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Long-term synaptic plasticity leading to enhancement in synaptic
efficacy (long-term potentiation, LTP) or decrease in synaptic effi-
cacy (long-term depression, LTD) is widely regarded as underlying
learning and memory in nervous systems. LTP and LTD at excitatory
neuronal synapses are observed to be induced by precise timing of
pre- and postsynaptic events. Modification of synaptic transmis-
sion in long-term plasticity is a complex process involving many
pathways; for example, it is also known that both forms of synaptic
plasticity can be induced by various time courses of Ca2� introduc-
tion into the postsynaptic cell. We present a phenomenological
description of a two-component process for synaptic plasticity. Our
dynamical model reproduces the spike time-dependent plasticity
of excitatory synapses as a function of relative timing between pre-
and postsynaptic events, as observed in recent experiments. The
model accounts for LTP and LTD when the postsynaptic cell is
voltage clamped and depolarized (LTP) or hyperpolarized (LTD) and
no postsynaptic action potentials are evoked. We are also able to
connect our model with the Bienenstock, Cooper, and Munro rule.
We give model predictions for changes in synaptic strength when
periodic spike trains of varying frequency and Poisson distributed
spike trains with varying average frequency are presented pre- and
postsynaptically. When the frequency of spike presentation ex-
ceeds �30–40 Hz, only LTP is induced.

learning � spike time-dependent plasticity

Investigations of long-term synaptic plasticity have revealed
many striking results over the past two decades. The intense

interest in this feature of nervous systems comes in part from the
fact that these phenomena are widely held to underlie learning
and memory. It is known from recent experiments that the
precise timing of pre- and postsynaptic activity is important for
long-term potentiation (LTP) and long-term depression (LTD)
(1–4). Spikes initiate a sequence of complex biochemical pro-
cesses during a short time window after synaptic activation at the
postsynaptic side. Identifying the detailed molecular processes
underlying LTP and LTD remains a complex and challenging
problem. It is widely accepted that N-methyl-D-aspartate
(NMDA) receptors are crucial for the development of LTP or
LTD. NMDA-dependent activity determines Ca2� concentra-
tions in the postsynaptic cell. The Bienenstock, Cooper, and
Munro rule (5) describes the synaptic plasticity process as a
function of postsynaptic activity presumed to be connected to
Ca2� concentration (6). Modest activity induces LTD, whereas
strong activation produces LTP. On the basis of this idea, models
of calcium-dependent synaptic plasticity that describe the ex-
perimental data with a fixed set of parameters have been
proposed (7, 8). Different theoretical hypotheses are also sug-
gested by the authors of refs. 9 and 10. Senn et al. (9), for
example, formulate a learning algorithm for regulating neuro-
transmitter release probability.

These models are very interesting and promising. Building on
these results, we propose here a fully dynamical model of
synaptic plasticity. The model is phenomenological because we
introduce dynamical variables P(t) and D(t) that do not have a
direct relationship with the concentration of any biochemical
component.

The resulting model of an activity-dependent modifiable
synapse is on the same footing as familiar phenomenological
models describing the generation of action potentials. In the
latter case, despite the huge number of ionic channels and their
complex voltage dependence, as well as the complex activity
of cellular pumps maintaining a dynamic balance in a neuron, it
has been possible to build phenomenological models such as
conduction-based Hodgkin–Huxley models or even more sim-
plified models such as the Hindmarsh–Rose and the Morris–
Lecar models (for a discussion of many models, see ref. 11).
These models have been successful in replicating observations
and in understanding unknown features of neuron activity.

A set of observations over many years has shown that tem-
porally correlated action potentials from a pre- and a postsyn-
aptic neuron in culture can lead to incremental strengthening or
weakening of the strength of excitatory synapses connecting
them. In their clear recent review of these experiments, Bi and
Poo (3) present a quantitative description of dependence on
spike timing for the modification of the synapses connecting two
excitatory neurons as a function of � � tpost � tpre when a single
presynaptic and a single postsynaptic spike is evoked at times tpre
and tpost, respectively. The biophysical description of LTP and
LTD actions associates them with augmented or reduced Ca2�

release into a postsynaptic cell as voltage-gated Mg� blockers on
NMDA receptors are removed by depolarization (12). Our
approach here is not at this cellular level. Instead, we identify a
phenomenological action with each part of the two-component
process.

