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The connected uniformly hyperstable sets of a finite game are
shown to be precisely the essential components of Nash equilibria.

game theory � equilibrium refinement � stability

The concept of equilibrium proposed by Nash (1, 2) is a
cornerstone of game theory. He defined an equilibrium as a

profile of players’ strategies such that each is an optimal reply to
others’ strategies. Most games have multiple equilibria so his
definition is not a complete theory of rational play. Hillas and
Kohlberg (3) survey refinements that impose additional deci-
sion-theoretic criteria. Nash also showed that a game’s equilibria
are the fixed points of an associated map (i.e. a continuous
function) from the space of strategies into itself, and in algebraic
topology, too, refinements select fixed points with stronger
properties.

Here, we establish for finite games an exact equivalence
between a game-theoretic refinement and a topological refine-
ment. The game-theoretic refinement is the uniform variant of
Kohlberg and Mertens’ (4) definition of a hyperstable compo-
nent of equilibria of a game (this and other technical terms are
defined below). The topological refinement is O’Neill’s (5)
definition of an essential component of fixed points of a map.
Basically, Theorem 1 below shows that the space of perturbed
games considered in the definition of hyperstability is as rich as
the class of perturbed maps considered in the definition of
essentiality.

Any map whose fixed points are the equilibria is called a Nash
map for the game. We (6) prove for two-player games that within
the set of Nash maps that are continuous in payoffs as well as
strategies, between every two Nash maps there is a homotopy
that preserves fixed points; our extension to N-player games has
not been published. Similarly, Demichelis and Germano (7)
show that the topological index, and thus also the topological
essentiality, of an equilibrium component is independent of the
map used. Here, in Formulation and Appendix A we show that,
in fact, the index depends only on the local degree of the
projection map from the equilibrium graph to the space of
games. Therefore, hereafter we say that an equilibrium compo-
nent is essential if it is an essential component of the fixed points
of some Nash map, and thus all Nash maps. The restriction to
components of equilibria is immaterial for extensive-form games
with perfect recall and generic payoffs since for such games all
equilibria in a component induce the same probability distribu-
tion over outcomes [Kreps and Wilson (8); Govindan and Wilson
(9)]. The following paragraphs review definitions of the two
refinements.

Essential Components of Fixed Points
Let X be the space of maps f : X 3 X from�into a topological
space X, where X is endowed with the compact-open topology.
Given f � X, a component is a maximal connected set of its fixed
points. A component K is topologically essential if for each
neighborhood U of K there is a neighborhood V of f such that
each map in V has a fixed point in U. In this article the focus is
on the case that X is the space of profiles of players’ mixed
strategies and f is a Nash map of a game. (In Formulation the
space X is denoted � and it is a compact convex subset of �S with
the �� norm.)

Uniformly Hyperstable Components of Equilibria
Hyperstability invokes two principles. ‘‘Hyper’’ refers to the
axiom of invariance, which requires that a refinement should be
immune to treating a mixed strategy as an additional pure
strategy. This excludes presentation effects by ensuring that
equivalent equilibria are selected in equivalent games. Stability
requires that every nearby game has a nearby equilibrium. Here,
a nearby game is one with players’ payoffs in a neighborhood of
those of the given game, represented as a point in Euclidean
space with the �� norm (we use the �� norm throughout).
Invariance and stability are applied as follows.

Equivalence of Games and Strategies. Two strategies of one player
are equivalent if they yield every player the same expected payoff
for each profile of others’ strategies. A pure strategy is redundant
if the player has another strategy that is equivalent. From a game
G one obtains its reduction G� by deleting redundant pure
strategies until none remain; the reduction is unique (apart from
names of pure strategies). Two games are equivalent if their
reductions are the same. If � is a profile of players’ strategies in
G then its reduction �� is the profile of equivalent strategies of
G�. For each set C of strategy profiles for game G the corre-
sponding set C� for an equivalent game G� consists of the profiles
of equivalent strategies.

Hyperstability and Uniform Hyperstability. A closed set C of equi-
libria of game G is hyperstable if for every neighborhood U� of
the equivalent set C� of equilibria for any equivalent game G�
there exists a neighborhood V� of G� such that every game in V�
has an equilibrium in U�. A stronger variant is: A closed set C
of equilibria of G is uniformly hyperstable if for every neigh-
borhood U of C there exists � � 0 such that every �-perturbation
of every equivalent game G� has an equilibrium equivalent to
some strategy profile in U.

Formulation establishes notation, and then Proof of the The-
orem proves the following.

Theorem 1. The connected uniformly hyperstable sets are the
essential components of any Nash map of the game.
As mentioned above, essential for some Nash map implies
essential for every Nash map of the game.¶

Theorem 1 is proved in two parts: an essential component is
uniformly hyperstable, Theorem 2; a connected uniformly hy-
perstable set is an essential component, Theorem 3. An impli-
cation of Theorem 1 is that a component is uniformly hyperstable
iff its topological index is nonzero. Independently, von Schemde
(10) establishes this result for two-player outside-option games.
Appendices A and B provide technical tools.

