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F
rom inception, microarray analysis
has facilitated discovery by associ-
ating gene expression with bio-
logical and�or clinical sample

characteristics. However, gleaning biologi-
cal insight from the long lists of genes
generated by microarray analysis remains
a significant challenge. In this issue of
PNAS, Subramanian et al. (1) describe
and validate gene set enrichment analysis
(GSEA), a computational method that
helps rapidly connect gene expression
with biology and promises to be a valu-
able addition to publicly available compu-
tational resources.

Early on, investigators adapted unsuper-
vised computational methods such as hier-
archical clustering (2) and self-organized
maps (3) to arrange genes and samples in
groups or clusters based solely on the sim-
ilarity of their gene expression. These
methods successfully revealed the orches-
trated gene expression underlying basic
cellular processes such as yeast replication
(4), fibroblast cell proliferation (5), and
hematopoietic differentiation (3), and they
continue to be used widely today. Unsu-
pervised methods are unbiased and re-
main important tools for class discovery.

Alternatively, supervised methods of
analysis use sample classifiers along with
gene expression to rapidly identify hypoth-
esis-driven correlations (i.e., tumor v. nor-
mal, pathological grade, recurrent disease,
histological category, etc.). A few exam-
ples of supervised methods of analysis
include significance analysis of microarray
(SAM) (6), class prediction (7), support
vector machines (8), and probit regression
analysis (9, 10). In the field of oncology,
supervised methods of gene expression
have successfully identified novel marker
genes for diagnosis (11), prognosis (12),
and therapeutic response (13). Supervised
methods can help overcome obfuscating
technical or biological variation in gene
expression and continue to identify impor-
tant associations between sample pheno-
types and gene expression.

GSEA represents an innovative method
of supervised analysis. This analysis is per-
formed by (i) ranking all genes in the data
set based on their correlation to the cho-
sen phenotype, (ii) identifying the rank
positions of all members of the gene set,
and (iii) calculating an enrichment score

(ES) that represents the difference be-
tween the observed rankings and that
which would be expected assuming a ran-
dom rank distribution (see figure 1 A and
B in ref. 1). After establishing the ES for
each gene set across the phenotype,
GSEA reiteratively randomizes the sample
labels and retests for enrichment across
the random classes. By performing re-
peated class label randomizations, the ES
for each gene set across the true classes
can be compared to the ES distribution
from the random classes. Those gene sets
that significantly outperform iterative ran-
dom class permutations are considered
significant.

Pathway-oriented approaches similar to
GSEA have recently become more popu-
lar (reviewed in ref. 14). As a general ap-
proach, these methods use predetermined
aggregations of genes (alternatively called
gene sets, metagenes, or gene modules)
rather than individual genes to assess for
coordinate expression within samples or
sample classifications. Investigators have
pursued multiple strategies to develop
informative gene sets; some groups orga-
nize gene sets based on public sources
(i.e., KEGG pathways), and others per-
form experiments to define gene sets.

Successful gene sets can help identify
underlying genetic abnormalities or signal
transduction networks driving disease pa-
thologies and help effectively bridge mi-
croarray data with biological significance.
Published reports using aggregated gene
sets have identified oxidative phosphory-
lation pathway deregulation in human
diabetic muscle (15), Myc, Ras, and Rb
pathway deregulation within murine tu-
mor models (9, 10), Hif1a inhibition in a
murine prostate cancer model treated
with mTOR inhibition (16), and k-RAS
deregulation in lung adenocarcinoma (17).

By capitalizing on the statistical
advantage gained by established gene
associations, relatively small individual
differential gene expression can combine
to create strong correlations between a
gene set and a class distinction. This
advantage is demonstrated by Subrama-
nian et al. (1) when GSEA is applied to
determine differential gene expression
between lymphoblastoid cell lines de-
rived from either men or women. Using
gene sets aggregated based on cytogenic

location, Subramanian et al. successfully
identify differential expression of genes
located on the Y chromosome. In addi-
tion, a gene set containing genes known
to escape X inactivation is significantly
enriched in the female cell lines com-
pared with the male cell lines. Thus,
even when the differential expression of
individual genes is likely to be 2-fold or
less (i.e., escape from X inactivation)
and the genes of interest constitute a
small minority of all genes assayed,
GSEA can detect differential expression.

For heterogeneous samples and�or
when there are relatively subtle differ-
ences between sample classes, standard
supervised or unsupervised methods may
fail to detect differential gene expression.
By contributing additional information
(i.e., associations between genes), GSEA
provides investigators with a method that
can reveal biologically meaningful differ-
ential expression when standard methods
fail. In a previously published application
of GSEA (15), the use of aggregated gene
sets identified differential activity of a
gene set for oxidative phosphorylation
despite an average difference in gene ex-
pression of 20% for gene set members
between diabetic and nondiabetic samples.