In their experiments on synaptic modification at excitatory
synapses between hippocampal glutamatergic neurons in cul-
ture, Bi and Poo (2, 3) indicate that if a presynaptic spike arrives
at time tpre and a postsynaptic spike is observed or induced at
tpost, then when � � tpost � tpre is positive, the incremental
percentage increase in synaptic strength behaves as

�g
g

� aPe��P�, [1]

with �P � (1�16.8 ms). When � � 0, the percentage decrease
in synaptic strength behaves as

�g
g

� �aDe�D�, [2]

with �D � (1�33.7 ms). aP and aD are constants.
Others have shown that LTP and LTD can be induced without

postsynaptic action potentials. For example, one can depolarize
the postsynaptic cell and then, by presenting presynaptic action
potentials, induce LTP. Interestingly, introducing various time
courses of Ca2� concentration in the postsynaptic cell, either
LTP or LTD can be induced. LTP is associated with rapidly
induced high concentrations of Ca2�, whereas LTD is induced
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with lower concentrations presented at lower frequencies (13,
14). These experiments suggest the cooperation of two processes
in the postsynaptic cell that have different time constants. A
two-component postsynaptic model for LTP�LTD processes is
also suggested in the review of Malenka and Nicoll (15).

Two-Component Model for Synaptic Plasticity
The data in figure 1 of Bi and Poo (3) also may indicate that two
processes are at work in synaptic plasticity. Each has its own time
constant and strength. We suggest that these two processes are
possibly both postsynaptic and related to NMDA receptors, and
that each satisfies a phenomenological kinetic equation. The
resultant LTP or LTD from the joint action of these two
processes depends on the relative timing between them. We
describe the processes by the variables P(t) and D(t). Our model
takes P(t) to be activated by presynaptic voltages Vpre(t),
whereas D(t) is activated by postsynaptic actions Vpost(t). Our
two macroscopic variables embody two cellular events that
compete with each other to achieve plasticity. This view does not
contradict well-accepted descriptions such as the BCM rule (5).

We refer the reader to the discussion of Bi and Poo (3) on
biochemical mechanisms that may underlie the two observed
time scales. It is argued that postsynaptic spiking after EPSPs
induced by presynaptic action leads to opening NMDA receptors
accompanied by a high flux of Ca2�, whereas the opposite order
may permit low concentrations of Ca2� through voltage-gated
channels for Ca2� followed by a further small influx associated
with NMDA receptors. At the level of phenomenological for-
mulation presented here, we do not propose a specific identifi-
cation of the underlying cellular dynamics with either dynamical
variable D(t) or P(t).

Whether or not these are the correct identifications of the
biophysical and biochemical processes associated with Biand
Poo’s and others’ observations, we attempt to capture those
processes in a kind of ‘‘spatial average’’ of underlying dynamics
that must be described by appropriate kinetic and nonlinear
reaction–diffusion equations. Performing the required averages
on a set of equations describing the basic processes goes well
beyond the scope of the present paper. Instead, we wish to
determine whether a quantitative expression of the observations
is possible in a quite simplified two-component�two-timescale
model. As we discuss here, our model quantitatively realizes the
experiments of Bi and Poo (3) and appears in qualitative
agreement with many other features of LTP and LTD observa-
tions. A derivation of the proposed model or equivalent models
from more a fundamental point of view would thus seem quite
attractive.

