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The central control of mineral weathering rates on biogeochemical
systems has motivated studies of dissolution for more than 50
years. A complete physical picture that explains widely observed
variations in dissolution behavior is lacking, and some data show
apparent serious inconsistencies that cannot be explained by the
largely empirical kinetic ‘‘laws.’’ Here, we show that mineral
dissolution can, in fact, be understood through the same mecha-
nistic theory of nucleation developed for mineral growth. In
principle, this theory should describe dissolution but has never
been tested. By generalizing nucleation rate equations to include
dissolution, we arrive at a model that predicts how quartz disso-
lution processes change with undersaturation from step retreat, to
defect-driven and homogeneous etch pit formation. This finding
reveals that the ‘‘salt effect,’’ recognized almost 100 years ago,
arises from a crossover in dominant nucleation mechanism to
greatly increase step density. The theory also explains the disso-
lution kinetics of major weathering aluminosilicates, kaolinite and
K-feldspar. In doing so, it provides a sensible origin of discrepancies
reported for the dependence of kaolinite dissolution and growth
rates on saturation state by invoking a temperature-activated
transition in the nucleation process. Although dissolution by nu-
cleation processes was previously unknown for oxides or silicates,
our mechanism-based findings are consistent with recent obser-
vations of dissolution (i.e., demineralization) in biological minerals.
Nucleation theory may be the missing link to unifying mineral
growth and dissolution into a mechanistic and quantitative frame-
work across the continuum of driving force.

silica � kinetics � mineralization

Over long time scales, the geochemistry of earth systems is,
in large part, controlled by the kinetics of silicate mineral

dissolution. Because waters contain a wide variety of solute types
and concentrations, including significant levels of aqueous silica,
there is considerable need to understand the dependence of
silicate mineral dissolution rates on chemical driving force, as
measured by the extent of undersaturation. This need has
motivated intense investigations of both mineral weathering and
the corrosion behavior of silica-based glasses.

Basic thermodynamic principles predict that mineral dissolution
rates should increase with increasing driving force or chemical
potential; however, experimental studies of major silicate minerals
show that this dependence is complex. A further complication is the
so-called ‘‘salt effect’’ reported for quartz, SiO2, whereby the
dissolution rate of this oxide end-member to all silicates is increased
up to 100 times in the presence of the major cationic solutes found
in natural waters (Na�, K�, Ca2�, Mg2�) (1–3). In contrast,
dissolution rates of silicate minerals have only a weak sensitivity to
the introduction of electrolytes (4). To explain these behaviors,
many of the widely used rate models are based on variants of
transition state theory and assume microscopic reversibility (5–7).
Their shortcomings raise the question of whether or not the
mechanistic models developed in the last few decades to so suc-
cessfully explain crystallization can be used to resolve the confusion
surrounding mineral dissolution.

Twenty years ago, a mechanistic model of nucleation-driven
crystal growth was introduced that described growth kinetics in
terms of four primary parameters: temperature T, supersaturation
�, step edge energy �, and step kinetic coefficient � (8, 9). By
examining energy barriers to growth, the theory considered the
probability of growth at dislocation defects vs. growth by nucleation
of two-dimensional (2D) adatom islands either at impurity defects
or homogeneously across the surface, as illustrated in Scheme 1.

This same theory also should apply to dissolution by analogous
processes that also assume rates are controlled through T, �, �, and
�, but this hypothesis has never been tested. Application of this
formalism to dissolution assumes that, in analogy to growth, it may
occur by activating ‘‘corrosion’’ either at dislocation defects or by
nucleation of 2D vacancy islands at impurities or homogeneous
sites, as illustrated in Scheme 2.

Indeed, by using this approach, we can quantitatively explain the
dissolution kinetics of quartz and of the major silicate weathering
minerals, feldspar (KAlSi3O8) and kaolinite [Al2Si2O5(OH)4]. We
also show that the principle of detailed balancing (5) is only
applicable to quartz dissolution at very near to equilibrium condi-
tions where corrosion occurs by simple step edge retreat.

Methods
Dissolution Experiments. Dissolution- rate experiments used the
300- to 425-�m fraction of pure quartz sand (Destin, FL). The
material was pretreated with 30% H2O2 for 24 h, then alternately
washed with 10% HNO3 and distilled deionized water. Specific
surface area of the final material was determined in triplicate
(Micromeritics, Norcross, GA). Mixed flow-through reactors con-
structed of commercially pure titanium were used to measure the
rate of silica production at 200°C for the overall reaction

SiO2 � 2H2O � H4SiO4
o, [1]

Abbreviation: AFM, atomic force microscopy.
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Scheme 1.

Scheme 2.
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at steady-state conditions using established methods (3). The
solutions were prepared to specific values of undersaturation by
adding carefully characterized levels of the monomeric silicic acid,
H4SiO4. Some silica solutions also contained reagent-grade salts
(Aldrich) using 0.05 M NaCl or 0.0167 M CaCl2�2H2O such that
total ionic strength was constant at 0.05 M. All input solutions had
circumneutral pH and calculated in situ pH (pHT) of �5.7. The
degree of undersaturation, �, is defined by

� � ln� � ln�C�Ce� , [2]

where C and Ce are the measured and equilibrium concentrations
of H4SiO4

o. We use concentrations instead of activities because H2O
and H4SiO4

o have activity coefficients very near unity for the
conditions of our experiments. A value of Ce � 10�2.4 M SiO2 (236
ppm SiO2), obtained from our dissolution experiments, is used to
calculate undersaturation, �.

Atomic Force Microscopy (AFM) Imaging. In parallel experiments,
natural (100) prismatic surfaces of euhedral quartz crystals
(Herkimer, NY) were exposed to the solution conditions provided
in Table 1. The rationale for these choices will become clear later.

The surfaces were prepared as thin slices taken from the natural
crystal surface and restrained in a hydrothermal mixed flow-
through reactor using titanium screen. Durations of each treatment
were determined by using measured dissolution rates to calculate
the amount of reaction time necessary to give equal silica produc-
tion (0.010 mol�m�2) for each treatment. Thus, etching times ranged
from 28 days to 4 h. Resulting surface morphologies were examined
by AFM under a drop of water at ambient conditions.

Results
Kinetic measurements of quartz dissolution show a complex de-
pendence on saturation state (Fig. 1a). At the low driving force of
near-equilibrium conditions, dissolution rates are inversely corre-
lated with � and the rate-enhancing effect of electrolytes is small
(1–4�, Fig. 1b). This result indicates that salts have relatively little
effect on quartz dissolution at the near-equilibrium conditions
commonly found in geothermal systems with large rock�water
ratios or long contact times. When the driving force to reaction is
higher (� 	 0.70) rates acquire a nonlinear dependence on
undersaturation. In the absence of electrolytes, quartz exhibits the
characteristic ‘‘dissolution plateau’’ also reported for gibbsite and
kaolinite (6, 10) (Fig. 1a). In contrast, rates measured in solutions
that also contain 0.05 M NaCl or 0.0167 M CaCl2 become up to 100
times faster with decreasing �. This salt-promoted rate enhance-
ment at low �, the so-called salt effect, is unique to quartz (3), and
Fig. 1a Inset shows that this effect is highly dependent on �.

Discussion
A mechanism-based explanation for the kinetic behavior in Fig. 1a
is found in the dislocation and 2D nucleation theories developed for
crystal growth (8, 9, 11). A brief description of our application to
dissolution is as follows. The rate at which a crystal dissolves is
controlled by the density of steps on the surface. These steps can be
preexisting on the initial crystal surface or at the crystal edges,
emerge from dislocation sources, or be created by nucleating new
vacancy islands. Whichever source creates the greatest step density
will dominate the dissolution process. Vacancy islands are initiated

by removal of molecules from the otherwise perfect crystal surface.
These pits will, on average, grow provided they exceed a critical size
determined by the Gibbs–Thomson effect, a well-known thermo-
dynamic principle. At this critical size, the free energy change goes
through a maximum that defines an energy barrier to island
formation. The height of the free energy barrier decreases with
increasing undersaturation and increases with increasing interfacial
energy of the newly created surface (i.e., the edge of the island).

At sufficiently low undersaturation, the free energy barrier
becomes too high for vacancy island nucleation to occur on a time
scale that is competitive with the other processes. Dislocations,
although few in number, then provide the dominant source of steps.
The step density of etch pits at dislocations also depends on
interfacial energy and undersaturation. At very low undersatura-
tions, step density drops below the natural roughness of the crystal
surface including the crystal edges, which are always a source of
steps because they are rounded due to free energy minimization.
Dissolution then is dominated by retreat of these preexisting steps.

To test these models for the dissolution of minerals, we
generalize the original growth equations so that they describe
both growth and dissolution for a wide range of saturations.

Fig. 1. Measured rates of quartz dissolution vs. saturation state (�) show the
dependence on driving force and the presence or absence of simple electro-
lyte salts. Calculated experimental errors indicate 1SD of the mean estimate
and are illustrated for values larger than the symbol diameter. (a) Logarithm
of rate vs. saturation state in water (blue circles), 0.0167 M CaCl2 (red dia-
monds), and 0.05 M NaCl (green triangles). Numbers correspond to conditions
that produced the surface structures in Fig. 2, and gray zones show under-
saturation range where transitions occur in the dominant dissolution mech-
anism. Inset uses a linear ordinate to better illustrate the exponential depen-
dence of rate on driving force when salts are introduced. (b) Expanded view
of rate dependence on � shows the linear dependence on saturation at
near-equilibrium conditions. This region is where the widely accepted first-
order rate dependence such as Eq. 8 applies. Eq. 8 is fit to the data by forcing
rate to zero at � � 1.0 as denoted by open symbols.

Table 1. Treatment conditions for (100) quartz surfaces

Number Solution � �

➀ No electrolyte 0.10 �2.3
➁ 0.0167 M CaCl2 0.10 �2.3
➂ 0.0167 M CaCl2 0.65 �0.4
➃ 0.0167 M CaCl2 0.90 �0.1
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Dissolution at Dislocation. Regardless of the step source, the surface
normal growth or retreat rate R of a crystal can be expressed as

R �
h�

�
, [3]

where h � step height, � � step spacing, and � � speed of a moving
step. Both R and v are negative for dissolution. Similarly, regardless
of the step source, the � in Eq. 3 depends on solution concentration
according to the relation (8, 12)

� � 	��C 
 Ce� � 	�Ce�� 
 1� , [4]

where � is the step kinetic coefficient (cm�s�1). Because �
depends only on step direction and not the source of the steps,
the determining factor for which step source dominates is the
step spacing, �.

Classical crystal growth theory states that there is a critical
negatively free energy, 
GCrit, beyond which the line defects would
expand continuously and become an etch pit (13–16). This relation
is given by


GCrit
d � �

2�2�2	

�b2 , [5]

where � is the interfacial free energy, 	 is the molecular volume of
a molecule in the crystal, � is the bulk shear modulus, and b is a
Burgers vector. This critical value represents the activation energy
barrier for the formation of an etch pit at a dislocation. The height
of the activation energy barrier depends on the nature of the crystal
(e.g., interfacial free energy and its Burgers vector) and is inde-
pendent of solution undersaturation. Note that for an edge dislo-
cation in quartz, the equation still applies because Poisson’s ratio for
quartz is small (0.077) (15).

