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For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray
consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel
(identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip)
was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP-
PhyloChip for diversity screening of SRPs in environmental and clinical samples was tested by using samples
from periodontal tooth pockets and from the chemocline of a hypersaline cyanobacterial mat from Solar Lake
(Sinai, Egypt). Consistent with previous studies, SRP-PhyloChip indicated the occurrence of Desulfomicrobium
spp. in the tooth pockets and the presence of Desulfonema- and Desulfomonile-like SRPs (together with other
SRPs) in the chemocline of the mat. The SRP-PhyloChip results were confirmed by several DNA microarray-
independent techniques, including specific PCR amplification, cloning, and sequencing of SRP 16S rRNA genes
and the genes encoding the dissimilatory (bi)sulfite reductase (dsrAB).

Anaerobic respiration with sulfate is a central component of
the global sulfur cycle and is exhibited exclusively by pro-
karyotes (53). Sulfate-reducing prokaryotes (SRPs) are thus of
major numerical and functional importance in many ecosys-
tems, including marine sediments (14, 29, 30, 38, 54) and cya-
nobacterial microbial mats (46, 56, 70). Recently, SRPs were
also identified as unculturable symbionts of gutless marine
oligochetes (15) and as uncultured components of microbial
aggregates catalyzing anaerobic methane oxidation (4, 10, 48,
72). In addition, some SRPs have been implicated in human
disease (32, 35, 39, 43, 60, 69). More than 130 species of SRPs
have been described so far, and they comprise a phylogeneti-
cally diverse assemblage of organisms consisting of members of
at least four bacterial phyla and one archaeal phylum (11, 12,
66). The polyphyletic affiliation of SRPs and the fact that
several SRPs are closely related to microorganisms which can-
not perform anaerobic sulfate reduction for energy generation
hamper cultivation-independent detection of these organisms
by established 16S rRNA-based methods because many differ-
ent PCR primer sets or probes would be required to target all
members of this microbial guild. Consequently, previous envi-
ronmental microbiology research on the composition of SRP
communities performed by using specific 16S rRNA gene-
targeting PCR systems or probes has focused on a few selected
genera or groups (16, 24, 36, 41, 49, 50, 56, 59, 68, 71).

Nucleic acid microarrays, which have recently been intro-
duced for bacterial identification in microbial ecology (5, 23,
37,62, 73, 77), provide a powerful tool for parallel detection of
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16S rRNA genes (23, 37, 62, 73) and thus might be particularly
useful for environmental studies of phylogenetically diverse
microbial groups. However, most microarrays developed so far
for bacterial identification consist of a limited number of
probes and are mainly used for method development and op-
timization. In this study, we developed and successfully used a
microarray consisting of 132 16S rRNA-targeted oligonucleo-
tide probes covering all recognized lineages of SRPs for high-
resolution screening of clinical and environmental samples.
For periodontal tooth pockets and a hypersaline microbial
mat, microarray SRP diversity fingerprints were found to be
consistent with results obtained by using well-established mo-
lecular methods for SRP community composition analysis.

MATERIALS AND METHODS

Pure cultures of SRPs. Table 1 lists the 42 reference organisms that were
obtained as lyophilized cells or active cultures from the Deutsche Sammlung von
Mikroorganismen und Zellkulturen (Braunschweig, Germany) and were used to
evaluate our microarray (SRP-PhyloChip). Archaeoglobus veneficus SNP6" (con-
taining plasmid XY) was deposited in the Deutsche Sammlung von Mikroorgan-
ismen und Zellkulturen by K. O. Stetter, Lehrstuhl fur Mikrobiologie, Univer-
sitit Regensburg, Regensburg, Germany, as DSM 111957,

Solar Lake mat sample. A core (1 by lcm; depth, 4 cm) of a hypersaline
cyanobacterial mat from Solar Lake (Sinai, Egypt) was sectioned horizontally at
200-pm intervals with a cryomicrotome (MIKROM HM500; Microm, Walldorf,
Germany). The mat sections were stored at —80°C.

Peridontal tooth pocket samples. Samples from five patients with adult peri-
odontitis were taken by inserting a sterile medium-sized paper point into a single
periodontal tooth pocket. After sampling the paper points were stored at —20°C.

DNA extraction. Genomic DNA was isolated from reference organisms with a
FastDNA kit (Bio 101, Vista, Calif.). DNA from periodontal tooth pocket ma-
terial and DNA from a cryosection of Solar Lake mat from the chemocline (1,400
to 1,600 pm from the mat surface) were extracted by using a modification of the
protocol of Griffiths et al. (22). In contrast to the original protocol, precipitation
of nucleic acids in the aqueous phase was performed with 0.1 volume of sodium
acetate (pH 5.2) and 0.6 volume of isopropanol for 2 h at room temperature.
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TABLE 1. SRP strains used in this study

Species Strain

DeSUIfOVIDIIO CUNCATUS ... DSM 11391"
Desulfovibrio aminophilus .DSM 122547
Desulfovibrio gabonensis DSM 10636"
Desulfovibrio alcoholivorans DSM 54337

Desulfovibrio termitidis .... .DSM 5308"

Desulfovibrio zosterae DSM 11974"
Desulfovibrio halophilus DSM 5663"

Desulfovibrio longus......
“Desulfovibrio aestuarii” .
Desulfovibrio profundus ......
Desulfomicrobium aspheronum
Desulfomicrobium orale
Desulfohalobium retbaense .
Desulfotalea arctica......
Desulforhopalus vacuolatus.
Desulfobulbus propionicus
“Desulfobotulus sapovorans”
Desulfococcus multivorans ..
Desulfonema limicola ...
Desulfonema ishimotonii.
Desulfobacterium indolicum
Desulfosarcina variabilis
Desulfofaba gelida.........
Desulfofrigus oceanense...
“Desulfobacterium niacini”
Desulfobacula toluolica ...
Desulfotignum balticum...
Desulfobacter halotolerans ..
Desulfobacter latus
Thermodesulforhabdus norvegica ...
Desulfomonile tiedjei
Desulfobacca acetoxidans...
Desulfotomaculum aeronauticum
Desulfotomaculum geothermicum ..
Desulfotomaculum australicum
Desulfotomaculum thermobenzoicum .
Desulfotomaculum acetoxidans ...... .DSM 771"
Desulfotomaculum halophilum.
Desulfosporosinus orientis