We take the activities D(t) and P(t) to satisfy the simple
first-order kinetic equations

dP�t�
dt

� f�Vpre�t�� � �PP�t�

dD�t�
dt

� g�Vpost�t�� � �DD�t�,

[3]

where the functions f(V) and g(V) are typical logistic or sigmoi-
dal functions that rise from zero to order unity when their
argument exceeds some threshold. These driving or input func-
tions are a simplification of the detailed way in which each
dynamical process is forced. The P(t) process is associated with
one time constant (1��P), whereas the D(t) process is associated
with a different time constant (1��D). Experiment shows that
�P 	 �D, and this is the primary embodiment of the two different
time scales seen in many observations. The two time constants
are a coarse-grained representation of the diffusion and leakage
processes that damp and terminate the activities. Presynaptic
voltage activity serves to release the neurotransmitter in the

usual manner, and this in turn induces the postsynaptic actions
of P(t), which has a time course determined by the time constant
�P

�1. Similarly, we associate the postsynaptic voltage, constant or
time varying, with induction of the D(t) process.

The driving functions f(V) and g(V) could also depend on
Ca2� concentrations in the postsynaptic cell as suggested by refs.
13–15, but we do not propose any specific mechanism for this. If
there are no changes in pre- or postsynaptic potentials, a
representation of this Ca2� dependence would permit our
phenomenological modeling to be extended to the experiments
discussed in refs. 13–15.

We attribute the change in synaptic strength to the nonlinear
joint action of these pre- and postsynaptic processes. This is an
embodiment of the ideas of many authors whose work is
reviewed in refs. 3, 14, and 16, and we build on their work. Calling
the percentage change in synaptic strength �g(t), we write the
time variation of this due to P(t) and D(t) processes as

d�g�t�
dt

� �
P�t�D��t� � D�t�P��t��, [4]

where � � 1. � � 0 is proportional to the strength of the synaptic
connection; as that remains nearly constant, we take � to be a
constant; we have also investigated the case where � is propor-
tional to g(t). This rule incorporates a kind of competition
between the two processes that seems to be implicated by the
results in refs. 13–15. Further, this requires both P(t) and D(t)
processes to be operating to alter synaptic strengths. Isolated
P(t) activity, perhaps followed long afterward or preceded long
before by D(t) activity, will not produce synaptic strength
change. ‘‘Long’’ is determined by the time scales �P

�1 and �D
�1.

We can interpret the combination of P(t) and D(t) appearing
in the dynamical equation for �g(t) as saying that if tpre, the
nominal time at which an action potential from the presynaptic
cell invades the synapse occurs before tpost, the nominal time of
postsynaptic backpropagation activity, then when t � tpost, P(t)
has been on for a time � � tpost � tpre and the term P(t)D�(t)
dominates D(t)P�(t) for � � 1 leading to overall enhancement
of �g. This is because both P(t) and D(t) start at zero and rise
only when the pre- or postsynaptic action, respectively, arrives at
the synapse, so each is small in magnitude. This leads to positive
changes in the synaptic strength g. The opposite effect occurs if
� � tpost � tpre � 0.

The net change �g due to D(t) and P(t) activity is

�g � ��
�





dt
P�t�D��t� � D�t�P��t��, [5]

where at long times in the past, we have �g � 0; namely, we start
with the baseline synaptic strength, and the actual upper limit on
the integral is set by the extinction of either D(t) or P(t) activity.

The general solutions of the kinetic equations for P(t) or D(t)
activation are

P�t� � �
�


t

dt�e��P�t�t��f�Vpre�t���

D�t� � �
�


t

dt�e��D�t�t��g�Vpost�t���.

[6]

If the action potentials Vpre(t) and Vpost(t) are localized around
t � tpre and t � tpost, respectively, then the approximate value of
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these integrals becomes

P�t� � e��P�t�tpre��
�





dt�f�Vpre�t���

D�t� � e��D�t�tpost��
�





dt�g�Vpost�t���.

[7]

We first consider the simplest case of an isolated very narrow
presynaptic spike occurring at t � tpre and an isolated narrow
postsynaptic spike occurring at t � tpost. For this setup, the
equations for P(t) and D(t) become

dP�t�
dt

� �P��t � tpre� � �PP�t�

dD�t�
dt

� �D��t � tpost� � �DD�t�,

[8]

where �P and �D are the strengths of the spikes represented as
� functions at t � tpre and t � tpost, respectively.