When dissolution occurs at a dislocation, � is related to the
critical size rc and the perimeter of the dislocation source P by

� �
8rc � P

m
with rc �

	�

kT �� � , [6]

where m � number of elementary steps, k � Boltzmann constant,
T � temperature, and � � interfacial free energy associated with
the step edge created at a pit, henceforth called ‘‘step edge energy.’’
By substituting Eqs. 4 and 6 into Eq. 3 and rewriting in the form of
log��R� vs. � to conform to the conventional method of presenting
mineral dissolution data (as in Fig. 1a), we obtain the surface
normal dissolution rate at a dislocation Rd as a function of under-
saturation

log��Rd� � log� A1�1 
 �� � ln� �
1 � A2� ln� � � , A1 �

mh�CekT
8�

,

A2 �
PkT
8	�

. [7]

Eq. 7 has properties that show the physical basis of the dissolution
plateau and also shows the link to macroscopic rate laws. This
function diverges negatively as � approaches 1, rises rapidly as �
decreases, transitions to a plateau region of low slope near � �
exp(�1�A2), and reaches a finite value as � goes to zero (note that
plotting the data in this form accentuates the plateau). This result
is qualitatively in agreement with quartz dissolution rates in pure
H2O. There are two additional effects that need to be considered.
First, at very small �, step spacing becomes so close that the
relationship in Eq. 4 is no longer valid because overlap in the
diffusion fields for adjacent steps weakens the dependence on �
(17). This effect accentuates the dissolution plateau by further
reducing the slope. The second effect becomes important as �

approaches 1 where step spacing at dislocation sources, which varies
as 1��, becomes larger than the average step spacing of the initial
crystal surface and�or the steps retreating from the crystal’s edges,
�0. In addition, there is a critical energy barrier to etch pit
formation. In this case, the step spacing also is given by �0.
Combining Eqs. 3 and 4, the dissolution rate becomes

�R � k��1 
 �� , k� �
	�hCe

�
. [8]

This equation is of the form used to describe macroscopic disso-
lution rate data within standard transition state theory (5, 7) for the
kinetics of a pseudo-first-order reaction. Here, we have related the
macroscopic rate coefficient k� to the microscopic kinetic coeffi-
cient � of elementary step motion. As Fig. 1b shows, the near-
equilibrium dissolution data do indeed exhibit a linear dependence
on �. As a result, the electrolyte effect on relative dissolution rate
becomes constant, whereas the absolute differences diminish to
zero as the two curves converge to equilibrium (� � 1). From a fit
to the data we estimate k� to be 1.1 � 0.2 � 10�8 and 5.1 � 1.2 �
10�8 mol�m�2�s�1 for dissolution in the absence and presence of
electrolytes, respectively.

Independent evidence for a transition from step retreat to
dislocation-controlled dissolution at these conditions is found in the
AFM images of the (100) quartz surfaces. Samples treated in
solutions without salts at high driving force (� � 0.1) reveal
irregularly spaced etch pits having large dimensions of �4,000 �
10,000 nm (Fig. 2, ① ). The sloping sides of these features merge with
pointed bottoms, thus indicating that they arise from dislocation
defects in the mineral (18). The prevalence of these etch structures
concurs with earlier studies citing the importance of dislocation
defects in controlling silicate dissolution at small values of � (15).

The complementary AFM images of quartz surfaces exposed to
very near-equilibrium conditions (� � 0.90) in CaCl2 solutions
confirm that dissolution occurs through a simple step retreat
process by showing surfaces comprised of multiple straight-edged
steps without evidence of etch pits (Fig. 2, ④ ). Note that these
experiments purposefully used CaCl2 solutions, which, as we show
below, increase rates and probabilities of pit formation. We infer,
therefore, that dissolution in solutions without electrolytes in these
near-equilibrium solutions also proceeds by simple step retreat. At
conditions where the driving force needed to initiate dissolution at
dislocation defects is exceeded, our AFM observations reinforce the
conclusion that total rate is governed by density of step edges.