Formulation
We consider games with a finite set N of players, �N� � 2. Each
player n � N has a finite set Sn of pure strategies. Interpret a
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¶An analog of this theorem (with essentially the same proof) interprets hyperstability as a
property of the equivalence class of a set of strategy profiles for the equivalence class of
the game; i.e. G� represents the equivalence class of game G and a hyperstable set for G�

represents the equivalent hyperstable sets for games equivalent to G�.
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pure strategy sn as a vertex of player n’s simplex �n � �(Sn) of
mixed strategies. The sets of profiles of pure and mixed strategies
are S � �n Sn and � � �n �n. For player n, S	n � �m
n Sm and
�	n � �m
n �m denote the sets of profiles of others’ pure and
mixed strategies. Given N and S, each game G is described by its
payoff function Ĝ : S 3 �N from profiles of pure strategies to
players’ payoffs. Thus a game is specified by a point in �S�N. Let
Gn and Gn be the extensions of Ĝn from profiles of mixed
strategies to player n’s expected payoffs from pure and mixed
strategies; namely, player n’s expected payoffs from his pure
strategies are given by Gn : �3 �Sn, where Gs

n(�) � ¥t�S	n
Ĝn(s,

t) �m
n �m(tm), and Gn : �3 � where Gn(�) � ��nGn(�). Note
that Gn(�) does not depend on �n but Gn(�) does.

A profile � � � is an equilibrium of G if each player’s strategy
�n is an optimal reply to others’ strategies; that is, [�n 	
�n]�Gn(�) � 0 for all �n � �n. Equilibria are characterized as
fixed points of a map as follows [Gül, Pearce, and Stacchetti
(11)]. Let rn : �Sn3 �n be the piecewise-affine map that retracts
each point in �Sn to the point of �n nearest in Euclidean distance;
i.e., rn(zn) is the unique solution r � �n to the variational
inequality [�n 	 r]�[zn 	 r] � 0 for all �n � �n. Let Z � �n �Sn

and define r : Z 3 � via r(z)n � rn(zn) for each player n, and
w : � 3 Z via wn(�) � �n  Gn(�). Then � is an equilibrium
iff � � [r � w] (�). Hence the equilibria are the fixed points of
the map � � r � w : � 3 Z 3 �. An equilibrium component is
a maximal connected set of equilibria and thus compact. Each
component of fixed points of the permuted map F � w � r :
Z3 � 3 Z is homeomorphic to a corresponding component of
the fixed points of � and their indices agree [Dold (12)]. In
particular, the index is the local degree of the displacement map
f � Id 	 F used below.

A restricted class of perturbations perturbs a player’s payoffs
from his pure strategies independently of others’ behaviors. For
each g � Z define the perturbed game G Q g by (G Q g)n(�) �
Gn(�)  gn and thus (G Q g)n(�) � Gn(�)  ��ngn. Let EG �
{(g, �) � Z � � � � is an equilibrium of G Q g} be the graph
of equilibria over this class of perturbations. Define � : EG 3 Z
by �n(g, �) � �n  Gn(�)  gn, and let p1 : EG3 Z be the natural
projection. Then � is a homeomorphism; in particular, �	1(z) �
(f(z), r(z)). Consequently, f � p1 � �	1. Moreover Appendix A
shows that map f has degree 1. There exists an orientation of
EG such that the local degree of f is the same as the local degree
of the projection map p1. Hence the local degree of f and thus
also the index of a component C of G is the same as the degree
of the projection map p1 on any sufficiently small neighborhood
of (0, C) in the graph EG. Appendix A presents an alternative
definition of the index that depends only on the best-reply
correspondence, which is intrinsic to a game independently of
the map characterizing equilibria as fixed points.

As described in the Introduction, a profile � � � for game G
induces an equivalent profile �� � �� of G’s reduction G�. Let
An be the matrix whose columns are the pure strategies in Sn
represented as mixed strategies in ��n. Then ��n � An�n and
Gn(�) � A�nG�

n(��). A profile � � � is an equilibrium of G if and
only if the equivalent profile �� � (An�n)n�N is an equilibrium
of G�.

Proof of the Theorem
We now prove the two parts of Theorem 1. Theorem 2 extends to
the entire class of equivalent games the implication of nonzero
index established by Ritzberger (13).

Theorem 2. An equilibrium component is uniformly hyperstable if it
is essential.

Proof: Let C be an equilibrium component of game G that is
an essential component of a Nash map. Then its index is nonzero
[O’Neill (5), McLennan (14)], say d 
 0. As shown in Appendix
A, the index is invariant to addition of redundant strategies, so

we can assume that G is reduced. Let U be an open neighborhood
of C in �. We show that there exists � � 0 such that for each
equivalent game G* and each game G̃* within � of G* there
exists an equilibrium of G̃* equivalent to some profile in U. If
necessary by replacing U with a smaller neighborhood, we can
assume that the only equilibria in the closure of U are in C.
Because no strategy in its boundary �U is an equilibrium, �� � 0,
where �� � min���U[maxn�N,s�Sn