Subramanian et al. (1) identify differen-
tial activity of gene sets for cellular prolif-
eration and amino acid biosynthesis be-
tween lung tumors with ‘‘good’’ or ‘‘poor’’
outcomes in two independent data sets.
As in the diabetic study, when each gene’s
expression is treated independently during
supervised analysis, no gene is signifi-
cantly differentially expressed between
good and poor outcome lung samples. In
addition, there is remarkably little overlap
between the top ranked genes for the two
data sets (only 12 genes of the top 100
genes with expression correlating to poor
outcome). This lack of overlap, frequently
observed between independent cancer
data sets, is likely due to the cumulative
effects of each group’s approach to sam-
ple collection, tumor dissection, RNA
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isolation, target preparation, microarray
hybridization, and microarray scanning, as
well as sampling differences between two
moderately sized sets of tumors.

GSEA was able to overcome these dif-
ferences and identify gene sets with signif-
icant differential expression in both data
sets. Although the pathways identified
remain to be validated, this observation
suggests that GSEA is less sensitive to
unavoidable technical and sampling differ-
ences between independently collected
samples. This finding raises the additional
possibility that computational approaches
such as GSEA that use aggregated gene
sets may be better suited to apply prelimi-
nary findings across technical platforms,
for example, taking findings based upon
frozen tissue and applying them to find-
ings from paraffin-embedded tissues (one
of the major current challenges for mi-
croarray studies).

Additional examples from the current
article further underscore the potential of
GSEA to interrogate and deconvolute the
disruption of multiple basic cellular signal-
ing pathways occurring during oncogene-
sis. The authors applied GSEA to a previ-
ously published data set of acute
lymphoid leukemia (ALL, n � 24) and
acute myeloid leukemia (AML, n � 24)
using their cytogenetic gene sets and iden-
tified five cytogenetic abnormalities (5q31,
17q23, 13q14, 6q12, and 14q32). With rel-
atively few clinical samples, they were able
to highlight fundamental genetic alter-
ations previously described in hematopoi-
etic malignancies. The authors also used
expression data from the NCI-60 set of
cancer cell lines, GSEA, and their ‘‘lead-
ing edge’’ analysis to determine that the
mitogen-activated protein-kinase signaling
pathway is differentially expressed be-
tween p53 positive and negative cell lines.
In ‘‘leading edge’’ analysis, the genes
shared across the gene sets most strongly
associated with the phenotype are identi-
fied. Because signaling pathways can have
significant overlap with respect to effecter

proteins, ‘‘leading edge’’ analysis has the
potential to identify the most critical sub-
pathway. In aggregate, the associations
between gene sets and clinical or molecu-
lar phenotypes demonstrated in Subrama-
nian et al. (1) underscore the ability of
GSEA to connect gene expression data
with biological insight.

GSEA has evolved from the initial
application in Mootha et al. (15) to the
current detailed reporting of the method-
ology. First, the current iteration of
GSEA normalizes the ES based on the
number of gene members in the data set;
this partially addresses prior criticism (18)
and more readily allows comparison
across gene sets of different sizes. Next,
whereas GSEA initially put equal statisti-
cal weight on each step (i.e., the location
of each gene set member in the ranking
of all genes according to phenotype),
greater weight is now placed on genes
with stronger correlation with the pheno-
type (i.e., genes located near the top or
bottom of the rankings). Finally, they have
revised the measure of significance and
use a calculated false discovery rate
(FDR) that is based upon the distribution
of results during repetitive, random assign-
ments of class designations. Subramanian
et al. (1) report the FDR to be less con-
servative than their preliminary imple-
mentation using family-wise error rate,
a change justified by GSEA’s role as a
hypothesis-generating analytic approach.
Importantly, despite these changes, the
current methods of GSEA reproduce the
earlier findings by Mootha et al. (15).

As is ideal for novel computational
methodologies with high potential impact
on microarray analysis, Subramanian et al.
(1) have created a JAVA-based program
executable using Windows, Macintosh, or
Unix�Linux called GSEA-P. Access to the
software is free, and Subramanian et al.
also provide an inventory of gene sets
called MSigDB. As individual investigators
adopt GSEA, they will be able to immedi-
ately interrogate established data sets us-

ing MSigDB. As independent groups
adopt GSEA, test self-generated gene
sets, and ideally contribute informative
gene sets, MSigDB is likely to evolve into
a valuable, living resource.

GSEA will continue to evolve as it
becomes more widely adopted in the sci-
entific community. GSEA is absolutely
dependent on the quality of gene sets and
determining the genes that best represent
a pathway’s activity is complex. Subrama-
nian et al. (1) have developed gene sets
opportunistically, and the most valid
methods for defining gene sets is likely to
be an area of continued investigation. In
addition, although the specific statistical
weights and measured used by Subrama-
nian et al. to assess the correlation be-
tween the expression of a set of genes and
a sample phenotype represent a valuable
starting point, there will undoubtedly be
additional computational exploration and
evaluation. Finally, if GSEA is going to be
used to assess pathway activity in samples
so that treatment can be targeted (a logi-
cal and potentially powerful application of
this methodology), the methods have to
be refined to allow the scoring of individ-
ual samples.

GSEA uses aggregated gene sets to
identify biological processes present across
phenotypes in microarray data sets and
represents the latest approach to gene
expression analysis. These modular ap-
proaches facilitate a greater understanding
of the underlying biology driving patho-
logical phenotypes, and they promise to
facilitate significant contributions toward
the molecular characterization of human
disease.
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