Dissolution by Nucleation of Vacancy Islands. To explain the differ-
ences in the data obtained with and without salts in Fig. 1a, we now
consider dissolution by etch pit nucleation at vacancy islands. The
general expression for dissolution or growth by nucleation processes
is based on the assumption that the free energy barrier to initiating
a vacancy or adatom island, respectively, from a perfect surface,

GCrit

n , is given by (9)


GCrit
n � �

��2	h
kT ln �

. [9]

Eq. 9 shows that the barrier to formation of vacancy islands by 2D
nucleation depends on solution undersaturation, in contrast to the
energy barrier for etch pits formed at dislocations (Eq. 5). Hence,
as the undersaturation increases, the energy barrier to nucleation
must decrease.

When growth or dissolution occurs at a smooth face through 2D
nucleation, the normal growth or dissolution rate (Rn) of the face
due to formation of 2D nuclei at a rate of J is expressed as (8, 18)

�Rn� � h�2/3J1/3, [10]

where the steady-state nucleation rate, J, is given by (9)
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J � ���1/2nsahCe�exp��
��2	h
�kT�2 � 1

�
� � , [11]

where a is the lattice spacing and ns is the density of nucleation sites,
which in turn is proportional to exp(�Eb�kT) where Eb is the
kinetic barrier to etch pit formation associated with removal of
atoms from the surface layer. Note that Eq. 11 shows that the
nucleation process takes over because of the strong exponential
dependence of rate on saturation state in contrast to the weak
dependence that comes from Eq. 4. By substituting Eqs. 4 and 11
into Eq. 10, we rewrite Eq. 10 into a form that is linear in 1��

ln� �Rn�
�� 
 1�2/3�� �1/6� � ln�h�Ce�	2hn sa�1/3� 


��2	h
3�kT�2� 1

�
� .

[12a]

To derive an equivalent expression for dissolution at dislocations
we rewrite Eq. 7

ln� �Rd�
�� 
 1�2/3�� �1/6�

� ln� 	�Cemh
P � � ln� �� 
 1�1/3� 1

�
� 1/6�


 ln� 1 � 8� 	�

PkT� � 1
�
� � . [12b]

Although this expression is no longer linear in 1��, it allows us to
make a direct comparison with Eq. 12a. The slopes of Eqs. 12a and
12b yield the step edge free energy, �, that corresponds to disso-
lution or growth by nucleation and dislocation processes, respec-
tively. However, these energies are not those of the perfect crystal
surface. Rather they are associated with the region of the crystal in
the vicinity of the dislocation and�or impurity. Consequently, they
are expected to be far less than that of the perfect crystal surface.

Applying Eq. 12a to the dissolution rate measurements collected
in CaCl2 and NaCl solutions results in two linear trends (Fig. 3 b and
c). A similar result also was documented for the dependence of
growth on supersaturation in both inorganic and macromolecular
systems (9, 19, 20). The region of steep slope found for growth at
far-from-equilibrium conditions was postulated to correspond to
the homogenous nucleation of adatom islands, whereas the region
of shallow slope corresponds to islands nucleated at defects such as
impurity atoms (9, 19, 20). Images ② and ③ in Fig. 2 confirm that
dissolution features show the analogous nucleation of vacancy
islands, and comparison with image ① in Fig. 2 shows that these
structures contrast sharply with those produced in the absence of
electrolytes; instead of exhibiting large, widely spaced, pointed-
bottom pits, the (100) surfaces treated with solutions at � � 0.1 that
also contained CaCl2 display a very high density of small etch pits
with typical sizes of 250 � 600 nm.

On surfaces etched under conditions corresponding to the region
of steeper slope in Fig. 3b, the small, uniform size and distribution
of pits across the surface indicate that they are the result of
homogeneous 2D nucleation of vacancy islands (Fig. 2, ② ). As such,
they are continuously regenerated as the surface retreats. Com-
parisons of images ① and ② in Fig. 2 show that the physical basis
for the salt effect arises through a transition from dissolution
controlled by the population of dislocation defects to 2D nucleation
of vacancy islands. As shown in Eqs. 11 and 12a, the data do not
allow us to determine whether the source of this transition is from
a reduction in the step edge free energy associated with the free
energy barrier to stabilizing a pit or a reduction in the kinetic
barrier, Eb, to removing atoms from the surface to initiate a pit,
which manifests itself in ns. Moreover, this physical model provides
no information about the chemical source of either reduction. The
calculated free energy barriers to dissolution by the 2D process are
61 � 6 and 79 � 14 mJ�m2 for NaCl and CaCl2 solutions,
respectively (see Table 2, which is published as supporting infor-
mation on the PNAS web site).

The nucleation model also fits rates measured at the intermediate
driving force to exhibit a linear trend of lower slope (Fig. 3 b and
c). This result corresponds to the growth regime in which Malkin
and others (9, 19, 20) postulated that nucleation occurred prefer-
entially at impurity defects. In this ‘‘defect-assisted’’ model, impu-
rities induce localized strain to give lower free energy barriers than
for 2D nucleation at a perfect surface. This explanation for growth
is consistent with our dissolution data. The surface morphology, as
seen in image ③ in Fig. 2 at � � 0.65, shows the dominance of
widely spaced, larger etch pits (�400 � 1,300 nm) surrounded by
smaller etch pits. The former are the pits that nucleate at defect
sites. The latter are the homogenously nucleating pits that grow in
number until they completely dominate at high undersaturation
(Fig. 2, ② ). Fitting rates measured in CaCl2 and NaCl solutions for
conditions of region ③ with Eq. 12a indeed leads to a linear
dependence and lower step edge energies. Our estimates of step
edge energy for the CaCl2 and NaCl solutions give values of 32 �
10 and 18 � 8 mJ�m2, respectively, for region ③ .

To extract the step edge energy for dislocation sources, Eq. 12b
is fitted to the rate measurements obtained for solutions with � 	
0.85 in solutions without electrolytes (region ① of Fig. 1a). The fit
to the data (Fig. 3a) yields � values of �1 � 10�6 cm�s and � �
16.2 � 5 mJ�m�2. These estimates are specific to quartz at 200°C
without electrolytes where the chemical potential conditions favor
dissolution at dislocation defects. As one expects from the theory,

Fig. 2. AFM images of representative (100) surfaces of quartz exposed to
four different solution chemistries for equivalent extents of reaction show the
different dissolution processes across driving force and solution chemistry.
(Scale bar: 1 �m in all images.) ➀ When � � 0.10 in H2O, surfaces are
dominated by large etch pits with sloping sides that converge at dislocation
sources. Pits are separated by relatively flat regions on the surface. ➁ For
conditions where � � 0.10 and the solution contains 0.0167 M CaCl2, the
surface is covered with a high density of small pits with flat bottoms and with
flanks that are 25% steeper than those measured for pits in ➀ . ➂ At the
intermediate driving force of � � 0.65 in a salt solution of 0.0167 M CaCl2, a
mixture of larger and smaller flat bottom pits form across the surface. ➃ At a
low driving force of � � 0.90 in 0.0167 M CaCl2, the surface shows only
straight-edged steps with no evidence of pitting.
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this direct estimate of quartz step edge energy is quite low com-
pared with the macroscopic interfacial free energy estimated as 120
mJ�m�2 for 25°C (21) and 280 mJ�m�2 at 300°C (15). More
significantly, it is also substantially lower than that for nucleation of
vacancy islands either at homogenous or impurity sites. However,
once these latter barriers are overcome, the measured rates are
faster because the total number of pits, and therefore the total
amount of step edge, or roughness, is far greater.

Nucleation Theory also Explains Silicate Dissolution Kinetics. Our
success in applying nucleation rate theory to quartz dissolution
leads us to test dissolution-rate data for silicate minerals. The
complex rate data reported for the major rock-forming silicate,
K-feldspar (22), appears to also obey nucleation rate theory (Fig.

