Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1966 May;99(2):312–316. doi: 10.1042/bj0990312

Absorption, storage and distribution of 3-dehydrovitamin A in the rat

K V John 1, M R Lakshmanan 1, H R Cama 1
PMCID: PMC1264998  PMID: 5947147

Abstract

1. The metabolism of 3-dehydroretinal was found to be similar to that of retinal. It alleviated all the symptoms of vitamin A deficiency, and promoted the growth of vitamin A-deficient rats. 2. When administered orally, 3-dehydroretinal was reduced in the intestine of the rat and subsequently esterified and transported to the liver, where it was stored mainly as the higher fatty acid ester. 3. Intraperitoneal administration of the compound led to the accumulation of 3-dehydrovitamin A in liver and other tissues. Subcutaneous administration of the compound showed a good growth response in the rat. 4. The ratio of 3-dehydroretinyl higher fatty acid ester to 3-dehydroretinol in liver, in the post-absorptive state, was nearly 93:7. 5. There was a linear relationship between the 3-dehydroretinol concentrations of blood and liver of rats. 6. Administration of 3-dehydroretinal at a dosage of 7·5mg./day for 3 days brought about hypervitaminosis A in the rat. 7. The maximal retention of 3-dehydrovitamin A by the kidneys was at an optimum dosage of 4·5mg./day for 3 days.

Full text

PDF
315

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALASUNDARAM S., CAMA H. R., SUNDARESAN P. R., VARMA T. N. Vitamin A2 in Indian fresh-water fish-liver oils. Biochem J. 1956 Sep;64(1):150–154. doi: 10.1042/bj0640150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Budowski P., Gross J. Conversion of carotenoids to 3-dehydroretinol (vitamin A2) in the mouse. Nature. 1965 Jun 19;206(990):1254–1255. doi: 10.1038/2061254a0. [DOI] [PubMed] [Google Scholar]
  3. CAMA H. R., DALVI P. D., MORTON R. A., SALAH M. K., STEINBERG G. R., STUBBS A. L. Studies in vitamin A. XIX. Preparation and properties of retinene2. Biochem J. 1952 Dec;52(4):535–540. doi: 10.1042/bj0520535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAMA H. R., DALVI P. D., MORTON R. A., SALAH M. K. Studies in vitamin A. XXI. Retinene2 and vitamin A2. Biochem J. 1952 Dec;52(4):542–547. doi: 10.1042/bj0520542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FUTTERMAN S., SASLAW L. D. The estimation of vitamin A aldehyde with thiobabituric acid. J Biol Chem. 1961 Jun;236:1652–1657. [PubMed] [Google Scholar]
  6. GANGULY J., KRINSKY N. I. Abscence of relationship between vitamin A alcohol levels in plasma and in liver of rats. Biochem J. 1953 May;54(2):177–181. doi: 10.1042/bj0540177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glover J., Goodwin T. W., Morton R. A. Studies in vitamin A. 6. Conversion in vivo of vitamin A aldehyde (retinene(1)) to vitamin A(1). Biochem J. 1948;43(1):109–114. [PMC free article] [PubMed] [Google Scholar]
  8. Glover J., Goodwin T. W., Morton R. A. Studies in vitamin A: 2. The relationship between blood vitamin A levels and liver stores in rats. Biochem J. 1947;41(1):97–100. doi: 10.1042/bj0410097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. JOHN K. V., LAKSHMANAN M. R., JUNGALWALA F. B., CAMA H. R. SEPARATION OF VITAMINS A1 AND A2 AND ALLIED COMPOUNDS BY THIN-LAYER CHROMATOGRAPHY. J Chromatogr. 1965 Apr;18:53–56. doi: 10.1016/s0021-9673(01)80319-8. [DOI] [PubMed] [Google Scholar]
  10. JUNGALWALA F. B., CAMA H. R. Separation of vitamins A1, A2 and allied substances by reverse phase paper chromatography. J Chromatogr. 1962 Aug;8:535–536. doi: 10.1016/s0021-9673(01)99306-9. [DOI] [PubMed] [Google Scholar]
  11. LAKSHMANAN M. R., JUNGALWALA F. B., CAMA H. R. METABOLISM AND BIOLOGICAL POTENCY OF 5,6-MONOEPOXYVITAMIN A ALDEHYDE IN THE RAT. Biochem J. 1965 Apr;95:27–34. doi: 10.1042/bj0950027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lakshmanan M. R., Vaidyanathan C. S., Cama H. R. Oxidation of vitamin A1 aldehyde and vitamin A2 aldehyde to the corresponding acids by aldehyde oxidase from different species. Biochem J. 1964 Mar;90(3):569–573. doi: 10.1042/bj0900569. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES