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Acute myeloid leukemia (AML) is a heterogeneous group of ge-
netically defined diseases. Their classification is important with
regard to prognosis and treatment. We performed microarray
analyses for gene expression profiling on bone marrow samples of
37 patients with newly diagnosed AML. All cases had either of the
distinct subtypes AML M2 with t(8;21), AML M3 or M3v with
t(15;17), or AML M4eo with inv(16). Diagnosis was established by
cytomorphology, cytogenetics, fluorescence in situ hybridization,
and reverse transcriptase–PCR in every sample. By using two
different strategies for microarray data analyses, this study re-
vealed a unique correlation between AML-specific cytogenetic
aberrations and gene expression profiles.

Acute myeloid leukemia (AML) is a heterogeneous group of
diseases with respect to biology and clinical course. Since

the introduction of the French-American-British (FAB) classi-
fication in 1976, diagnosis and classification have been based on
cytomorphology and cytochemistry (1). As other techniques like
immunophenotyping, cytogenetics, and molecular genetics con-
tributed to the definition of AML subtypes the FAB classifica-
tion was updated. In 1999 the World Health Organization
classification for tumors of hematopoietic and lymphoid tissues
was proposed. In an attempt to define biologically homogeneous
entities that have clinical relevance, morphologic, immunophe-
notypic, genetic, and clinical features were incorporated (2, 3).

For optimal treatment approaches both a precise diagnosis and
prognostic parameters that determine response to therapy and
survival are needed. So far, the karyotype of the AML blasts is the
most important independent prognostic factor. A favorable out-
come under currently used treatment regimens with cure rates
from 50% to 85% was observed in several studies in patients with
(i) t(8;21)(q22;q22) occurring mostly in FAB subtype AML M2,
(ii) inv(16)(p13q22) associated with AML M4eo, and
(iii) t(15;17)(q22;q11–12) associated with AML M3 and AML M3v
(4–6). In contrast, chromosome aberrations with an unfavorable
clinical course are �5�del(5q), �7�del(7q), inv(3)�t(3;3), and
complex aberrant karyotypes with cure rates of less than 10% (7, 8).
The remainder of AML patients are assigned to a prognostically
intermediate group. This latter group is very heterogeneous be-
cause it includes patients with a normal karyotype as well as those
with rare chromosome aberrations and yet-unknown prognostic
impact.

Besides their prognostic impact genetic aberrations are involved
in the pathogenesis of leukemia. Although for unbalanced cytoge-
netic aberrations the heterogeneous pathogenetic mechanisms
have not yet conclusively been determined, several studies provide
strong evidence for the central pathogenetic role of leukemia-
specific fusion genes that are generated by the above-mentioned
balanced abnormalities (9–12). Therefore it can be postulated that
AML with balanced abnormalities most probably display a homo-

geneous gene expression profile and thus are promising candidates
for microarray analyses.

In a pivotal study, gene expression profiles were analyzed in bone
marrow samples of 27 acute lymphoblastic leukemia (ALL) and 11
AML patients. A set of 50 genes of 6,817 analyzed genes was
sufficient to discriminate ALL and AML. By leave-one-out cross-
validation it was possible to correctly classify 36 of 38 acute
leukemia cases. A class predictor could automatically determine
new leukemia cases out of an independent test set as belonging to
the myeloid or the lymphoid lineage. Thus, these results demon-
strated the possibility of cancer classification based on gene expres-
sion profiling (13). In a further approach comparing AML with
trisomy 8 and AML with normal karyotype expression profiling
revealed fundamental biological differences in AML with isolated
trisomy 8 and normal cytogenetics (14). More recently, ALL with
translocations involving the MLL gene could be separated from
ALL cases without MLL translocations and from cases with AML
by gene expression profiling (15).