3f) through the same processes that govern quartz dissolution in salt
solutions (compare Fig. 3 b and c). The evidence suggests that, for
decreasing driving force, the dominant dissolution process for this
aluminosilicate also undergoes a transition from the homogeneous
nucleation of vacancy islands to nucleation at impurity sites with
step edge energies of 30 � 4 and 8 � 4, respectively, for the
conditions of the experiments.

We also find that nucleation theory reconciles the origin of
different dependencies of kaolinite dissolution rates on driving
force. To conduct this analysis, we use published experimental
dissolution rates for kaolinite dissolution and growth measured at
80°C and 150°C (6, 23). By fitting these two data sets to the
nucleation rate model, we show that the 150°C data fit the rate
model for dissolution by 2D nucleation homogeneously and at

Fig. 3. Mechanistic models describe the dependence of dissolution rate on the driving force of undersaturation for measured rates of quartz and previously
reported rates of aluminosilicate dissolution. (a) Dislocation model (Eq. 12b) predicts the behavior of quartz dissolution rate in the absence of electrolytes. (b)
In contrast, dependence of quartz dissolution rate on undersaturation in 0.0167 M CaCl2 solutions is predicted by the nucleation model (Eq. 12a). (c) Again,
nucleation model fits quartz dissolution behavior in 0.05 M NaCl. (d) The lower temperature measurements of kaolinite dissolution rate at 80°C show a
dependence on driving force that is predicted by the dislocation model. (e) In contrast, the markedly different dependence of kaolinite dissolution rate on driving
force at 150°C is predicted by the nucleation model. The nucleation model describes data reported at acidic and circumneutral pH. ( f ) Reported rates of K-feldspar
dissolution measured at 150°C and pH 9 also exhibit a dependence on undersaturation that is predicted by the nucleation model.

Fig. 4. Published kinetic data for kaolinite dissolution and growth give a test of the mechanistic models for both growth and dissolution. The theories predict
the distinct differences in the dependence of dissolution and growth rates on undersaturation and supersaturation, respectively, that are reported. (a) The
dislocation model, Eq. 12b, describes the dependence of reaction rates of growth and dissolution on positive and negative driving force, respectively, at 80°C.
(b) Because of the exponential dependence of nucleation rate, J, on temperature, Eq. 11, a transition to dissolution and growth rates by surface nucleation
processes occurs to give rate behavior described by the 2D nucleation model, Eq. 12a.
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impurity defects to give surface energies of 23 � 2 and 4 � 2 mJ�m2

at high and low driving force, respectively (Fig. 3e). In contrast, the
rates measured at 80°C exhibit behavior predicted by the dislocation
defect model (Fig. 3d). For this lower-temperature condition, we
estimate � � 2.6 � 0.4 mJ�m2 and � � �2 � 10�8 cm�s.
Comparisons of these values show that the lower interfacial energy
measured for the dislocation-driven dissolution is consistent with
the theoretical model, but these differences alone do not account
for the dramatic difference in behavior at these two temperatures.
The true source of this difference is easy to understand from Eqs.
7 and 12a. Rd is weaker than linear in T, whereas Rn has an
exponential dependence. At low T, Rd dominates, but as T in-
creases, Rn quickly becomes greater. We conclude, therefore, that
these kaolinite data sets are not at all inconsistent; rather, they
exhibit a predictable thermally activated transition in the dominant
dissolution mechanism.

Several insights to kinetic controls on mineral dissolution arise
from our analyses of these aluminosilicates. First, the silicate
minerals we tested are able to undergo dissolution by 2D nucleation
at hydrothermal temperatures in pure solutions at moderate values
of �, whereas quartz requires the presence of salts and far-from-
equilibrium conditions to induce dissolution by this process. This
difference can be understood from the lower value of � for silicate
minerals, which allows dissolution by 2D nucleation without salts:
no further change in mechanism occurs when salts are added. This
finding explains why rates of silicate dissolution are not enhanced
(4) when electrolytes are introduced. Second, the three mineral
systems that we tested indicate that 2D nucleation dominates rates
measured at higher temperatures of 150–200°C. In contrast, the
80°C data for kaolinite is predicted by the dislocation defect model.
This sharp temperature-dependent change in mechanism suggests
that the practice of extrapolating high temperature data to the
ambient temperatures of earth surface environments may greatly
overpredict rates of dissolution under circumstances where the
extrapolation comes from rates driven by 2D nucleation. The lesson
from this analysis is that one needs to know the boundaries between
the various dissolution regimes before extrapolating measured
kinetics to different temperatures. Third, we show that pH, which
has a strong control on silicate dissolution rate, does not alter this
behavior. Data reported for kaolinite at both pH 2 and 7.8 show that
temperature drives the dependence of rate on saturation state.

Finally, we test the ability of the general forms of this theory given
by Eqs. 12a and 12b to predict the dependence of kaolinite
dissolution and growth on saturation state and temperature. By
using reported rates for kaolinite at 80°C (6), Fig. 4a shows that
dissolution and growth obey Eq. 12b. However, rates of growth and
dissolution at 150°C (23) appear to be dominated by 2D and
impurity-assisted nucleation processes at large and small excursions
from equilibrium, respectively (Fig. 4b), according to Eq. 12a.
Application of these relations again shows that, although the values
of the material-dependent parameters �, �, and Eb will differ, the
surface processes that hold for growth are directly analogous to
those active during dissolution.

Broad Implications for Other Families of Crystalline Materials. Recent
observations reported in the literature suggest that the nucleation
model presented in this work also may predict the dissolution rates
of the sparingly soluble salts. This finding hints at the possibility that
the mechanistic model also will predict the rapid dissolution or
‘‘demineralization’’ of biological materials under some conditions.
For example, brushite (CaHPO4�2H2O) demineralization results in
‘‘polypit’’ formation on the surface (24, 25). Similarly, a study of
barite (BaSO4) dissolution at high ionic strength showed 2D
nucleation features (26). More recently, nanoscale observations of
calcite (CaCO3) dissolution across driving force found that surfaces
undergo the same transitions in ‘‘dissolution modes’’ that change
from retreat of steps, to opening and dissolution on dislocation etch
pits, to the formation of 2D and defect-assisted nuclei (27). Al-
though qualitative, the observations in these studies suggest that, as
would be explained by the model, dissolution of sparingly soluble
salts can be controlled by nucleation processes. This result is
predicted with the mechanistic model because the relatively lower
energy barriers to dissolution of these salts would allow a transition
by 2D nucleation without the thermal activation required by the
covalently bonded quartz and silicates.

The successes of classical growth theory in explaining the disso-
lution kinetics of minerals with properties spanning the covalent to
ionic chemistries suggest it may become possible to predict the
dependence of dissolution and corrosion on undersaturation and
temperature for a large variety of minerals and crystalline materials.
However, a number of questions are still unanswered. First, during
dissolution, step splitting and retreat from crystal edges leads to the
rounding of facet edges, but it is unclear what the contribution of
this process is to the overall dissolution rate. Given sufficient time,
it seems that these steps must retreat across the full diameter of a
crystallite, but no evidence for these steps is seen in Fig. 2. Second,
the step density and step speed will always determine the dissolu-
tion rate. Yet comparison of step densities for dislocation pits and
etch pits in images ① and ② of Fig. 2, respectively, does not show
an increase of the magnitude expected from the rate measurements.
Moreover, the flat areas between dissolution pits in both cases show
that, even at steady state, step retreat near the top of the pits must
exceed that within the pits (28). Finally, although the model can be
used to predict the dependence of rates on saturation state and
temperature, without independent knowledge of materials param-
eters such as �, it cannot predict absolute dissolution rates. More-
over these parameters are likely to be largely unknown in natural
systems. Consequently, despite the unifying and intuitive view of
growth and dissolution provided by this model, there is much to be
done to develop and test its concepts.
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