD4-unbound state (4, 34, 36).
Binding of CD4 induces conformational changes in gp120
that include the displacement of the V1/V2 stem-loop struc-
ture, thereby revealing a functional coreceptor binding site
(26, 31, 38). Recent studies have also shown that this CD4-
induced (CD4i) epitope on gp120 is protected from anti-
bodies by steric hindrance and that the size of the neutral-
izing agent directed towards this region inversely correlates
with its ability to neutralize (22). Mutational variation and
extensive glycosylation of gp120 further add to the ineffec-
tiveness of the humoral immune response.

In response to these challenges, one rational antiviral
approach is to generate small ligands directed to the con-
served core regions of gp120 that are critical for viral entry.
We hypothesized that aptamers (11, 35), by virtue of their
small size compared to antibodies, could access the con-
served pockets in gp120, thereby blocking infection. Re-
cently, we isolated and structurally characterized 2�F RNA
aptamers that bind gp120 of HIV-1 R5 strain Ba-L and
potently neutralize a broad range of HIV-1 primary isolates
(8, 18). In order to test whether, as we had hypothesized, the
mechanism of neutralization by aptamers was via ligation of
critical receptor-binding regions, we mapped the binding
site of one such aptamer (B40) using competition with
gp120’s natural ligands by deletion analysis and by deglyco-
sylation.

The binding of aptamer to gp120 is independent of N-linked
glycosylation. Recombinant monomeric Ba-L gp120 was ex-
pressed in insect cells using a baculovirus expression system,
as previously described (18, 24), and deglycosylated using
endo-�-N-acetylglucosaminidase H (endo H) under native
conditions as previously described (20). When analyzed by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis,
endo H treatment of gp120 was found to have resulted in the
complete disappearance of the fully glycosylated material
(apparent mass � 92 kDa) with the majority now migrating
with an apparent mass of �63 kDa (Fig. 1A). Equimolar
amounts of both the glycosylated and deglycosylated gp120
were then analyzed for ability to bind aptamer by BIAcore
surface plasmon resonance analysis as previously described
(8). The aptamer bound to both glycosylated and deglyco-
sylated gp120 in a similar manner (Fig. 1B), indicating that
the aptamer binding site on gp120 is not dependent on the
N-linked glycans on the glycoprotein.

In contrast, monoclonal antibody (MAb) 2G12, which binds
to a glycan-dependent epitope (30, 33), bound to the glycosy-
lated but not the deglycosylated gp120, as expected (Fig. 1C).
Soluble CD4 (sCD4) bound better to the glycosylated gp120
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than to the deglycosylated gp120 (Fig. 1D), consistent with
previous reports (16, 23, 25).

Role of V1/V2 and V3 loops in aptamer binding. Our results,
above, show that one can remove the majority of N-linked
sugars from gp120 without affecting the binding site for
aptamer B40 but do not exclude the possibility that a specific
oligosaccharide, refractory to deglycosylation, plays an im-
portant role. The most likely candidates for such an oligo-
saccharide lie within the hypervariable loops V1/V2 and V3,
as they would be close to sites already known to be impor-
tant for interaction of gp120 with receptor and coreceptor
molecules (21, 28, 29, 37). In order to simultaneously inves-
tigate this possibility of a residual oligosaccharide and the
potential that aptamers bound directly to these loop se-
quences, we used protein constructs, derived from the R5
strain Yu2, in which one or both loops are deleted and which
lack complex sugars (17, 38). The results of a BIAcore
analysis (Fig. 2C) show that aptamer B40 binds to the loop-
deleted core of gp120, and therefore its binding site does not
lie within the V1/V2 or V3 loops nor the oligosaccharides
associated with them. It appears that the aptamer binding
site is somewhat obscured in the core as well as the core plus

V3 constructs of gp120 and becomes fully exposed only
following the binding of CD4 (Fig. 2B and 2C). This is in
marked contrast to the ability of aptamer B40 to bind full-
length gp120 in a largely CD4-independent manner (Fig. 2A
and Table 1). We tentatively conclude from this that the
aptamer binding site, though located in core regions of
gp120, is maintained in its aptamer-competent state by mul-
tiple interloop interactions and further that, when deletion
of the loop causes the partial collapse of the aptamer bind-
ing pocket, the binding of CD4 allosterically reopens the
pocket.