.DSM 59187
DSM 128387

DSM 20327
DSM 20557

DSM 33837
DSM 2060™
.DSM 123447
DSM 123417
DSM 26507

.DSM 33817
DSM 9990™

~DSM 36697
DSM 117927

Thermodesulfovibrio iSIANAICUS ............c.veveeeveveeerreerrirene. DSM 12570"
Thermodesulfobacterium mobile

(Thermodesulfobacterium thermophilum) ....................... DSM 1276
Archaeoglobus VENEfiCUS .........o.ceeeveeerenveinineesenieeeeeaeaes DSM 11195"
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PCR amplification of 16S rRNA and dsrAB genes. For subsequent DNA
microarray hybridization, almost complete 16S rRNA gene fragments were am-
plified from DNA of pure cultures of SRPs by using the 616V-630R primer pair
(Table 2). 16S rRNA gene fragments of 4. veneficus were amplified by using the
newly designed Archaeoglobus genus-specific forward primer ARGLO36F and
the universal reverse primer 1492R (Table 2). Amplification of bacterial 16S
rRNA gene fragments from periodontal tooth pocket or Solar Lake mat genomic
DNA was performed by using the 616V-630R and 616V-1492R primer pairs
(Table 2).

To confirm DNA microarray results, specific amplification of 16S rRNA gene
fragments of defined SRP groups was performed with periodontal tooth pocket
DNA and Solar Lake mat DNA by using previously described and newly de-
signed primers (Table 2). In addition, an approximately 1.9-kb dsrAB fragment
was amplified from periodontal tooth pockets by using primers DSRIF and
DSR4R under the conditions described by Wagner et al. (76).

Positive controls containing purified DNA from suitable reference organisms
were included in all of the PCR amplification experiments along with negative
controls (no DNA added). For 16S rRNA gene amplification, reaction mixtures
(total volume, 50 wl) containing each primer at a concentration of 25 pM were
prepared by using 10X Ex Taq reaction buffer and 2.5 U of Ex Taq polymerase
(Takara Biomedicals, Otsu, Shiga, Japan). Additionally, 20 mM tetramethylam-
monium chloride (Sigma, Deisenhofen, Germany) was added to each amplifica-
tion mixture to enhance the specificity of the PCR (31). Thermal cycling was
carried out by using an initial denaturation step of 94°C for 1 min, followed by
30 cycles of denaturation at 94°C for 40 s, annealing at temperatures ranging
from 52 to 60°C (depending on the primer pair [Table 2]) for 40 s, and elongation
at 72°C for 1 min 30 s. Cycling was completed by a final elongation step of 72°C
for 10 min.

Fluorescence labeling of PCR amplificates. Prior to labeling, PCR amplificates
were purified by using a QIAquick PCR purification kit (Qiagen, Hilden, Ger-
many). Subsequently, the amount of DNA was determined spectrophotometri-
cally by measuring the optical density at 260 nm. Purified PCR products were
labeled with Cy5 by using a DecalLabel DNA labeling kit (MBI Fermentas,
Vilnius, Lithuania). Reaction mixtures (total volume, 45 pl) containing 200 ng of
purified PCR product and 10 pl of decanucleotides in reaction buffer were
denatured at 95°C for 10 min and immediately placed on ice. After addition of
3 pl of deoxynucleotide Mix C (containing no dCTP), 1 pl of Cy5-dCTP (Am-
ersham Biosciences, Freiburg, Germany), and 1 pl of the Klenow fragment
(Exo™; 5 U ul™1), the labeling reaction mixtures were incubated at 37°C for 45
min. For more efficient labeling, the addition of Mix C, Cy5-dCTP, and the
Klenow fragment and incubation at 37°C for 45 min were repeated. Labeling was
completed by addition of 4 ul of dNTP-Mix and incubation at 37°C for 60 min.
To remove unincorporated deoxynucleotides and decanucleotides, the labeling
mixture was purified with a QIAquick nucleotide removal kit (Qiagen) by using
double-distilled water for DNA elution. Finally, the eluted DNA was vacuum
dried and stored in the dark at —20°C.

Microarray manufacture and processing. Oligonucleotides for microarray
printing were obtained from MWG Biotech (Ebersberg, Germany). The se-
quence, specificity, and microarray position of each oligonucleotide probe are

TABLE 2. 16S rRNA gene-targeted primers

Short name” Full name” i?;?gg% Sequence 5'-3’ Specificity Reference
616V S-D-Bact-0008-a-S-18 52 AGA GTT TGA TYM TGG CTC Most Bacteria 26
630R S-D-Bact-1529-a-A-17 52 CAK AAA GGA GGT GAT CC Most Bacteria 26
1492R S-*-Proka-1492-a-A-19 52, 60° GGY TAC CTT GTT ACG ACTT  Most Bacteria and Archaea Modified from
reference 27
ARGLO36F  S-G-Arglo-0036-a-S-17 52 CTA TCC GGC TGG GAC TA Archaeoglobus spp. This study
DSBAC355F  S-*-Dsb-0355-a-S-18 60 CAG TGA GGA ATT TTG CGC Most “Desulfobacterales” 59
and “Syntrophobacterales”
DSM172F S-G-Dsm-0172-a-S-19 56 AAT ACC GGA TAG TCT GGC T  Desulfomicrobium spp. This study
DSM1469R S-G-Dsm-1469-a-A-18 56 CAA TTA CCA GCC CTA CCG Desulfomicrobium spp. This study
DSN61F S-*-Dsn-0061-a-S-17 52 GTC GCA CGA GAA CAC CC Desulfonema limicola, This study
Desulfonema ishimotonii
DSN+1201R  S-*-Dsn-1201-a-A-17 52 GAC ATA AAG GCC ATG AG Desulfonema spp. and other  This study

Bacteria

¢ Short name used in the reference or in this study.