Gs
n(�) 	 ��nGn(�)]. Fix � � (0,

���2). Let G* be a game whose reduction is G, and let C* be the
equilibrium component of G* whose reduction is C. Let E* be
the graph of the equilibrium correspondence over the space of
games with the same set of strategies as in G*. Let �* be the
open ball around G* with radius �. Let U* � C* be the set of
profiles of G* that reduce to profiles in U; note that a profile in
�U* reduces to a profile in �U. Then V* � E* � (�* � U*) is
an open neighborhood of (G*, C*) in the graph. Suppose �* �
�U* and let � be the corresponding profile in �U. Then there
exists a pure strategy s for some player n whose payoff Gs

n(�) in
G from s against � is greater than the payoff Gn(�) from the
reduction �n of �*n by at least �� . For a game G̃* � �*, the payoff
from s against �* is strictly greater than Gs

n(�) 	 ���2 while the
payoff from �*n against �* is strictly less than Gn(�)  ���2. Thus,
�* cannot be an equilibrium of G̃*. Therefore, G̃* has no
equilibrium in �U*. Consequently, the projection map P* :
V* 3 �* is proper: the inverse image of every compact subset
of �* under P* is compact. Appendix A shows that the index of
C and C* agree. Therefore, by Appendix A, the local degree of
G* under P* is d. Because P* is a proper map, this implies that
the local degree of each game G̃* � �* is d [Dold (12)].
Therefore the sum of the indices of equilibrium components of
G̃* in U* is d. Since d 
 0, G̃* has an equilibrium in U*. Since
G* could be any game whose reduction is G and every game G̃*
in its neighborhood �* has an equilibrium in U*, C is uniformly
hyperstable.

Thus those components with nonzero indices are uniformly
hyperstable, and such components exist because the sum of the
indices of all components is 1. Now we prove necessity.

Theorem 3. A connected uniformly hyperstable set is an essential
component.

Proof: Let C be a closed connected set of equilibria of G and
let K be the component containing it. Suppose that Ind(K) � 0
or C 
 K; we show that C is not uniformly hyperstable. Fix a
neighborhood U as in the corollary of Appendix A and let � � 0.
We construct an equivalent game G̃ and a perturbation G̃� of G̃
such that �G̃ 	 G̃�� � � and the perturbed game G̃� has no
equilibrium equivalent to a strategy profile in U. The construc-
tion of G̃ is done in three steps (we are indebted to a reviewer
for suggesting a simplification of Step 2).

The best-reply correspondence for game G is BR : � 3B �,
where BR(�) � {� � � � (@n � N, @�̃n � �n) [�̃n 	 �n]�Gn(�) �
0}. More generally, for � � 0 say that a strategy �n of player n
is a �-reply against � � � if ��nGn(�) � Gs

n(�) 	 �, where s �
Sn is any optimal reply of player n against �. A profile � is a
�-reply against � if for each n the strategy �n is a �-reply for
player n against �.

Step 1: First, we show that without loss of generality we can
assume that G satisfies the following property (*): for every
neighborhood W of Graph(BR) there exists a map h : � 3 �
such that:

(i) Graph(h) � W.
(ii) For each player n the n-th coordinate map hn of h depends

only on �	n.
(iii) h has no fixed points in U.

It suffices to show existence of an equivalent game G*
satisfying (*).
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Define G* as follows. Player n’s pure strategy set is S*n � Sn �
Sn1, where n  1 is taken modulo N. For each n, and m � {n,
n  1}, denote by pnm the natural projection from S*n to Sm.
Then the payoff function from pure strategies for player n is
given by G*n(s*) � Gn(s), where for each m, sm � pm,m(s*m). In
other words, n’s choice of a strategy for n  1 is payoff irrelevant.
Clearly G* is equivalent to G. Let �*n be player n’s set of mixed
strategies in the game G*. We continue to use pnm to denote the
map from �*n to �m that computes for each mixed strategy �*n
the induced marginal distribution over Sm. Let p : �* 3 � be
the map p(�*) � (p1,1(�*1), . . . , pN,N(�*N)); i.e., p computes the
payoff-relevant coordinates of �*. Finally, let P : �* � �* 3
� � � be the map for which P(�*, �*) � (p(�*), p(�*)). Use
BR* to denote the best-reply correspondence for the game G*.
Similarly, C* denotes the component of equilibria of G* equiv-
alent to equilibria in C, and U* denotes the neighborhood
corresponding to U.

Fix a neighborhood W* of Graph(BR*). For each � � 0, let W(�)
be the set of those (�, �) � � � � for which � is a �-reply to
� in G. Then the collection {W(�) � � � 0} is a basis of
neighborhoods of the graph of BR. Choose � � 0 such that
P	1(W(�)) � W*. By the corollary in Appendix A, there exists
a map h : � 3 � such that Graph(h) � W(�) and h has no fixed
points in U. Now define the map h* : �*3 �* as follows: for each
n, h*n(�*) is the product distribution �n(�*) � pn1,n1(�*n1), where
�n(�*) � hn(p1,1(�*1), . . . , pn	1,n	1(�*n	1), pn	1,n(�*n	1),
pn1,n1(�*n1), . . . , pN,N(�*N)). By construction, each coordinate
map h*n depends only on �*	n. We claim that the graph of h* is
contained in W*. To see this, observe first that �n(�*) is player n’s
component of the image of (p	n(�*), pn	1,n(�*n	1)) under h. Since
Graph(h) � W(�), �n(�*) is a �-reply to p	n(�*). Therefore, (p(�*),
�(�*)) belongs to W(�). Hence (�*, h*(�*)) � P	1(W(�)) � W*.

We finish the proof by showing that h* has no fixed point in
U*. Suppose �* is a fixed point of h*. Then each �*n is a product
distribution with pn,n1(�*n) � pn1,n1(�*n1) for all n. There-
fore pnn(�*n) � pnn(h*n(�*)) � hn(p	n(�*), pn	1,n(�*n	1)) �
hn(p(�*)) for each player n, which implies that p(�*) is a fixed
point of h. Since h has no fixed point in U, �* � U*.

Step 2: Let I be the interval [0, �]. We now show that without
loss of generality we can assume that G satisfies the following
property (**): there exists a map g : �3 IR, where R � ¥n �Sn�,
such that:

(i) For each player n, gn depends only on �	n.
(ii) No profile � � U is an equilibrium of the game G Q g(�).