The aim of our investigation was to answer the question of
whether a leukemia-specific genotype is associated with a distinct
gene expression profile. Therefore, we analyzed three distinct
genetic subtypes of AML: t(8;21)(q22;q22), inv(16)(p13q22), and
t(15;17)(q22;q12), which lead to subtype-specific fusion genes
AML1-ETO, CBFB-MYH11, and PML-RARA, respectively. They
are specifically associated with four distinct morphological subtypes
according to the FAB classification: AML M2, AML M4eo, AML
M3, and AML M3v (16–18). We performed microarray analyses on
a cohort of leukemia samples (n � 37) and applied several
methodologies to evaluate genes that allowed an assignment to the
corresponding type of cytogenetic aberration for classification. We
have shown that AML-specific cytogenetic aberrations can be
correlated with corresponding gene expression profiles and vice
versa.

Methods
Selection and Characterization of Leukemia Samples. We selected
bone marrow samples from 37 AML patients representing four
morphological and three underlying cytogenetic subgroups. All
samples were newly diagnosed de novo AML and were character-
ized by cytomorphology, cytogenetics, fluorescence in situ hybrid-
ization, and molecular genetics using standard procedures (1, 3,
18–24). Samples used for gene expression analyses had been lysed
immediately, frozen, and stored at �80°C from 1 to 34 months. The
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targets for GeneChip analyses were prepared according to the
current Expression Analysis Technical Manual (Affymetrix, Santa
Clara, CA). Detailed procedures are described in additional
Methods, which are published as supporting information on the
PNAS web site, www.pnas.org.

Class Separation by Principal Component Analysis. Potential clusters
corresponding to the genetic subgroups were visualized with a
two-step approach. The data were scaled from each array to a target
intensity value of 50 (Affymetrix MICROARRAY SUITE 4.0.1) to be
able to perform interarray comparisons. All data were permutated
100 cycles by using the multiclass response parameter of the
Significance Analysis of Microarrays algorithm (SAM) (25)
(http:��www-stat.stanford.edu��tibs�SAM�index.html). The total
set of 12,600 genes was reduced to the significant differentially
expressed genes. In a second step, the reduced set of genes was
prepared for principal component analysis and analyzed with
J-EXPRESS (26) (http:��www.molmine.com�). For visualization in a
two-dimensional plot we chose the first two principal components
as they captured most of the variation in the original data set.

Class Prediction by Weighted Voting. We adapted a previously
described method to reduce the number of candidate genes that
could distinguish between the three different cytogenetic AML
subgroups (13). Briefly, to avoid division by zero or negative
numbers as occurs because of the expression algorithm (Affymetrix
MICROARRAY SUITE 4.0.1) we set all average fluorescence intensities
of 1 or less to 1. Then, gene expression levels were log-transformed.
Performing pairwise comparisons (A vs. B), for each gene g P(g,c)
values and votes [defined by: P(g,c) � (m1(g) � m2(g))�(s1(g) �
s2(g))] were calculated based on mean expression levels (m) and
standard deviations (s) in the respective cytogenetic subgroup.
Subsequently, votes were summed and prediction strength values
reflected the margin of victory in the direction of either cytogenetic
group A or B of the pairwise comparison. Prediction strength values
range between 0 and 1, values �0.45 demonstrate significance
(according to the permutation test). The relevance of selected genes
was assessed by performing leave-one-out cross-validation. Only
those genes that were contained in all cross-validation classifiers
were considered important. To determine a random association
between genes we performed a permutation test (100 cycles).
Because the number of informative genes, which are required to
discriminate between samples, is unknown, we applied this method
for different numbers of informative genes (range: 2 to 200). The
minimal set of genes that provided optimal classification accuracy
together with the highest prediction strength was selected to avoid
overfitting. To visualize the identified genes and check their suit-
ability for class separation a hierarchical cluster analysis was per-
formed by using J-EXPRESS (26) (cluster method: average linkage;
distance metric: euclidean). The accuracy of this class prediction
model was validated on an independent test set of five cases of AML
not fulfilling the cRNA high-quality criterion.

Multiple-Tree Classifier. As basic units in this classifier, classification
trees are used (27–29). The optimal number of trees has been
determined to be 15 (data not shown). Class votes of these trees are
aggregated by a vote-by-majority rule. The classifier was fed with
gene expression intensity values from a set of 973 genes that had
been chosen based on their r statistic:

r �
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��i � �� �

�
i � 1

k

�i
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where �i refers to the class averages, �� to the overall average, �i,
to the within-class standard deviation, and summation is carried
out over all k classes. The threshold was set to r � 0.75.
Classification trees were constructed as follows: tree building
was performed while restricting trees to contain no more than
n-1 nodes to discriminate between n classes. The C5.0 algorithm
was used (28). The variables (gene expression intensities) used
for tree construction were eliminated from the data set, and a
new tree was calculated based on the truncated data set. This
procedure was iterated until the predetermined number of trees
had been reached. The accuracy of the multiple-tree classifier
was estimated by 10-fold cross-validation (30) and on an inde-
pendent test set of data from five bone marrow aspirates, where
the quality of the corresponding cRNA preparation was slightly
lower than the high-quality standards required for the training
set.

Results
Characterization of Leukemia Samples. We investigated 37 AML
cases representing three defined cytogenetic aberrations corre-
sponding to four FAB subtypes: t(8;21)(q22;q22)�AML M2 (n �
9), t(15;17)(q22;q12)�AML M3 or AML M3v (n � 10, n � 8), and
inv(16)(p13q22)�AML M4eo (n � 10). All cases were character-
ized by cytomorphology, cytogenetics, fluorescence in situ hybrid-
ization, and reverse transcription–PCR (see Fig. 4, which is pub-
lished as supporting information on the PNAS web site). All cases
with AML and t(8;21) had AML M2, all with AML and inv(16) had
AML M4eo, 10 cases with AML and t(15;17) had AML M3, and
eight cases with AML and t(15;17) had AML M3v. All patients
showed these balanced abnormalities as the sole karyotype change.
Using fluorescence in situ hybridization analysis, more than 65% of
cells demonstrated the specific signal constellation. The respective
fusion transcripts were detected by reverse transcription–PCR in all
samples. The median age of all patients was 53 years (range, 19–82
years; male�female � 15:22) and did not differ between the
respective groups. AML subtypes M3 and M3v both carry the same
chromosomal aberration but differ in morphological aspects like
nuclear configuration, granulation, and clinical aspects like white
blood cell count. The median white blood cell count was 20,000��l
(range, 800–168,000��l) and was strikingly lower in patients with
AML M3 as compared with all other patients (median, 6,200 vs.
36,500��l, P � 0.0002).

Microarray Analyses. The gene expression profiles of 37 AML
samples were evaluated. Thirty-two hybridization cocktails dem-
onstrated high-quality cRNA characteristics (Test3 probe arrays:
3��5� ratio of glyceraldehyde-3-phosphate dehydrogenase probe
sets �3.0) and were selected for building class prediction models:
t(8;21)�AML M2 (n � 7), t(15;17)�AML M3 or M3v (n � 9, n �
7), and inv(16)�AML M4eo (n � 9). Five cases were primarily
excluded (3��5� ratios ranging between 3.9 and 5.4) and were used
for subsequent validations of the class prediction models: t(8;21)�
AML M2 (n � 2), t(15;17)�AML M3 or M3v (n � 1, n � 1), and
inv(16)�AML M4eo (n � 1).

Class Separation by Principal Component Analysis. To visualize clus-
ters corresponding to the three underlying genetic subgroups we
applied a two-step approach. Based on a permutation test (100
permutations) we correlated our expression data to the three
different cytogenetic parameters (25). We obtained 1,000 signifi-
cant genes. By principal component analysis we were able to clearly
separate the three distinct chromosomal aberrations t(8;21),
t(15;17), and inv(16) (Fig. 1) (26). These data suggest that genet-
ically defined AML subtypes can be specified and identified based
on their gene expression profiles.

Class Prediction by Weighted Voting. To identify the genes that
enable the accurate discrimination of these subgroups, we
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applied the data analysis methodology introduced by Golub et al.
(13). We selected the minimal set of genes that provided optimal
classification accuracy together with the highest prediction
strength to avoid overfitting. Thirteen genes were sufficient to
separate these AML subtypes with high precision (Table 1).
GenBank accession numbers and detailed descriptions of the
genes are given in Table 2.

All 32 clinical samples could be assigned to their corresponding
cytogenetic subtype with best accuracy in leave-one-out cross-
validation (1.0). Prediction strength values ranged from 0.91 to 0.98
(Table 1). To illustrate these results we applied hierarchical clus-
tering (31). The resulting dendrogram clearly demonstrates the
capacity of this subset of genes to separate all AML cases according

to their cytogenetic aberration (Fig. 2). This finding demonstrates
that class prediction of a chromosomal aberration in AML is
feasible solely based on gene expression data.

For external validation, we tested whether primarily excluded
samples could also be accurately assigned to their specific cytoge-
netic category. Despite their nonoptimal cRNA quality, all five
cases were correctly classified with high prediction strength (0.76,
1.00, 1.00, 1.00, 1.00).

Class Prediction by Multiple-Tree Models. As a second and indepen-
dent methodological approach we developed a multiple-tree clas-
sifier to separate the three genetically defined subtypes based on the
expression level of a minimal set of genes. In short, we computed

Fig. 1. Three cytogeneti-
cally defined AML subtypes
with t(15;17), t(8;21), or
inv(16) can be separated
based on their gene expres-
sion profiles of 1,000 prese-
lected genes. The three dif-
ferent subgroups form
distinct clusters. For visual-
ization in a two-dimen-
sionalplotthefirst twoprin-
cipal components were
chosen as they captured
most of the variation in the
original data set. The sub-
groups are colored accord-
ing to their chromosomal
aberrations.

Table 1. A minimal set of 13 genes (GenBank accession nos. are given) is sufficient for
accurate class prediction with optimal classification accuracy and highest prediction strength

Classes
t(15;17) vs.

t(8;21)
t(15;17)

vs. inv(16)
inv(16)

vs. t(8;21)
inv(16)

vs. remainder
t(8;21)

vs. remainder
t(15;17)

vs. remainder

Accuracy 1.00 1.00 1.00 1.00 1.00 1.00
Prediction strength 0.91 0.96 0.93 0.95 0.98 0.91
P(g,c)

M65066 �1.52
AL049933 �2.12
AF010310 1.89
N90866 �2.34
M26326 2.85 �2.56
N99340 8.43
M25915 1.63
AF013570 �6.84 7.78 6.99
AI207842 3.08 3.08 3.08
X16665 6.56 6.56
X96719 �2.36
AF013611 2.68
W72424 �2.05

Comparisons (A vs. B) were performed either between two distinct subtypes or between one distinct subtype
and all other subtypes (� remainder), respectively. As calculated from pairwise comparisons, positive P(g,c) values
indicate a higher expression in the first class listed, negative P(g,c) values a higher expression in the second class
listed, respectively.

10010 � www.pnas.org�cgi�doi�10.1073�pnas.142103599 Schoch et al.



classification trees to discriminate between the different AML
subclasses. To avoid overfitting of a singular tree model, we
computed a multiple-tree model by using an iteratively reduced set
of genes. For each tree, we used only those genes that have not been
used by the previously computed classification tree. The procedure
is stopped when a predetermined number of trees has been reached.
For this study, the optimal number of trees was calculated to be
15. The votes of the 15 trees were aggregated by a vote-by-majority
rule. Equal votes for two of the three classes were counted as
misclassification.

The classifier used the expression values of 29 genes (MYH11 was
identified twice by two different probe sets; Table 2) to discriminate
between three classes, namely samples displaying t(15;17), t(8;21),
and inv(16) (Fig. 3). The accuracy on the training set (n � 32) was
100% and on the independent test set (n � 5) 100%. The average
accuracy in 10-fold cross-validation was 94%.

In summary, we identified 36 genes by using two independent
methodologies for class prediction in AML (Table 2). Six genes
were described in both calculations, seven were found exclusively in
the minimal set according to Golub et al. (13), and another 23 genes
by using multiple-tree classifiers.

Correlation of Phenotype and Gene Expression Profile. We were able
to demonstrate striking correlations between genotype and gene
expression profiles in three genetically defined subgroups of
AML. In addition, we answered the question of whether the
cytogenetically identical AML with t(15;17) but appearing with
two different phenotypes, AML M3 or AML M3v (see Fig. 4),
can also be separated by different gene expression patterns. We
used 100-fold permutation of M3 (n � 10) and M3v (n � 8) data
followed by principal component analysis and hierarchical clus-
ter analysis based on 82 informative genes (data not shown).
Separation into the corresponding two morphologically defined
FAB subtypes M3 and M3v was possible in all cases (see Fig. 5,
which is published as supporting information on the PNAS web
site) and suggests also a close correlation between phenotype
and gene expression profile.

Discussion
We have demonstrated an unequivocal association between
disease-specific genetic alterations and distinct gene expression
profiles in AML. For each of the three analyzed clearly defined
subtypes of AML [t(8;21), t(15;17), inv(16)] patterns of gene

Table 2. Thirty-six genes separate accurately three distinct cytogenetic AML subtypes

GenBank
accession no.

Approved
UCL�HGNC�HUGO
database symbol Description

Identified according
to Golub et al.

Identified by using
multiple-tree

classifiers

M65066 PRKAR1B cAMP-dependent protein kinase regulatory subunit RI-beta X
AL049933 GNAI1 Guanine nucleotide binding protein (G protein), alpha inhibiting

activity polypeptide 1
X

AF010310 PIG6* Proline oxidase homolog X
N90866 CDW52 CDW52 antigen (CAMPATH-1 antigen) X
M26326 KRT18 Keratin, type i cytoskeletal 18 X X
N99340 DKFZP586N1922* DKFZP586N1922 protein X X
M25915 CLU Clusterin precursor X
AI207842 PTGDS Prostaglandin-H2 D-isomerase precursor X
X16665 HOXB2 Homeobox protein hox-b2 X X
X96719 CLECSF2 C-type (calcium-dependent, carbohydrate-recognition domain) lectin,

superfamily member 2 (activation induced)
X X

AF013611 CTSW Cathepsin w (lymphopain) precursor X X
W72424 S100A9 Calgranulin b (migration inhibitory factor-related protein 14) X
AF013570 MYH11 Myosin heavy chain, smooth muscle isoform X X
AF001548 MYH11 Myosin heavy chain, smooth muscle isoform X
X53742 FBLN1 Fibulin-1 X
U37122 ADD3 Gamma adducin X
J03853 ADRA2C Alpha-2c-1 adrenergic receptor X
Y10183 ALCAM CD166 antigen precursor (activated leukocyte cell adhesion molecule) X
AB002313 PLXNB2 Plexin B2 X
X78817 ARHGAP4 Rho GTPase activating protein 4 X
X54486 SERPING1 Plasma protease c1 inhibitor precursor X
L19872 AHR Aryl hydrocarbon receptor X
M15395 ITGB2 CD18, integrin beta-2 precursor X
AF045229 RGS10 Regulator of g-protein signaling 10 X
D43638 CBFA2T1 MTG8 protein (ETO protein) X
M25280 SELL I-selectin precursor (lymph node homing receptor) X
W25986 DKFZP564K0822* Hypothetical protein DKFZp564K0822 X
M36035 BZRP Peripheral-type benzodiazepine receptor X
X64624 POU4F1 Brain-specific homeobox�pou domain protein 3a X
M18728 CEACAM6 Carcinoembryonic antigen-related cell adhesion molecule 6

(nonspecific cross-reacting antigen)
X

M77349 TGFBI Transforming growth factor-beta induced protein ig-h3 precursor X
M80899 AHNAK Neuroblast differentiation associated protein ahnak X
M13560 CD74 CD74 antigen, (invariant polypeptide of major histocompatibility

complex, class II antigen-associated)
X

X62744 HLA-DMA Major histocompatibility complex, class II, DM alpha, RING6 X
M32578 HLA-DRB1 HLA class II histocompatibility antigen, dr-1(dw14) beta chain precursor X
X00457 HLA-DPA1 HLA class II histocompatibility antigen, dp alpha chain precursor X
J00194 HLA-DRA HLA class II histocompatibility antigen, dr alpha chain precursor X

GenBank accession numbers, approved human gene nomenclature symbol (* � not approved), and description of the function are presented. Six genes are
included in the minimal set of both weighted voting according to Golub et al. (13) (total � 13) and multiple-tree classifiers (total � 29).
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expression were identified that were homogeneous within all
samples of the respective subgroups but clearly differed between
these three subgroups. The analyzed samples represent disease
subtypes that are specifically defined on the genetic and the
phenotypic level by conventional diagnostics including cytomor-
phology, cytogenetics, and molecular genetics.

By applying two independent approaches for the analysis of
microarray data, the present study demonstrates that AML
samples from previously defined subtypes (3) can be classified
adequately on the basis of gene expression profiles. It is intrigu-
ing that there is both sufficient coherence in gene expression
within and difference between these subtypes to classify them
with high accuracy even though the samples derive from the
same myeloid cell lineage.

To correlate gene expression with cytogenetics Virtaneva et
al. (14) compared the expression status of 6,606 genes of AML
blasts with normal cytogenetics and trisomy 8 as the sole
abnormality. While in this study normal CD34� cells clustered
into a distinct group, AML with trisomy 8 and AML with
normal karyotype intercalated with each other. Microarray
analyses showed an overall increased gene expression of genes
located on chromosome 8, suggesting a gene-dosage effect
(14). AML with trisomy 8 is heterogeneous on the phenotypic
level as it occurs in different FAB subtypes. In contrast, AML
with t(15;17), inv(16), and t(8;21) show a very close correlation
to distinct morphological subtypes. Furthermore, trisomy 8 is
probably not a primary, disease-defining aberration leading to

AML as it also occurs in addition to a variety of different
cytogenetic and molecular genetic abnormalities (32, 33). In
contrast to this study, Armstrong et al. (15) compared samples
of the more homogeneous group of ALL with MLL translo-
cations to ALL without MLL translocations and to AML. They
demonstrated that ALL with MLL translocations comprises a
distinct disease that can be classified robustly by gene expres-
sion profiling.

The main focus of the present analyses was the assessment of
the differences between three highly characterized subgroups of
AML defined by specific primary chromosome aberrations. As
anticipated, it was shown that AML with t(8;21) and AML with
inv(16), which both involve alterations of the core binding factor
complex, are more related to each other as compared with AML
with t(15;17) (34). Both phenotypically different subtypes of
AML with t(15;17), AML M3 and AML M3v, cluster within one
area. In an additional analysis, the latter two subtypes were
separated from each other based on their gene expression
profiles. These data suggest the existence of further genetic and
not-yet-identified alterations leading to the different phenotypes
of AML M3 and AML M3v. One possible candidate gene is
FLT3, which is mutated more frequently in AML M3v than in
AML M3 (67% vs. 19%, P � 0.001) (35).

Several studies confirmed that gene expression profiles can
be used for class prediction. This has been shown for acute

Fig. 2. Hierarchical cluster analysis of the gene expression pattern of the set
of 13 predictor genes as identified according to the adapted class prediction
methodology introduced by Golub et al. (13). The three distinct cytogenetic
AML subgroups can clearly be separated based on their gene expression
profiles. Each row represents a leukemia sample and each column a gene.
GenBank accession numbers are shown on the top. Varying expression levels
are shown on a scale from black (no gene expression) to bright red (highest
expression). The subgroups are colored according to their chromosomal
aberrations.

Fig. 3. Schematic representation of the 15 decision trees (a–o) used in the
multiple-tree classifier. Arrows indicate high (arrow up) or low (arrow
down) expression, 0 and � denote absence or presence of a gene, respec-
tively [e.g., in a the low expression of X96719 indicates AML with t(15;17)
whereas the high expression of X96719 indicates AML with inv(16) or AML
with t(8;21); the latter two entities are distinguished by X53742: lack of
expression identifies AML with inv(16) and positive expression predicts
AML with t(8;21)]. Accession numbers are given for relevant genes. Nodes
are represented as ovals and leaves as rectangles. Classes are referred to as
t(15;17), t(8;21), or inv(16).

10012 � www.pnas.org�cgi�doi�10.1073�pnas.142103599 Schoch et al.



leukemias, round blue cell tumors, and malignant melanomas
(13, 36–38) as well as for different types of solid tumors by
using multiclass cancer classification (39). Whereas the selec-
tion of different subgroups in these studies was performed by
using exclusively phenotypic criteria, other studies were based
on genetically defined entities (40, 41). In the present study not
only the discrimination of the three genetically defined AML
subgroups was accomplished but also all of these cases of
AML were separated from normal bone marrow (data not
shown).�

To develop a classifier two independent approaches were ap-
plied. Whereas classification by weighted voting according to Golub
et al. (13) allows the discrimination between the three classes based
on a minimal set of 13 genes, the multiple-tree classifier uses 30
genes. As indicated by cross-validation, generalization properties
are excellent for the multiple-tree classifier, i.e., it is likely to
perform equally well on new, unseen samples. Furthermore, it can
be easily extended to more than the three subclasses described in the
present study.

Our classifiers contained genes already known to be primarily
involved in the pathogenesis of the respective entities, namely
MYH11 (43) and ETO (44). Presumably, the detection of overex-
pression of MYH11 in inv(16) cases and ETO in t(8;21) cases relates
to the detection of the fusion gene transcripts rather than of the
wild-type transcripts. The other genes identified belong to various

functional categories. Their potential pathogenetic significance in
AML has yet to be clarified.

It is expected that the extension of the present analyses to
currently less well-defined AML will identify additional sub-
groups of AML with clinical relevance based on their gene
expression profiles. The feasibility of such an approach has
been demonstrated for diffuse large B-cell lymphoma (45).
Alizadeh et al. have subdivided an entity previously considered
homogeneous by various pathological methods into two not
only new but also prognostically highly relevant subgroups. In
two recent studies, gene expression profiling also in breast
cancer revealed subgroups significantly differing in their prog-
nosis (46, 47). With regard to AML, this approach may be most
promising in AML with normal karyotype. This subgroup
cannot be further defined on the cytogenetic level and is
characterized by an intermediate prognosis possibly masking
poor and favorable subgroups.

In addition, the current data may have major implications with
regard to delineating aberrant gene expression pathways under-
lying the pathogenesis of AML. As has been shown in mantle cell
lymphoma and medulloblastoma (42, 48) the extension of our
analyses to all subgroups of AML should enable us to define the
deregulated genes important for the initiation and the progres-
sion of AML. Finally, these analyses will promote the identifi-
cation of new targets for specific treatment approaches.

This study was supported by a grant from the Deutsche José Carreras
Leukämie-Stiftung (DJCLS-R00�13).
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