> Name of 16S rRNA gene-targeted oligonucleotide primer based on the nomenclature of Alm et al. (1).
¢ The annealing temperature was 52°C when the primer was used with forward primer 616V or ARGLO36F, and the annealing temperature was 60°C when the

primer was used with forward primer DSBAC355F.
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shown in Table 3. In addition, difference alignments for all probes generated with
the latest ARB small-subunit rRNA database (http://www.arb-home.de) can be
viewed at the probeBase website (http://www.probebase.net). The 5’ end of each
oligonucleotide probe was tailed with 15 dTTP molecules (T-spacer) to increase
the on-chip accessibility of spotted probes to target DNA (61, 63). In addition,
the 5'-terminal nucleotide of each oligonucleotide was aminated to allow cova-
lent coupling of the oligonucleotides to aldehyde group-coated CSS-100 glass
slides (CEL Associates, Houston, Tex.). The concentration of oligonucleotide
probes before printing was adjusted to 50 pmol ul~" in 50% dimethyl sulfoxide
to prevent evaporation during the printing procedure. SRP-PhyloChips were
printed by using a GMS 417 contact arrayer (Affymetrix, Santa Clara, Calif.).
Spotted DNA microarrays were dried overnight at room temperature to allow
efficient cross-linking. Slides were washed twice at room temperature in 0.2%
sodium dodecyl sulfate (SDS) and then twice with double-distilled water with
vigorous agitation to remove unbound oligonucleotides and the SDS. After air
drying, the slides were incubated for 5 min in a fresh sodium borohydride
solution (1.0 g of NaBH, in 300 ml of phosphate-buffered saline and 100 ml of
absolute ethanol) to reduce all remaining reactive aldehyde groups on the glass.
The reaction was stopped by adding ice-cold absolute ethanol. The reduced
slides were washed three times (with 0.2% SDS and double-distilled water), air
dried, and stored in the dark at room temperature.

Reverse hybridization on microarrays. Vacuum-dried Cy5-labeled PCR prod-
ucts (400 ng) and 0.5 pmol of the Cy5-labeled control oligonucleotide CONT-
COMP (Table 3) were resuspended in 20 pl of hybridization buffer (5X SSC, 1%
blocking reagent [Roche, Mannheim, Germany], 0.1% n-lauryl sarcosine, 0.02%
SDS, 5% formamide [1X SSC is 0.15 M NaCl plus 0.015 M sodium citrate]),
denatured for 10 min at 95°C, and immediately placed on ice. Then the solution
was pipetted onto an SRP-PhyloChip, covered with a coverslip, and inserted into
a tight custom-made hybridization chamber (http://cmgm.stanford.edu/pbrown
/mguide/HybChamber.pdf) containing 50 wl of hybridization buffer for subse-
quent equilibration. Hybridization was performed overnight at 42°C in a water
bath. After hybridization, the slides were washed immediately under stringent
conditions for 5 min at 55°C in 50 ml of washing buffer (containing 3 M tetra-
methylammonium chloride, 50 mM Tris-HCl, 2 mM EDTA, and 0.1% SDS). To
record probe-target melting curves, the temperature of the washing step was
varied from 42 to 80°C. After the stringent washing, the slides were washed twice
with ice-cold double-distilled water, air dried, and stored in the dark at room
temperature.

Scanning of microarrays. Fluorescence images of the SRP PhyloChips were
recorded by scanning the slides with a GMS 418 array scanner (Affymetrix). The
fluorescence signals were quantified by using the ImaGene 4.0 software (Bio-
Discovery, Inc., Los Angeles, Calif.). A grid of individual circles defining the
location of each spot on the array was superimposed on the image to designate
each fluorescent spot to be quantified. The mean signal intensity was determined
for each spot. In addition, the mean signal intensity of the local background area
surrounding the spots was determined.

Selective enrichment of nucleic acids by a capture probe approach. Five
microliters of aldehyde group-coated glass beads (diameter, 1 wm; Xenopore,
Hawthorne, N.J.) was incubated overnight with 5 pl of the appropriate capture
probe (100 pmol pl™1; tailed with 15 dTTP molecules; aminated with 5'-terminal
nucleotide) at room temperature. Subsequently, the beads were washed once
with 400 wl of 0.2% SDS and pelleted by centrifugation (1 min at 14,000 rpm;
Hettich Zentrifuge type 1000, Tuttlingen, Germany), and the supernatant was
decanted. After this step, the beads were washed twice with 400 pl of double-
distilled water, dried, and stored at room temperature prior to hybridization. A
vacuum-dried bacterial 16S rRNA gene PCR product (obtained from DNA from
the Solar Lake mat with the 616V-1492R primer pair) was resuspended in 200 pl
of hybridization buffer (see above), denatured for 10 min at 95°C, and immedi-
ately cooled on ice. The hybridization solution and capture probe beads were
mixed in a screw-cap tube and incubated overnight at 42°C on a shaker. Subse-
quently, the beads were washed twice with 1.5 ml of washing buffer (see above)
at 55°C for 2.5 min. After the stringent washes, the beads were washed with 1.5
ml of ice-cold double-distilled water and then with ice-cold 70% ethanol. Beads
with captured nucleic acids were vacuum dried and resuspended in 50 pl of EB
buffer (part of the QIAquick PCR purification kit; Qiagen) for storage at —20°C.
Reamplification of bacterial 16S rRNA gene fragments from the captured nu-
cleic acids was performed by using 5 pl of the resuspended beads for PCR
performed by using the 616V-1492R primer pair and the protocols described
above.