As in Step 1 we prove this by constructing an equivalent game
with the property (**). Since the payoff functions are multilinear
on the compact set �, there exists a Lipschitz constant M � 0
such that �Gn(�) 	 Gn(�)� � M�� 	 �� for all n and �, � � �.
We begin with a preliminary lemma.

Lemma. If �n is a �1-reply against �, ���n 	 �n� � �2, ��� 	 �� �
�3 then ��n is a (�1  M�2)-reply to � and �n is a (2M�3  �1)-reply
to ��.

Proof of the Lemma: The first result follows directly from the
Lipschitz inequality. Let s be an optimal reply for player n to ��.
Then the second result follows by using the Lipschitz inequality
along with the inequality: Gn(s, ��	n) 	 Gn(�n, ��	n) � �Gn(s,
��	n) 	 Gn(s, �	n)�  Gn(s, �	n) 	 Gn(�n, �	n)  �Gn(�n,
�	n) 	 Gn(�n, ��	n)�.

Fix 	 � ��6M. For each � � � there exists an open ball B(�)
around � of radius � 	 such that for each �� � B(�) the set of
pure best replies against �� is a subset of those that are best
replies to �. Since the set of best replies for each player n to a
strategy profile is the face of �n spanned by his pure best replies,
BR(��) � BR(�) for each �� � B(�). The balls B(�) define
an open covering of �. Hence there exists a finite set of points

�1, . . . , �k whose corresponding balls form a subcover. For each
� i, let W(� i) be the 	-neighborhood of BR(�i). Let W � �i
(B(� i) � W(� i)). Then W is a neighborhood of the graph of BR.
From Step 1 there exists a map h : �3 � such that (i) Graph(h)
� W; (ii) for each n, hn depends only on �	n; and (iii) h has no
fixed point in U. If � � h(�) then there exist � i, � i such that � �
B(� i), � i is a best reply to � i, and � is within 	 of � i. Therefore,
the Lemma implies that � i is a 2M	-reply against � and therefore
that � is a 3M	-reply against �.

Fix 
 � 0 such that if � � U then �� 	 h(�)� � 
. For each
n, let Tn be the simplicial complex obtained by taking a suffi-
ciently fine subdivision of �n such that the diameter of each
simplex is less than both 	 and 
, and let Tn be the set of vertices
of this simplicial complex. Define T � �n Tn. We now define a
game G� that is equivalent to G, as follows. For each player n the
set of pure strategies is Tn. The pure strategy tn � Tn is a
duplicate of the mixed strategy in �n corresponding to the vertex
tn of Tn. Since the vertices of �n belong to Tn, G� is equivalent to
G. Let �� n be the set of mixed strategies of player n in G� and let
�� � �n �� n. Denote by C� and U� the sets in �� that are equivalent
to C and U, respectively.

For tn � Tn, define X(tn) � �	n as the projection on to �	n
of the inverse image of the closed star (cf. Appendix B) of tn under
the map hn. And let Y(tn) be the set of �	n � �	n such that �tn 	
hn(�)� � 2	 [recall that hn(�) does not depend on �n]. Since the
diameter of each simplex of Tn is � 	, X(tn) � Y(tn) � �. Now
use Urysohn’s lemma to define a function �tn

: �	n3 [0, 1] such
that �tn

	1(1) � X(tn) and �tn

	1(0) � Y(tn).
Let R� � ¥n �Tn�. We now construct a map g : �� 3 IR� with

the requisite properties by first defining g on � and then
extending it to the whole of �� by letting g(�� ) be g(�), where �
is the equivalent profile in G. For each n, let fn : �	n 3 � be
the map defined by f(�	n) � maxs�Sn

Gn(s, �	n). For each n,
tn � Tn, � � �, let gtn

(�) � �tn
(�	n)[fn(�	n) 	 Gn(tn, �	n) 

M	]. We first show that g is well defined, i.e. g maps each � to
a point in IR�. Fix n, tn, and �. If �	n � Y(tn), then gtn

(�) � 0.
If �	n � Y(tn), then �tn 	 hn(�)� � 2	. Since hn(�) is a
3M	-reply to �	n, the Lemma implies that tn is a 5M	-reply to
�	n, i.e., 0 � fn(�	n) 	 Gn(tn, �	n) � 5M	. Hence, 0 � gtn

(�) � 6M	 � �. Thus, g is a well defined map from � into IR�.
Obviously the extension of g to the whole of �� also has norm at
most �. Also, by construction for each n, gn depends only on �� 	n.

To finish the proof of this step we show that if �� � U� then ��
is not an equilibrium of G� Q g(�� ). Suppose to the contrary that
�� � U� is such an equilibrium and let � be the corresponding
strategy in �. In the game G� Q g(�� ), consider the payoff that
player n gets when he plays a pure strategy tn while the others
play according to �� . If �	n � X(tn), then his payoff is fn(�	n) 
M	; if � � X(tn) then his payoff is Gn(tn, �	n) 
�tn

(�	n)[fn(�	n) 	 Gn(tn, �	n)  M	], which is strictly smaller
than fn(�	n)  M	 since �tn

(�	n) � 1. Obviously there exists
at least one tn such that �	n � X(tn), for instance, any vertex of
the simplex of Tn that contains hn(�) in its interior. Thus, the set
of optimal replies to �� for player n, call it T�n, is the set of tn’s such
that �	n � X(tn). For each tn � T�n, there exists a simplex of Tn
that contains tn and hn(�). Hence, the distance between hn(�)
and tn is � 
. The support of �� n being a subset of T�n, we then
have ��n 	 hn(�)� � 
. Since we are using the l�-distance, �� 	
h(�)� � 
, which is impossible. Thus, there does not exist �� in
U� that is an equilibrium of G� Q g(�� ).