The solutions to these equations are then

P�t� � �P	�t � tpre�e��P�t�tpre�

D�t� � �D	�t � tpost�e��D�t�tpost�.
[9]

	(t) � 0, t � 0 and 	(t) � 1, t � 0.
The integral for �g(�), with � � tpost � tpre, is for � 
 0

�g��� �
��P�D

�

�P � ��D
e��P� �

��D�P
�

��P � �D
e���P�, [10]

whereas for � � 0, we have

�g��� �
��P�D

�

�P � ��D
e��D� �

��D�P
�

��P � �D
e�D�. [11]

The idea that the LTP�LTD rule seen by Bi and Poo and
others could provide a balance between LTD events and LTP
events (17, 18) is automatically embodied in these two formulae.
If we integrate �g(�) over all possible �, we find

�
�





d��g��� �
��P�D

��P�D
��D

��1 � �P
��1�. [12]

When the strengths of the pre- and postsynaptic spikes are equal,
this integral is 0. Because evoked action potentials are very
similar, with only interspike intervals carrying neural informa-
tion, the idea that �P � �D is quite natural. That the integral is
zero for whatever �P and �D means that a neuron receiving
random spikes from the environment will, on average, produce
�g � 0, and that only information bearing spike trains will affect
synaptic strengths.

Determination of Model Parameters
For our solution using � functions, we first note that for large
positive � we have

�g��� �
��P�D

�

�P � ��D
e��P�, [13]

as in figure 1 of Bi and Poo (2), and for large negative �, we have

�g��� � �
��D�P

�

��P � �D
e�D�, [14]

also as in ref. 2.
The value of �g(�) at � � 0 is continuous for any pre- or

postsynaptic spike strength and is a positive constant times
(� � 1)(�P � �D) for �P � �D. Using the values indicated by
Bi and Poo (2) �P � 2�D, we see �g(� � 0) � 0, which is
consistent with figure 1 of ref. 3.

If the strengths of the P(t) and D(t) spikes are equal �P �
�D, then the large � LTP and large (negative) � LTD
amplitudes determine � when we know �P and �D. This
relation is

�D � ��P

�P � ��D
�

aP

aD
, [15]

where aP and aD are the constants from ref. 2. From their paper,
we find (aP�aD) � 1.8. Using the data of Bi and Poo (2), we have
made a fit to formulae 10 and 11, which is displayed in Fig. 1a.
The parameters from this fit are

Fig. 1. (a) �g(�) for the data of Bi and Poo (2) and for the two-component
LTP�LTD model. (b) �g(�) for the data of ref. 4 and the two-component model.
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� � 1.0 
 10�6

�P � �D � 33.5

�P � 0.098 �
1

10.2 ms

�D � 0.035 �
1

28.6 ms
.

[16]

From Eq. 15, we determine that � � 4. These time constants are
slightly different from those reported by Bi and Poo, who fit only
the exponential tails of the distributions. They report �P

�1 � 16.8
ms and �D

�1 � 33.7 ms. All these numbers are well within the
scope of the errors associated with the measurements reported
in refs. 2 and 3. For example, in ref. 17 it is noted that the errors
in time constants seen in ref. 2 were �D

�1 � 34 � 13 ms and �P
�1

� 17 � 9 ms. Our values are well within these error limits.
We have looked at a ‘‘best’’ fit to the data of Bi and Poo and

found that as a function of � there is a broad minimum in the
least-squares error associated with our formula. From the ex-
isting data, we cannot confidently select a value of � from the
range 3 � � � 20. We have chosen � � 4 as representative. The
qualitative look of the fits to the data with values of � in the range
given is excellent, and the least-squares error differs by only a few
percent in this range. For all values of � in this range, we find
�P � �D, indicating that equal strength pre- and postsynaptic
pulses were used, and �D

�1 � 3�P
�1 for all �. The overall strength

� varied quite substantially with �. The main uncertainty in
selecting better values for these parameters comes from mea-
surements near � � 0.