Cloning, sequencing, and phylogeny inference. Prior to cloning, the PCR
amplification products were purified by low-melting-point agarose (1.5%) gel
electrophoresis (NuSieve 3:1; FMC Bioproducts, Biozym Diagnostics GmbH,
Oldendorf, Germany) and stained in a SYBR Green I solution (10 pl of 1,0000x
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SYBR Green I stain in 100 pl of TAE buffer [40 mM Tris, 10 mM sodium
acetate, 1 mM EDTA; pH 8.0]; Biozym Diagnostics GmbH) for 45 min. Bands
of the expected size were excised from the agarose gel with a glass capillary and
melted with 50 wl of double-distilled water for 10 min at 80°C. Four microliters
of each solution was ligated as recommended by the manufacturer into the
cloning vector pCR2.1 supplied with a TOPO TA cloning kit (Invitrogen Corp.,
San Diego, Calif.). Nucleotide sequences were determined by the dideoxynucle-
otide method (57) as described by Purkhold et al. (51). The new 16S rRNA
sequences were added to an alignment of about 16,000 small-subunit rRNA
sequences by using the alignment tool of the ARB program package (O. Strunk
and W. Ludwig, http://www.arb-home.de). Alignments were refined by visual
inspection. Phylogenetic analyses were performed by using distance matrix, max-
imum-parsimony, and maximum-likelihood methods and the appropriate tools of
the ARB program package and the fastDNAml program (34). The compositions
of the data sets varied with respect to the reference sequences and the alignment
positions included. Variability in the individual alignment positions was deter-
mined by using the appropriate tool of the ARB package and was used as a
criterion to remove or include variable positions for phylogenetic analyses. Phy-
logenetic consensus trees were drawn by following the recommendations of
Ludwig et al. (40). The new dsrAB sequences were translated into amino acids
and added to an alignment of 62 DsrAB sequences of SRPs (18, 28). Phyloge-
netic analyses were performed by using the procedures described by Klein et al.
(28).

Nucleotide sequence accession numbers. The sequences determined in this
study are available in the GenBank database under accession numbers
AY083010 to AY083027 (16S rRNA gene clones) and AY083028 to AY083029
(dsrAB gene clones). The dsrAB gene sequence of Desulfomicrobium orale DSM
12838" has been deposited under accession number AY083030.

RESULTS

SRP phylogeny. As the basis for development of the SRP-
PhyloChip, a thorough reevaluation of the phylogeny of SRPs
was performed. All 16S rRNA sequences of SRPs which are
available in public databases (as of October 2001) were col-
lected, aligned, and analyzed phylogenetically by using maxi-
mum-parsimony, maximum-likelihood, and neighbor-joining
methods. Figures 1 and 2 illustrate the phylogeny of the delta-
proteobacterial SRPs. Figure 3 shows the phylogeny of SRPs
affiliated with the Firmicutes, Nitrospira, Thermodesulfobacte-
ria, and Euryarchaeota phyla (phylum names according to the
taxonomic outline in the second edition of Bergey’s Manual of
Systematic Bacteriology, 2nd ed. [21]).

Probe design. Initially, the specificities of previously de-
scribed probes and primers for SRPs (2, 8, 9, 13, 20, 25, 41, 52,
55, 59, 68) were reevaluated with the current 16S rRNA data
set containing more than 16,000 entries. Based on this analysis,
26 probes were considered to be suitable for inclusion on the
SRP-PhyloChip (Table 3). These probes were, if necessary,
adjusted to a length of 18 nucleotides (not including the T-
spacer). Twenty-four of these probes exclusively target SRPs.
Probes SRB385 (2) and SRB385Db (52) were included on the
chip because they have been widely used in previous SRP
research (3, 16, 36, 49, 58, 71), although both of these probes
target a considerable number of phylogenetically diverse non-
SRPs. In addition, we significantly extended the SRP probe set
by designing 102 probes targeting monophyletic groups of
SRPs (Fig. 1 to 3 and Table 3). These probes were designed to
have a minimum G+C content of 50%, a length of 18 nucle-
otides (not including the T-spacer), and as many centrally
located mismatches with the target sites on 16S rRNA genes of
nontarget organisms as possible. Several of these probes target
the same SRPs, complementing several unique regions of the
16S rRNA gene, while others exhibit hierarchical specificity.
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FIG. 1. Phylogenetic affiliations of SRPs belonging to the orders “Desulfobacterales” and “Syntrophobacterales” of the class “Deltaproteobac-
teria.” The 16S rRNA consensus tree was constructed from comparative sequence analysis data by using maximum-parsimony, maximum-
likelihood, and neighbor-joining methods and applying filters excluding all alignment positions which are not conserved in at least 50% of all
bacterial and deltaproteobacterial 16S rRNA sequences. A collection of organisms representing all major lineages of the Archaea and Bacteria was
used as an outgroup. Multifurcations connect branches for which a relative order could not be determined unambiguously. Non-SRPs are
underlined. Parsimony bootstrap values (1,000 resamplings) for branches are indicated by solid circles (>90%) or an open circle (75 to 90%).
Branches without circles had bootstrap values of less than 75%. The bar indicates 10% estimated sequence divergence (distance inferred by
neighbor joining by using a 50% bacterial conservation filter). The colored boxes show the specificities (perfect-match target organisms) of the
SRP-PhyloChip probes (indicated by short names). The numbers of probes with identical specificities for the target organisms are indicated in
parentheses. Probes SRB385Db, DSS658, DSR651, and DSB804 are not shown to enhance clarity.

For example, the genus Desulfotalea is specifically detected by
five probes and is also targeted by three probes with broader
specificities (Fig. 1 and Table 3). Altogether, all 134 recognized
SRPs for which 16S rRNA sequences have been published are
covered by the probe set which we developed. The probes were
spotted onto glass slides by using a pattern roughly reflecting
the phylogeny of the SRPs (Table 3). In addition, universal,
bacterial, and archaeal probes, as well as a nonsense probe
(NONSENSE, with a sequence having at least four mismatches

with every known 16S rRNA sequence), were immobilized
on the microarray for hybridization control purposes (Table
3). Furthermore, another nonsense probe (CONT) (Table
3) was spotted at the beginning and end of each probe row
of the microarray. During hybridization, a fluorescently la-
beled oligonucleotide fully complementary to this probe was
added for control of hybridization efficiency and for
straightforward localization of the probe spot rows in the
microarray readout.
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FIG. 2. Phylogenetic affiliations of SRPs belonging to the order “Desulfovibrionales” of the class “Deltaproteobacteria.” The 16S rRNA
consensus tree was constructed as described in the legend to Fig. 1. Non-SRPs are underlined. The colored boxes show the specificities
(perfect-match target organisms) of the SRP-PhyloChip probes (indicated by short names). The numbers of probes with identical specificities for
the target organisms are indicated in parentheses. Probes SRB385, DSV1292, and DSV698 are not shown to enhance clarity.

Evaluation of the SRP-PhyloChip with pure cultures. In the
first step, the SRP-PhyloChip was hybridized with fluorescently
labeled 16S rRNA gene amplificates of Desulfovibrio halophi-
lus, Desulfomicrobium aspheronum, and Desulfohalobium ret-
baense under increasingly stringent conditions. For each data
point, a separate microarray with nine replicate spots of each
probe was hybridized, washed, and analyzed. Figure 4 shows
representative melting curves of probe-target duplexes for two
of the SRP-specific probes and for bacterial probe EUB338
with the labeled 16S rRNA gene amplificates of the three
reference organisms. Positive hybridization signals were re-
corded with probe EUB338 for the three SRPs when wash
temperatures between 42 and 60°C were used. However, the
EUB338 hybridization signal intensities varied significantly for
the three reference organisms, indicating that there were vari-
ations in the efficiency of the fluorescence labeling of the PCR

amplificates (Fig. 4C). Clear discrimination between perfectly
matched and mismatched duplexes was achieved for most but
not all of the probes investigated (Fig. 4A and B and 5). When
a wash temperature of 42°C was used, the fluorescence inten-
sity of probe-target hybrids with mismatches was almost always
lower than the fluorescence intensity of completely matched
hybrids (Fig. 5SA). Unexpectedly, the difference in signal inten-
sity between completely matched and mismatched duplexes
was not significantly increased by gradually increasing the wash
temperature to 80°C (Fig. 5). Based on the recorded melting
curves, a wash temperature of 55°C was selected for all further
experiments.

In the next step, an SRP-PhyloChip with duplicate spots for
each probe was evaluated by using 41 SRP reference organ-
isms. For each SRP-specific probe, this set of reference organ-
isms contained an SRP which has a 16S rRNA gene with a
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FIG. 3. (A) Phylogenetic affiliations of SRPs belonging to the family Peptococcaceae of the phylum Firmicutes (low-G+C-content gram-positive
bacteria). (B) Phylogenetic affiliations of SRPs belonging to the genus Thermodesulfovibrio of the phylum Nitrospira. (C) Phylogenetic affiliations
of SRPs belonging to the phylum Thermodesulfobacteria. (D) Phylogenetic affiliations of SRPs of the genus Archaeoglobus belonging to the phylum
Euryarchaeota. In all panels non-SRPs are underlined. The 16S rRNA consensus trees were constructed as described in the legend to Fig. 1. The colored
boxes show the specificities (perfect-match target organisms) of the SRP-PhyloChip probes (indicated by short names). The numbers of probes with
identical specificities for the target organisms are indicated in parentheses. In panel A probes DFMI210 and DFMI229 are not shown to enhance clarity.
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FIG. 4. Melting curves for probe SRB385 (A), probe DSV698 (B),
and probe EUB338 (C) after hybridization with fluorescently labeled
PCR-amplified 16S rRNA gene fragments of Desulfovibrio halophilus,
Desulfomicrobium aspheronum, and Desulfohalobium retbaense. For
each probe the difference alignment with these reference SRPs is
shown. The observed dissociation temperature (T,) is indicated for
each probe. Each data point represents the mean signal intensity value
for 10 probe spots (local background was subtracted for each mea-
surement). The error bars indicate the standard deviations. For each
wash temperature and reference organism a separate microarray hy-
bridization was performed. a.u., arbitrary units.
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FIG. 5. Hybridization intensities of probes forming perfect-match
(diamonds), one-mismatch (squares), and two-mismatch (circles) du-
plexes after hybridization with fluorescently labeled PCR-amplified
16S rRNA gene fragments of Desulfovibrio halophilus at different
stringencies. (A) Mean signal intensities (for 10 spots, with local
background subtracted) for each probe and wash temperature. (B)
Normalized mean signal intensity values for each probe and wash
temperature. Mean intensity values were normalized for each probe
separately by assuming that the highest value observed at the different
wash temperatures had a value of 1.00. In panel B, probes which
showed no hybridization signals at low stringencies are not shown.

perfectly matched target site. For each reference organism,
fluorescently labeled, PCR-amplified 16S rRNA gene frag-
ments were hybridized separately with the microarray by using
55°C as the wash temperature. The array readout was quanti-
tatively analyzed by digital image analysis to determine a sig-
nal-to-noise ratio for each probe according to the following
formula:

T= [IP - (IN - INLB)] X IPL137l

where T is the signal-to-noise ratio of the probe, I, is the mean
pixel intensity of both specific probe spots, I, is the mean pixel
intensity of both NONSENSE probe spots (note that I, —
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I s must always have a lower value than I,), Iy 5 is the mean
pixel intensity of the local background area around both NON-
SENSE probe spots, and I, 5 is the mean pixel intensity of the
local background area around both specific probe spots.

Spots for which the signal-to-noise ratio was equal to or
greater than 2.0 were considered positive in the pure-culture
evaluation experiments and all subsequent analyses. Further-
more, the signal-to-noise ratio of each probe was divided by
the signal-to-noise ratio of the bacterial EUB338 probe re-
corded on the same microarray in order to compare the duplex
yields of the different SRP-specific probes. To do this, the
following formula was used:

R =T X{Ugys — Uy — Ines)] X Teupis 1}71

where R is the normalized signal-to-noise ratio of the probe,
Iy is the mean pixel intensity of all EUB338 probe spots, and
IzypLg 1s the mean pixel intensity of the local background area
around all EUB338 probe spots.

The normalized signal-to-noise ratios of the probes ranged
from 0.3 for probe DFACE1028 with Desulfotomaculum ace-
toxidans to 16.9 for probe DSBAC355 with Desulfobacula tolu-
olica, demonstrating that different probes exhibit very different
signal intensities after hybridization with their perfectly
matched target sequences.

The individual hybridization results for each of the 132
probes with each of the reference organisms can be down-
loaded from our website (http:/www.microbial-ecology.de
/srpphylochip/). Six of the probes evaluated (listed separately
in Table 3) did not show a positive hybridization signal with
any of the reference organisms, including the perfect-match
target SRP, and thus were excluded from the microarray in
subsequent experiments. In addition, four probes (listed sep-
arately in Table 3) were found to be not suitable for SRP
diversity surveys due to their nonspecific binding to many non-
target organisms under stringent hybridization conditions (see
supplementary web material). Under the conditions used, 75
(59%) of the probes found to be suitable for the SRP-Phylo-
Chip hybridized exclusively to their target organisms. The
other probes hybridized to rRNA gene amplificates with per-
fectly matched target sites, as well as to some rRNA genes with
target sites having between one and six mismatches. In sum-
mary, of the 5,248 individual probe-target hybridization reac-
tions performed (by hybridizing the 41 reference organisms
with the final SRP-PhyloChip), 5,050 (96%) gave the expected
results by either showing a detectable signal with the appro-
priate perfect-match target or showing no signal with target
sequences containing mismatches.

Subsequently, the SRP-PhyloChip was hybridized in inde-
pendent experiments with different amounts (1, 5, 10, 25, 50,
100, 200, and 400 ng) of PCR-amplified, labeled 16S rRNA
gene fragments of Desulfovibrio halophilus. The same hybrid-
ization pattern was observed when 50 to 400 ng of labeled
nucleic acids was used. When less than 50 ng of added nucleic
acid was used, the signal-to-noise ratios of the hybridization
signals were less than 2.0.

SRP-PhyloChip analyses of complex samples. To evaluate
the applicability of the SRP-PhyloChip for medical and envi-
ronmental studies, two different samples, both containing di-
verse microbial communities, were analyzed. In the first exper-
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iment, tooth pocket samples from five patients suffering from
adult periodontitis were investigated. While for three of the
patients none of the SRP-specific probes showed a positive
signal (data not shown), probe hybridization patterns indica-
tive of the presence of members of the genus Desulfomicro-
bium were obtained for the other two patients (Fig. 6A). This
result was confirmed independently by PCR analysis of the
DNA obtained from the tooth pockets of the five patients by
using primers specific for the 16S rRNA gene of members of
the genus Desulfomicrobium (Table 2). Consistent with the
microarray results, specific PCR amplificates were obtained for
two of the five patients. Amplificates from both of these pa-
tients were cloned and sequenced. Comparative analysis of six
clones demonstrated that the amplified sequences were almost
identical to each other and to the corresponding 16S rRNA
gene fragment of Desulfomicrobium orale (99.6 to 99.9% se-
quence similarity) (Fig. 6B). Furthermore, the compositions of
the SRP communities in the tooth pockets of the patients were
analyzed by using the genes encoding the dissimilatory (bi)sul-
fite reductase as a marker (28, 76). Approximately 1.9-kb
dsrAB fragments could be PCR amplified from two of the five
patients, and these fragments were cloned and sequenced. All
19 clones analyzed (6 clones from patient 1 and 13 clones from
patient 4) had sequences almost identical to each other and to
the dsrAB sequence of Desulfomicrobium orale (99.2 to 99.7%
amino acid identity), which was also determined in this study.
In the second experiment, the SRP-PhyloChip was used to
investigate the SRP community in the chemocline of a hyper-
saline cyanobacterial mat from Solar Lake. The SRP-Phylo-
Chip hybridization patterns of fluorescently labeled 16S rRNA
gene PCR amplificates obtained from the chemocline were
more complex than those obtained from the tooth pockets
(Fig. 7A). The probe hybridization patterns indicated that bac-
teria related to the genera Desulfonema and Desulfomonile
were present. Furthermore, probe DSB220 showed signals
above the threshold value which could have resulted from
SRPs related to the genus Desulfofaba. However, the signal of
probe DSB674, which also targets this genus, was below the
threshold value. To confirm these results, 16S rRNA gene
PCRs specific for most members of the “Desulfobacterales”
(including the genera Desulfonema and Desulfofaba) and the
“Syntrophobacterales” (primers DSBAC355F and 1492R [Ta-
ble 2]), as well as for some Desulfonema species (primers
DSN61F and DSN+1201R [Table 2]), were performed. Clon-
ing and sequencing of the PCR amplificates confirmed that
Desulfonema- and Desulfomonile-related organisms were
present in the mat chemocline (Fig. 7B). In contrast to the
microarray results, no sequences affiliated with the genus Des-
ulfofaba were retrieved. In addition, we used glass beads
coated with probe DSN658 to enrich Desulfonema-related 16S
rRNA gene sequences from bacterial 16S rRNA gene amplifi-
cates from the mat chemocline. After enrichment, reamplifi-
cation, and cloning, 1 of 12 cloned sequences did indeed pos-
sess the target site of probe DSN658 and was identical to
Desulfonema-related sequences obtained by the specific PCR
assay described above (Fig. 7B). The remaining 11 cloned
sequences did not possess the probe DSN658 target site and
were unrelated to recognized SRPs (data not shown).
Software-assisted interpretation of microarray readouts. In-
terpretation of experiments performed with the SRP-Phylo-
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FIG. 6. (A) Use of the SRP-PhyloChip for surveys of SRP diversity in periodontal tooth pockets. On the microarray each probe was spotted
in duplicate. For each microarray position, the probe sequence and specificity are shown in Table 3. Probe spots having a signal-to-noise ratio equal
to or greater than 2.0 are indicated by boldface boxes and were considered to be positive. (B) Evaluation of the microarray results by amplification,
cloning, and comparative sequence analysis of 16S rRNA gene fragments by using Desulfomicrobium-specific primers for PCR. 16S rRNA gene
clones obtained from the tooth pockets are indicated by boldface type. The tree is based on a maximum-likelihood analysis performed with a 50%
conservation filter for the Bacteria. Multifurcations connect branches for which a relative order could not be determined unambiguously after
different treeing methods and filters were used. The bar indicates 10% estimated sequence divergence. The brackets indicate the perfect-match
target organisms for the probes. The microarray position is indicated after each probe name.