The aptamer binding site overlaps with the CCR5-binding
site on gp120. We have previously shown that aptamer B4,
which shares critical structural motifs with aptamer B40, com-
petes for binding to gp120 with the CD4i MAb 17b (8, 18).
Taken together with the CD4 dependence of efficient binding
of aptamer B40 to the core gp120 construct described above,
this pointed strongly to the possibility that the aptamer binding
site was close to that of CCR5. To test this, we carried out a
BIAcore surface plasmon resonance competition binding anal-
ysis using the 22-mer tyrosine-sulfated peptide (S-peptide) cor-
responding to the N terminus of CCR5 that acts as an essential

FIG. 1. The binding of aptamer to gp120 is independent of N-linked glycosylation. (A) Sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis analysis of the endo H-treated deglycosylated gp120. The molecular mass (�63 kDa) of the endo H-treated gp120, which is reduced
compared to that of the mock-treated gp120 (�92 kDa) indicates near-complete deglycosylation of the native glycoprotein. (B-D) Overlay of
BIAcore sensorgrams to show the binding of the indicated analytes to glycosylated (solid line) and deglycosylated (dashed line) Ba-L monomeric
gp120 immobilized on a CM5 biosensor chip. The signal from a control cell for each analyte (dotted line) has been subtracted from all sensorgrams
in this and subsequent figures. The horizontal I-shaped bars show the injection period of the analytes. RU, response units; SPR, surface plasmon
resonance.
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component of the coreceptor for HIV-1 on the host cell (2, 6,
10, 12–14), as well as an unsulfated version of the same peptide
(C-peptide) and sCD4, as alternate immobilized binding part-
ners for gp120 (Fig. 3). As controls, RANTES, a physiological
ligand for both CCR3 and CCR5 (3), and the anti-CCR5 MAb
3A9, but not monocyte chemoattractant protein 1, a ligand for
CCR2 and CCR4, bound to the CCR5 peptides, as expected
(data not shown).

Monomeric Ba-L gp120 bound well to immobilized CD4 but
weakly to the S-peptide and negligibly to the C-peptide (Fig.
3A). However, preincubating gp120 with CD4 increased bind-
ing to both CCR5 peptides by more than 2.5-fold (Fig. 3B),
confirming the CD4-induced binding property of the peptides
to gp120 (14). Moreover, the approximately threefold differ-
ence in binding of both gp120 and gp120-sCD4 complex to the
S-peptide versus C-peptide confirm that the tyrosine sulfate
moieties contribute substantially to the association of the
gp120-sCD4 complexes, as previously reported (13). As ex-
pected, the gp120-sCD4 complex did not bind to immobilized
CD4 (Fig. 3B). When the gp120-17b MAb complex was in-
jected, it bound only to the immobilized CD4 and not to the
CCR5 peptides (data not shown), also as expected. The gp120-
aptamer B40 complex also bound to the immobilized CD4 but
not to the CCR5 peptides (Fig. 3C). The ternary complexes,
gp120-sCD4-17 MAb (data not shown) and gp120-sCD4-
aptamer B40 (Fig. 3D), did not bind to either the immobilized
CCR5 peptides or human CD4.

Taken together, these results show that the aptamer com-
petes with the N-terminal ectodomain of CCR5 for binding
to gp120 and hence the aptamer binding site (aptatope)
must overlap with the basic, conserved, coreceptor-binding
region on gp120. This is consistent with the inability of
aptamer B40 to bind the gp120 of the X4 strain, HXB2 (data
not shown) in contrast to aptamers raised against X4 strains
(32). The ability of aptamer B40 to bind to the coreceptor-
binding site without prior ligation of CD4 by gp120, in
contrast to the CD4 dependence of the binding of CD4i
antibodies and of CCR5 itself, may result from a combina-
tion of its small size and high charge density and confer on
it remarkable antiviral potential.

FIG. 2. Effect of hypervariable loop deletion on binding of aptamer
to gp120. BIAcore sensorgrams showing binding of aptamer B40 to
different gp120 constructs, with (dashed lines) and without (solid lines)
prior binding of CD4 to gp120. (A) Full-length monomeric Ba-L
gp120. (B) Monomeric Yu2 core plus V3 gp120 (i.e., deletion of

TABLE 1. Summary of aptamer B40 binding data

Construct bound

Maximala Relativeb

�CD4 �CD4
In comparison
to full-length

gp120

Fold increase
in presence

of CD4

Full-length gp120 330 412 1 1.2
Core� V3 55 235 0.2 4.3
Core 101 184 0.3 1.8

a Maximal binding of the aptamer, expressed in response units, at 180 s.
�CD4, in the absence of sCD4; �CD4, in the presence of sCD4.

b Relative binding of the aptamer, expressed as a unitless ratio to show the
comparison with binding to full-length gp120 and fold increase in aptamer
binding in the presence of CD4.

V1/V2). (C) Monomeric Yu2 core gp120 (i.e., deletions of V1/V2 and
V3). The horizontal I-shaped bars show the injection period of the
analytes. RU, response units; SPR, surface plasmon resonance.
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