We have also examined the data from Feldman (4) on
LTP�LTD induced in the Barrel Cortex of rat by using protocols
similar to those of Bi and Poo. Again with � � 4 and �P � �D,
we find, as shown in Fig. 1b, �P � 1.22, � � 5.98 � 10�2, �P

�1

� 12.3 ms, and �D
�1 � 25.2 ms. Again, note that the major

uncertainty in these estimated parameters comes from the
region � � 0.

Predictions Using the Model
Our simple formulae 10 and 11 provide a way to unify a variety
of observations over many preparations. They also provide a
means for predicting the outcome from presenting different
spike trains or other waveforms to the pre- and postsynaptic cells.
As an illustration of the prediction abilities of the model, we
examined finite sequences of periodic and random spike trains.

We have investigated the LTP�LTD effect arising from a
finite length periodic train of pre- and postsynaptic spikes by
using our basic dynamical equations. We introduced two peri-
odic spike trains with paired pre- and postsynaptic spikes at
relative times tpost � tpre and each with spikes separated by
interspike intervals T. Fifty pairs of spikes were presented to the
synapse with frequencies T�1 varying between 10 Hz, T � 100
ms, and 200 Hz, so T � 5 ms. The results are shown in Fig. 2 for
a selection of T. When T is large, T � 100 ms, or T�1 � 10 Hz,
the actions of the pre- and postsynaptic pairs are independent,
and we see 50 repetitions of the basic process displayed in Fig.
1. At 20 Hz, we see substantial interaction between the effects
of paired spikes, and at 50 Hz and above, we see LTD disappear
and only potentiation is observed. This result is strikingly
consistent with the experimental results observed in neurons in
the rat visual cortex (19). The oscillations present at all T are due
to the selection of strictly periodic pairs of pre- and postsynaptic
spikes. At 200 Hz, we see that before the spike trains arrive at
the synapse, no effect is seen, and this is true after they no longer
are affecting the synapse. During the time when they overlap,
only LTP is seen. If we increase the number of spike pairs, we
see the temporal region of potentiation increase as well. It is

interesting to note that in these simulations, if we choose a time
shift � between spikes that leads to LTD for individual pairs, then
when we increase the frequency over a threshold, only LTP is
observed. This result is again consistent with the experiments
reported in ref. 19.

We also investigated the model prediction when we presented
spike trains with a Poisson distribution of interspike intervals
(ISIs) with varying mean ISI. In Fig. 3, we show the result of an
average over 500 trials with 50 pre- and 50 postsynaptic spikes
with Poisson distributions of ISIs. The mean ISI interval ranges
from 100 to 5 ms. In the simulations for the parameters obtained
from the experimental data, only LTP is observed.

Another remaining issue is the dependence of LTP and LTD
on the decay constants. To illustrate this point, we fixed �D and
varied the ratio (�D��P) to determine whether there is a
separation between regions of LTP and LTD. In Fig. 4, we show
the synaptic strength change �g as a function of (�D��P) plotting
the average ��g(�)�� over the window [�100 ms, 100 ms]

��g����� �
1

200�
�100 ms

100 ms

d��g���. [17]

We can see that near �P � �D, LTP, on average, and LTD, on
average, switch roles. This result comes from a simulation using
our proposed LTP�LTD rule with periodic spike trains pre-
sented to the pre- and postsynaptic neurons at 50 Hz. We expect
the same result for other presentation frequencies and other
dynamical parameters, as the crossover at �P � �D is a kinematic
result associated with the different time scales of LTP or LTD.