Step 3: Suppose g : � 3 IR has the property (**) described in
Step 2. For each � � U there exists �(�) � 0 and an open ball
B(�) around � such that for each �� � B(�) and each g� such
that �g� 	 g(��)� � �(�), �� is not an equilibrium of G Q g�. The
balls B(�) form an open covering of U. Hence, there exists a
finite set of points �1, . . . , �k such that their corresponding balls
cover �. Let � � mini �(� i). Construct a simplicial subdivision
I of the interval I such that the diameter of each simplex (i.e.,
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a subinterval) is at most �. Using the multisimplicial approxi-
mation theorem from Appendix B, there exists a simplicial
subdivision Tn of each �n, and for each s � Sn a multisimplicial
approximation g*s : �T	n� 3 �I� of gs that is multilinear on each
multisimplex of T	n. Let g* : � 3 �I�R be the corresponding
multisimplicial map defined by the coordinate maps g*s. By
construction, no � � U is an equilibrium of G Q g*(�).

As in Appendix B let Pn be the polyhedral complex generated
by Tn, and let n : �n3 [0, 1] be the associated convex map. For
each n let Pn be the set of vertices of Pn. Given a polyhedron P	n
in �m
n Pm, there exists a multisimplex T	n of T	n that contains
it. Since g* is multilinear on each multisimplex, g* is multilinear
on each polyhedron.

Consider now the equivalent game G̃ where the strategy set of
each player n is the set Pn of vertices of the polyhedral complex
Pn. Let �̃n be the set of mixed strategies of player n in the game
G̃. For each player n, let An be the �Sn� � �Pn� matrix, where
column p is the mixed strategy vector that corresponds to the
vertex p of Pn. Then the payoff to player n from a strategy vector
�̃ � �̃ is his payoff in G from the profile �, where �m � Am�̃m
for each m. For each n, let Bn : P	n 3 IPn be the map defined
by Bn(p	n) � A�ng*n(p	n). Consider now the game G̃� obtained
by modifying the payoff functions to the following: for each
player n, his payoff from the pure-strategy profile p is G̃n(p) 
Bn,pn

(p	n). By construction G̃� is a �-perturbation of G̃. Let cn
be the vector in �Pn where the coordinate p of cn is n(p). For
each �� � � let G̃�� be the game G̃� Q [	��c]. Then G̃�� is a
�-perturbation of G̃.

We claim now that for sufficiently small �� the game G̃�� has
no equilibrium in the set Ũ that is the neighborhood equivalent
to U of the equilibrium component C̃ for G̃ equivalent to C.
Indeed, suppose to the contrary that there is a sequence �k

converging to zero and a corresponding sequence �̃k of equi-
libria of G̃�k that lie in Ũ. For each k let �k be the equivalent
profile in �. For each k and each player n, if �̃n

k � �̃n is a mixed
strategy such that An�̃n

k � �n
k then c�n�̃n

k � c�n�̃n
k. Thus �̃n

k solves
the linear programming problem min�̃n

k��̃n
c�n�̃n

k subject to An�̃n
k �

�n
k. Let Ln

k be the unique polyhedron of Pn that contains �n
k in

its interior. Since n is a convex function, n(�n
k) � ¥pn�Pn

�̃n,pn

k

n(An,pn
) for all �̃n

k � �̃n such that An�̃n
k � �n

k, where An,pn
is the

pnth column of An and �̃n,pn

k is the probability that �̃n
k assigns to

the pure strategy pn. Moreover, the construction of n ensures
that this inequality is strict unless the support of �̃n

k is included
in Ln

k. Therefore, the equilibrium strategy �̃n
k assigns positive

probability only to points in Ln
k.

Now let �̃ be a limit of �̃k as �k2 0 and let � be the equivalent
mixed strategy. Then �̃ is an equilibrium of the game G̃�.
Therefore, � is an equilibrium of the game G Q b, where bns �
¥p	n

g*ns(p) �m
n �̃m,pm
for each n and s � Sn. By the arguments

in the previous paragraph, there exists for each n a polyhedron
Pn

� � Pn such that �̃n assigns positive probability only to points
in Pn

� . Since each g*n is multilinear on the multisimplex T	n that
contains P	n

� , bns � g*ns(�	n). Thus � is an equilibrium of G Q

g*(�), which is a contradiction. Thus, for all sufficiently small ��
the game G̃�� has no equilibrium in Ũ.

Thus the connected uniformly hyperstable sets are precisely
the essential components as stated in Theorem 1.

Appendix A: Index Theory
An Index Derived from the Best-Reply Correspondence. We define an
index for equilibrium components by using the best-reply cor-
respondence and show that this index coincides with the stan-
dard index constructed from a Nash map.