Chip requires translation of more or less complex probe hy-
bridization patterns into a list of SRPs which might be present
in the sample analyzed. In principle, this task can be performed
manually by using Table 3 and Fig. 1 to 3 as guides, but this
procedure is tedious and sometimes not straightforward when
it is performed with complex hybridization patterns. Conse-
quently, we developed a software tool termed ChipChecker,
which, after the microarray readout file (output from the Im-
aGene software) is imported, automatically creates a list of
SRPs that potential occur in a sample. To do this, the software
determines for each hybridization experiment which probes
were positive (signal-to-noise ratio greater than the threshold,;
default signal-to-noise ratio, =2.0) and compares this result
automatically with a list which specifies for each recognized
SRP all fully complementary probes. Only those SRPs for
which all perfect-match probes show a positive signal are listed.
The ChipChecker software can easily be adapted for interpre-
tation of other DNA microarrays and is available together with
additional information for free download (http://wwwbode.cs
.tum.edu/~meierh/download_chipchecker.html).

DISCUSSION

Microarray design and hybridization strategy. In this study
an encompassing DNA microarray for analysis of SRP diver-
sity in complex samples was developed and evaluated. A total
of 132 previously described and newly designed probes for the
detection of 16S rRNA genes of SRPs were immobilized on
the microarray. Consistent with design formats used in previ-
ous microarray applications for identification of other bacterial
groups (23, 37), a hierarchical set of oligonucleotides comple-
mentary to the 16S rRNA genes of the target microorganisms
at multiple levels of specificity was developed. However, the
number of 16S rRNA-targeted oligonucleotide probes used in
this study is significantly higher than the numbers of probes
used in previous applications of chips for bacterial identifica-
tion (23, 37, 62). This difference had important implications for
the strategy which we selected for optimizing the hybridization
conditions to ensure maximum specificity of the probes. Ini-
tially, temperature-dependent dissociation of several probe-
target duplexes with perfect matches or mismatches was mea-
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FIG. 7. (A) Use of the SRP-PhyloChip for surveys of SRP diversity in the chemocline of a cyanobacterial microbial mat. On the microarray
each probe was spotted in duplicate. For each microarray position, the probe sequence and specificity are shown in Table 3. Probe spots having
a signal-to-noise ratio equal to or greater than 2.0 are indicated by boldface boxes and were considered to be positive. The dotted boldface boxes
indicate that only one of the duplicate spots had a signal-to-noise ratio equal to or greater than 2.0. (B) Evaluation of the microarray results by
amplification, cloning, and comparative sequence analysis of 16S rRNA gene fragments by using primers specific for some Desulfonema species
(SLM-DSN clones) and most members of the “Desulfobacterales” and “Syntrophobacterales” (SLM-DSBAC clones). Clone SLM-CP-116 was
obtained from the mat chemocline by amplification, cloning, and sequencing after enrichment by using probe DSN658 as the capture probe. 16S
rRNA gene clones obtained from the chemocline of the Solar Lake mat are indicated by boldface type. The tree is based on a maximum-likelihood
analysis performed with a 50% conservation filter for the Bacteria. Multifurcations connect branches for which a relative order could not be
determined unambiguously after different treeing methods and filters were used. The bar indicates 10% estimated sequence divergence. The
brackets indicate the perfect-match target organisms of the probes. The microarray position is indicated after each probe name. The amplified and
sequenced 16S rRNA gene fragment of Solar Lake mat clone SLM-DSBAC-74 (indicated by an asterisk) is outside the target site for probe
DSMONO5 and has one mismatch (located at position 16) within the target site for probe DSMON1421.

sured by using labeled 16S rRNA gene amplificates of three
SRP reference organisms (Fig. 4 and 5). Comparable dissoci-
ation temperatures between 58 and 62°C, at which 50% of the
starting duplexes remained intact, were observed for the dif-
ferent duplexes. This congruence probably reflects the fact that
all probes of the SRP-PhyloChip are the same length (18
nucleotides) and the fact that the wash buffer contained 3 M
tetramethylammonium chloride to equalize A-T and G-C
base pair stability (42). Because our setup did not allow us to
determine nonequilibrium online melting curves (37), it was
not feasible (due to the high number of probes used) to record
melting curves for each probe with perfectly matched and
suitably mismatched target nucleic acids. Based on the re-
corded melting curves of selected probes, a wash temperature
of 55°C was chosen for all further experiments as the best

compromise between signal intensity and stringency. A further
increase in stringency significantly reduced the signal intensity
of some probes after hybridization with the perfectly matched
target molecules (Fig. SA) and thus decreased the sensitivity of
the microarray.

Evaluation of the SRP-PhyloChip with more than 40 SRP
reference strains was used to determine a threshold value
above which a probe hybridization signal was considered pos-
itive. In addition, for each probe the signal intensity after
hybridization with a perfectly matched target was compared to
the signal intensity of the EUB338 probe on the same microar-
ray (normalized signal-to-noise ratio). Consistent with data
from quantitative fluorescence in situ hybridization experi-
ments performed with different 16S rRNA-targeted oligonu-
cleotide probes for Escherichia coli (19), (i) some of the probes
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used in the first version of the SRP-PhyloChip did not hybrid-
ize to their perfect-match targets and (ii) the signal intensities
measured for the other probes on the SRP-PhyloChip varied
significantly, by factors of up to 56. Dramatic differences in
duplex yield arising from different regions of the target were
also observed in other microarray applications (45, 64) and
probably reflect either accessibility differences for the different
probe target sites due to secondary structures of the target
DNA or different steric hindrances of the different nucleic acid
hybrids formed on the microarrays after hybridization.

The evaluation of the microarray with SRP pure cultures
demonstrated (i) that false-negative hybridization never oc-
curred (within the detection limit of the microarray method)
but (ii) that some of the probes still hybridized to nontarget
organisms under the hybridization and washing conditions
used, leading to false-positive results (see supplementary web
material). As expected, the nucleotide composition of the mis-
match, the mismatch position (67, 73), and possibly other vari-
ables, such as the influence of an adjacent nucleotide stacking
interaction (17), were the major factors determining the duplex
yields of probes with mismatched target nucleic acids. Most of
the mismatched duplexes with signal intensities above the
threshold value (used to differentiate between positive and
negative hybridization results) had a signal intensity (and nor-
malized signal-to-noise ratio) lower than that of the corre-
sponding perfect-match duplex (Fig. 5). However, this differ-
ence cannot be exploited for interpretation of microarray
hybridization results for environmental samples because a low
hybridization signal of a probe can be caused not only by
mismatched duplex formation but also by low abundance of
the perfect-match target nucleic acid.

Misinterpretation of microarray hybridization patterns
caused by the nonperfect specificity of some of the probes
could be avoided at least partially by using the multiple-probe
concept. While hybridization patterns consistent with the hier-
archical or parallel specificity of the probes increase the reli-
ability of detection, inconsistent probe hybridization patterns
must be interpreted with caution. In complex samples, incon-
sistent hybridization patterns can be caused either by nonspe-
cific binding of one or several probes or by previously unrec-
ognized prokaryotes with unusual combinations of perfect-
match probe target sites in their 16S rRNA gene sequences.

Microarray-based SRP diversity surveys of complex sam-
ples. In this study, periodontal tooth pocket material and a
cyanobacterial microbial mat were used to demonstrate the
suitability of using the microarray developed for SRP diversity
analysis of medical and environmental samples. For the tooth
pocket material of two patients suffering from adult periodon-
titis the SRP-PhyloChip hybridization pattern indicated the
presence of members of the genus Desulfomicrobium. Coloni-
zation of the tooth pockets analyzed by these SRPs, which is
consistent with a previous report of isolation of Desulfomicro-
bium orale from periodontal tooth pockets (33), was indepen-
dently confirmed by retrieval of 16S rRNA and dsrAB gene
sequences of Desulfomicrobium orale, demonstrating the reli-
ability of the microarray results.

The microarray hybridization patterns obtained by reverse
hybridization of 16S rRNA gene fragments amplified from the
chemocline of a Solar Lake microbial mat suggested that sev-
eral phylogenetically different SRPs, including bacteria related
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to the genera Desulfonema, Desulfomonile, and Desulfofaba,
were present. By using specific PCR assays, 16S rRNA gene
sequences related to sequences of members of the genera
Desulfonema and Desulfomonile were obtained from the mat
material analyzed, while the presence of Desulfofaba-like or-
ganisms could not be confirmed. The failure to detect Desul-
fofaba-like bacteria with the PCR assay might mean that a
relatively limited number of 16S rRNA gene clones was se-
quenced or that the microarray hybridization pattern indicative
of Desulfofaba was caused by the presence of bacteria that have
not been recognized yet. The detection of Desulfonema-like
bacteria in the chemocline of the Solar Lake mat is consistent
with findings of previous studies (46, 47, 70) and further sup-
ports the importance of these SRPs in hypersaline mat ecosys-
tems.

In conclusion, we developed an encompassing 16S rRNA
gene-targeting oligonucleotide microarray suitable for SRP di-
versity analyses of complex environmental and clinical samples.
The microarray was used to screen samples in order to rapidly
obtain indications of the presence of distinct lineages of SRPs.
Subsequently, this information was used to select appropriate
PCR-based techniques for confirmation of the microarray re-
sults and for retrieval of sequence information for phylogenetic
analysis. In contrast to previously available tools for cultiva-
tion-independent SRP identification (13, 18, 41, 56, 75, 76), the
SRP-PhyloChip allowed us to obtain a phylogenetically infor-
mative, high-resolution fingerprint of the SRP diversity in a
given sample within 48 h (including all experimental work from
DNA extraction to hybridization pattern interpretation). How-
ever, keeping in mind that (i) most environmental microbial
communities contain a high percentage of bacteria not yet
sequenced on the 16S rRNA level and (ii) not all probes on the
microarray are absolutely specific under the conditions used,
the SRP-PhyloChip experiments should always be supplement-
ed with microarray-independent techniques to confirm the
phylogenetic affiliations of the SRPs detected. Furthermore, it
should be noted that the microarray approach described here
did not allow us to obtain quantitative data on the composi-
tions of SRP communities because of the recognized biases
introduced by using PCR for 16S rRNA gene amplification
(74). In addition, the duplex yield of a probe on the microarray
is dependent not only on the actual abundance of its perfect-
match target nucleic acid in the PCR amplificate mixture but
also on a variety of other factors, including the labeling effi-
ciency of the specific target nucleic acid, the secondary struc-
ture of the target region, and the inherent variations associated
with microarray fabrication. Despite these limitations, the mi-
croarray which we developed has great potential for rapid
screening of SRP diversity in complex samples. The SRP di-
versity microarray fingerprint technique should allow workers
to identify the probes which have relevance for further char-
acterization of a sample by PCR or quantitative hybridization
experiments. This option should be particularly valuable if
large numbers of samples are to be analyzed to study temporal
or spatial variations in SRP diversity.
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