Let BR : � 3B � be the best-reply correspondence for the
game G, i.e. BR(�) � {� � � � (@n) �n � arg max�̃n

�̃�nGn(�)}.
The set E of equilibria of G is the set of fixed points of BR; i.e.
those for which � � BR(�). Let C be a component of the

equilibria of G. We follow McLennan (14) in defining an index
for C. Let U be an open neighborhood of C such that its closure
U� satisfies U� � E � C. Let W be a neighborhood of Graph(BR)
such that W � {(�, �) � � � � � � � U� 	 U} � �. By corollary
2 in ref. 14 there exists a neighborhood V � W of Graph(BR)
such that if f0 and f1 are any two maps from � to � whose graphs
are contained in V, then there is a homotopy F : [0, 1] � � 3
� from f0 to f1 such that Graph(F) � [0, 1] � V. By the
proposition in ref. 14 there exists a map f : � 3 � for which
Graph(f) � V. Define the index IndBR(C) to be the standard
index of the restricted map f : U 3 �. The choice of the
neighborhood V and the homotopy axiom for index ensure that
this index does not depend on the particular map f chosen to
compute the index.

The index of the component C can also be defined by using the
index obtained from the Nash map � : � 3 � defined in
Formulation, which has the equilibria as its fixed points. Define
the Gül-Pearce-Stacchetti (11) index IndGPS(C) to be the stan-
dard index of the component C computed from the restriction of
� to the map g : U 3 �.

Theorem 4. IndBR(C) � IndGPS(C).
Proof: For each � � 0 define the game G� as the game where

the payoff functions of all players in G are multiplied by �; i.e.,
G� � �G. Clearly, all games G� have the same equilibria. For
G� let w� be the map corresponding to w in the game G, and let
g� � r � w� be the corresponding GPS map. Then for each � �
0 the homotopy H : [0, 1] � � 3 �, H(t, �) � g1t(�	1), from
g to g� preserves the set of fixed points. Hence, the index of C
under g� is the same for all �. To prove Theorem 4 it is sufficient
to show that there exists � � 0 such that the graph of g� is
contained in V, the neighborhood specified in the definition of
IndBR(C). For each � � 0 and � � �, w�(�) � z� is such that
1  �Gn(s, �	n) � zns

� � �Gn(s, �	n) for all n, s. Choose c(�) �
0 such that if s is not a best reply to �	n for player n, then Gn(s�,
�	n) 	 Gn(s, �	n) � c(�), where s� is a best reply for player n
against �. Then zns�

� 	 zns
� � �c(�) 	 1 if s is not a best reply and

s� is. In particular, if � � 2�c(�), then this difference is at least
1. Therefore, for each such �, z� is retracted by r to a point in
BR(�). Now choose an open ball B(�) around � in � such that
(i) B(�) � BR(�) � V; and (ii) for each n and each s � Sn that
is not a best reply to �, there is an s� such that Gn(s�, ��	n) 	
Gn(s, ��	n) � c(�)�2 for all �� � B(�). Then as before, g�(��) �
BR(�) for each � � 4�c(�) and �� � B(�). The balls B(�) for
� � � form an open cover of �. Since � is compact there exists
a finite set �1, . . . , �K � � such that �kB(�k) � �. Let �* �
maxk 4�c(�k). For each � � �* the graph of g� belongs to V, as
required.

A corollary follows from results of A. McLennan (personal
communication).

Corollary. If C is a closed subset of a component K of equilibria, with
C � K only if Ind(K) � 0, then there exists a closed neighborhood
U of C for which, for each neighborhood W of Graph(BR), there
exists a map h such that Graph(h) � W and h has no fixed point
in U.

Equivalence of Index and Degree. Let � � �N�S� be the space of all
finite N-player games with a fixed strategy set Sn for each player,
and S � �n Sn. Let E* be the graph of the Nash equilibrium
correspondence over � and let p : E* 3 � be the natural
projection. Each game G can be decomposed uniquely as G �
G̃ Q g, where for each player n and each pure strategy s � Sn,
¥s	n

G̃n(s, s	n) � 0. Thus, � is the product space Z̃ � Z of all
pairs (G̃, g). Define � : E* 3 Z̃ � Z by �(G̃, g, �) � (G̃, z)
where for each player n and each s � Sn, zns � �ns  G̃n(s,
�	n)  gns. Theorem 1 of ref. 4 shows that � is a homeomor-
phism. The inverse �	1 is defined by �	1(G̃, z) � (G̃, g, r(z)),

Govindan and Wilson PNAS � October 25, 2005 � vol. 102 � no. 43 � 15709

M
A

TH
EM

A
TI

CS
EC

O
N

O
M

IC
SC

IE
N

CE
S



where r(z) � � is the retraction of z to � and gns � zns 	 �ns 	
G̃n(s, �	n) for all n and s � Sn. Furthermore, � extends to a
homeomorphism between the one-point compactifications, call
them Ē* and �� , of E* and �, respectively; and p � �	1 is
homotopic to the identity map on �� . Thus, the map p � �	1 has
degree 1. We can therefore orient E* such that the projection
map p : E*3 � has degree 1. Given a game G and a component
C of the game, choose a neighborhood U of {(G̃, g)} � C in the
graph that is disjoint from the other components of equilibria of
G (viewed as a subset of E*). The degree of C, denoted deg(C),
is the local degree of (G̃, g) under the restriction of p to U.
Since � is the identity on the Z̄ factor, we can also define the
degree of C by using Z as the space of games. Indeed given the
game G � (G̃, g), let E�G � (g�, �) such that ((G̃, g�), �) belongs
to E*. Let �� : E�G 3 Z be the map ��(g�, �) � z, where z is such
that �((G̃, g�), �) � (G̃, z). Then �� is a homeomorphism
between E�G and Z and as before we can define the degree of C
as the local degree of the projection map from a neighborhood
of {g} � C in E� whose closure does not contain any other
equilibria of the game G. Obviously, these two definitions are
equivalent. If we use �� then the degree of C is just the degree
of g under the map f� � p � ��	1 from a neighborhood V of
��({g} � C) in Z, where p is the natural projection from E� to
Z. Letting � and f be the maps defined in Formulation, we have
��({g} � C) � �({0} � C), and f � f� 	 g. Therefore, the
degree of zero under the map f over V is the same as the degree
of g under the map f� over V. As in Formulation, the degree of
zero under the map f over V is the index of the component w(C)
of the fixed point set of F, which is the same as the index of C
under the GPS map �.

Invariance of Index and Degree. We provide a simple proof by using
the index defined by the best-reply correspondence.

Theorem 5. The index of a component of equilibria is invariant
under the addition or deletion of redundant strategies.

Proof: Let C be an equilibrium component of game G. It
suffices to show that the index of C is invariant under the
addition of redundant strategies. Accordingly, for each player n
let Tn be a finite collection of mixed strategies. Let G* be the
game obtained by adding the strategies in Tn as pure strategies
for n; i.e., n’s pure strategy set in G* is Sn � Tn. Let �*n be his
set of mixed strategies. Let BR* be the best-reply correspon-
dence in �*. Let p* : �* 3 � be the function that maps each
mixed strategy in G* to the equivalent mixed strategy in G. Let
� : � 3 �* be the inclusion map that sends a point in � to the
corresponding point on the face of �*; precisely, �(�) � �*,
where �*ns � �ns for s � Sn and �nt � 0 for t � Tn. Obviously,
�(�) � p	1(�) for each � � �.

Let C* � p	1(C) be the equilibrium component of G*
corresponding to C. Let U be an open neighborhood of C whose
closure is disjoint from other equilibrium components of G. Let
U* � p	1(U). Choose a neighborhood W* of the graph of BR*
such that the index of C* can be computed as the sum of the
indices of the fixed points in U* of any map h* whose graph is
contained in W*.

Let W be a neighborhood of the graph of BR such that (�, �) �
W implies p	1(�) � p	1(�) � W*. By ref. 14, every neighbor-
hood of the graph of BR contains the graph of a function.
Therefore, by the definition of IndBR(C), there exists a map h :
� 3 � such that (i) the graph of h is contained in W; (ii) h has
no fixed points on the boundary of U; and (iii) IndBR(C) is the
index of the map h over U. Define now a map h* : �* 3 �* by
h* � � � h � p. Then, by construction the graph of h* is contained
in W*.

Moreover, h and h* have homeomorphic sets of fixed points.
In fact, the fixed points of h* are the image of the fixed points
of h under the injective map �. Letting h0 � � � h, we have that

h � p � h0 and h* � h0 � p. Therefore, by the commutativity
property of the index [Dold (12)], the index of the map h : U 3
� is the same as that of h* : U* 3 �*. Hence IndBR*(C*) �
IndBR(C).

Appendix B: Multisimplicial Complexes
A Multisimplicial Approximation Theorem. We establish a multilin-
ear version of the simplicial approximation theorem. This result
may be known but we found no reference. We begin with some
definitions; see Spanier (15) for details.

A set of points {v0, . . . , vn} in �N is affinely independent if
the equations ¥i�0

n �ivi � 0 and ¥i �i � 0 imply that �0 � � � � �
�n � 0. An n-simplex K in �N is the convex hull of an affinely
independent set {v0, . . . , vn}. Each vi is a vertex of K and the
collection of vertices is called the vertex set of K. Each � � K
is expressible as a unique convex combination ¥i �ivi; and for
each i, �(vi) � �i is the vith barycentric coordinate of �. The
interior of K is the set of � such that �(vi) � 0 for all i. A face
of K is the convex hull of a nonempty subset of the vertex set of K.

A (finite) simplicial complex K is a finite collection of
simplices such that the face of each simplex in K belongs to K,
and the intersection of two simplices is either empty or a face of
each. The set V of 0-dimensional simplices is called the vertex set
of K. The set given by the union of the simplices in K is called
the space of the simplicial complex and is denoted �K�. For each
� � �K�, there exists a unique simplex K of K containing � in its
interior; define the barycentric coordinate function � : V 3 [0,
1] by letting �(v) � 0 if v is not a vertex of K and otherwise by
letting �(v) be the corresponding barycentric coordinate of � in
the simplex K. For each vertex v � V, the star of v, denoted St(v),
is the set of � � �K� such that �(v) � 0. The closed star of v,
denoted ClSt(v), is the closure of St(v).

A subdivision of a simplicial complex K is a simplicial complex
K* such that each simplex of K* is contained in a simplex of K
and each simplex of K is the union of simplices in K*. Obviously
�K� � �K*�. We need the following theorem on simplicial
subdivisions for our approximation theorem below (15).

Theorem 5. For every simplicial complex K and every positive
number � � 0 there exists a simplicial subdivision K* such that the
diameter of each simplex of K* is at most �.

A multisimplex is a set of the form K1 � � � � � Km, where for
each i, Ki is a simplex. A multisimplicial complex K is a product
K1 � � � � � Km, where for each i, Ki is a simplicial complex. The
vertex set V of a multisimplicial complex K is the set of all
(v1, . . . , vm) for which each vi is a vertex of Ki. The space of the
multisimplicial complex is �i �Ki� and is denoted �K�. For each
vertex v of K, the star of v, St(v), is the set of all � � �K� such
that for each i, �i � St(vi). The closure of this set is Cl St(v). A
subdivision of a multisimplicial complex K is a multisimplicial
complex K* � �i K*i where for each i, K*i is a subdivision of Ki.
In the following, K is a fixed multisimplicial complex and L is a
fixed simplicial complex.

Definition 1: A map f : �K�3 �L� is called multisimplicial if for
each multisimplex K of K there exists a simplex L in L such that:

(i) f maps each vertex of K to a vertex of L;
(ii) f is multilinear on �K�; i.e. for each � � �K�, f(�) � ¥v�V

f(v)��i �i(vi).

By property (i) vertices of K are mapped to vertices of L.
Therefore, for each � � �K�, f(�) is an average of the values at
the vertices of K. Since the simplex L is a convex set, the image
of the multisimplex K is contained in L. If K is a simplicial
complex then Definition 1 coincides with the usual definition of
a simplicial map. In this special case the image of a (multi)sim-
plex K under f is a simplex of L, which is not necessarily true in
general.
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Definition 2: Let g : �K� 3 �L� be a continuous map. A
multisimplicial map f : �K� 3 �L� is a multisimplicial approxi-
mation to f if for each � � �K�, f(�) is in the unique simplex of
L that contains g(�) in its interior.

We could equivalently define a multisimplicial approximation
by requiring that for each � and each simplex L of L, if g(�) �
L then also f(�) � L. We now prove a multisimplicial approx-
imation theorem.

Theorem 6. Suppose that g : �K � 3 �L� is a continuous map. Then
there exists a subdivision K* of K and a multisimplicial approxi-
mation f : �K*� 3 �L� of g.

Proof: The collection {g	1(St(w)) � w is a vertex of L} is an
open covering of �K �. Let � � 0 be a Lebesgue number of this
covering; i.e., every subset of �K � whose diameter is � � is
included in some set of the collection. By Theorem 5, there exists
for each i a simplicial subdivision K*i of Ki such that the diameter
of each simplex is � ��2. Then for each vertex v of K*, St(v) has
diameter � � (recall that we use the �� norm). We first define
a function f 0 from the vertex set of K* to the vertex set of L as
follows. For each vertex v of K*, since the diameter of St(v) is �
�, there exists a vertex w of L such that g(St(v)) � St(w). Let
f 0(v) � w. Suppose v1, . . . , vk are vertices of a multisimplex K.
We claim that their images under f 0 span a simplex in L. Indeed,
since the vj’s are vertices of a multisimplex, we have that �jSt(vj)
is nonempty. Therefore,

� � g��jSt�vj�� � �jg�St�vj�� � �jSt�f0�vj�� .

Therefore, the vertices f 0(vj) span a simplex in L. Since f 0 maps
vertices of a multisimplex to vertices of a simplex, there exists a
well defined unique multilinear extension of f 0, call it f. To finish
the proof we show that f is a multisimplicial approximation of g.
Let � be an interior point of a multisimplex K and let L be the
simplex containing g(�) in its interior. For every vertex v of K,
g(St(v)) � St(f(v)) by construction. Thus g(�) � St(f(v)) for
each vertex v of K. In particular, the set of vertices {f(v) � v is a
vertex of K} span a subsimplex L� of L. Since f(�) � L�, f is a
multisimplicial approximation of g.

The proof of Theorem 6 shows a slightly stronger result. Let
	 � ��2, where � is as defined in the proof. If each K*i is

subdivision of K i such that the diameter of each simplex is at
most 	 then g admits a multisimplicial approximation f : �K*�3
�L�. Thus, we obtain:

Corollary 2. There exists 	 � 0 such that, for each subdivision K*
of K with the property that the diameter of each multisimplex is at
most 	, there exists a multisimplicial approximation f : �K*� 3 �L�
of g.

Construction of a Convex Map on a Polyhedral Subdivision. We
describe the construction of a convex map associated with a
polyhedral refinement of a simplicial subdivision.

Let T be a simplicial complex obtained from a simplicial
subdivision of the d-dimensional unit simplex � in �d1. The
polyhedral complex P is derived from T as follows [Eaves and
Lemke (16)]. For each simplex � � T whose dimension is d 	
1, let H� � {z � �n � a��z � b�} be the hyperplane that includes
� and is orthogonal to �. Then each closed d-dimensional
admissible polyhedron of P has the form � � [��H�

p�], where
each p� � {, 	} and H�

 and H�
	 are the two closed half-spaces

whose intersection is H�. Enlarge P by applying the rule that each
lower-dimensional polyhedral face of an admissible polyhedron
is also admissible. By construction, the closure of each simplex
in T is partitioned by admissible polyhedra of P, any two
nondisjoint admissible polyhedra meet in a common face that is
also an admissible polyhedron, and each admissible polyhedron
is convex. Associate with P the map  : � 3 [0, 1] for which
(�) � 
 ¥� �a��� 	 b��, where the scaling factor 
 � 0 is
sufficiently small that (�) � [0, 1]. Then  is convex and
piecewise affine. In particular for any finite collection �1, . . . ,
�k of points in � and nonnegative scalars �1, . . . , �k such that
¥i �i � 1, we have that (¥i �i�i) � ¥i �i(�i), with the
inequality being strict if and only if there does not exist an
admissible polyhedron of P that contains all of the �is.
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