Possible Connection with the BCM Rule
There is a very interesting solution to our equations, based on
protocols to produce LTP or LTD by using a steady depolar-

Fig. 2. Prediction of �g(�) when two periodic spike trains with the same
frequency and number of spikes are generated in the pre- and postsynaptic
neurons. We plot �g(�) as a function of the time shift � between the pre- and
postsynaptic spike trains. The frequency of the spike trains are (a) 200, (b) 100,
(c) 50, (d) 20, and (e) 10 Hz. In all cases, spike trains with 50 pre- and 50
postsynaptic spikes were used. Note that at spike pair frequencies above 50 Hz,
only LTP is seen. This is a result of the asymmetry in the single spike pair
response.
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ization of the postsynaptic neuron (20, 21). If the postsynaptic
cell is voltage clamped, then D(t) rapidly approaches a constant
value D0 that will depend on the voltage clamp level. If the
driving function g(•) in the equation for D(t) depends on other
cellular parameters, such as the concentration of Ca2�, then D0
also depends on them. In qualitative terms, we refer to D0 as
indicative of postsynaptic neural activity.

If the presynaptic voltage is a spike as above and the postsyn-
aptic cell is still activity clamped, then we find for times
(t � tpre)�P �� 1

�g �
�D0�P

�P
�D0

��1 �
�P

��1

�
�. [18]

In Fig. 5, we plot �g as a function of the clamped activity D0
for three different values of �P. These show the characteristic
form of the BCM rule with a region of depression followed by
a regime of potentiation separated by a sliding threshold.

The case of voltage clamping both the post- and presynaptic
cells also gives a simple result for �g. These two cases have been
examined experimentally by Wigström et al. (22), Kelso et al.
(23), and Malinow and Miller (24). Their results are in agree-
ment with the patterns of plasticity predicted by the two-
component model.

Discussion
The discovery of spike time-dependent plasticity has important
implications for our understanding of information processing,
learning, and memory in the brain. One of the most important
aspects is in the coding of neural information by exact spike
timing and not just spike rates. Recent experiments on excitatory
synapses in hippocampal and neocortical slices (1, 25) and in
cultured neurons (2, 3) have shown that the specific timing of

pre- and postsynaptic action potentials plays a crucial role in
synaptic modification. To investigate this possibility in a simu-
lation of neural networks with such synapses, one needs a
convenient dynamical model of learning processes. In this paper,
we have proposed and investigated a model of synaptic plasticity
that is able to reproduce the experimental evidence associated
with spike time-dependent plasticity and predict new dynamical
features.

Because molecular events in synaptic firing have many differ-
ent time scales, at first sight it seems necessary to build a
many-dimensional model for the description of the temporal
variation of any synaptic efficacy, depending on pre- and postsyn-
aptic activity. However, the experimental data display a com-
paratively simple dependence of changes in the synaptic effi-
ciency on the relative timing of pre- and postsynaptic events. This
means that a macroscopic dynamical model of this synaptic
plasticity can be low dimensional. Some experiments on

Fig. 4. Prediction of ��g(�)��, �g(�) averaged over a window [�100 ms; 100
ms], for periodic spike trains of 50 periodic spikes with a firing frequency of 50
Hz. We plot average synaptic change as a function of (�D��P) for fixed �D

� 1 �

28.6 ms. Two well defined regions of LTP and LTD are seen, with �P � �D as
the separation point.

Fig. 5. Clamped postsynaptic activity. Dependence of �g as a function of D0,
which represents the level of postsynaptic activity. This is shown for three
different setting of �P; see Eq. 18. The qualitative connection to the BCM rule
is clear. The parameter values for the process are � � 1 � 10�6, � � 4, and �P

�1

� 10.2 ms.

Fig. 3. Prediction of �g(�) when two spike trains with interspike intervals
generated by a Poisson process are generated in the pre- and postsynaptic
neurons. The mean ISI values, denoted as �ISI�, are: (a) 5, (b) 10, (c) 20, (d) 50,
and (e) 100 ms. The time lag � between the pre- and postsynaptic spike trains
is calculated by the time difference between the first two spikes of both spike
trains. These figures are averaged over 500 realizations of the Poisson distrib-
uted spike train with 50 spikes in each set.
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LTP�LTD are suggestive of oscillations in �g(�), and if these are
present, a straightforward modification of the first-order kinetics
for P(t) and D(t) can account for such additional degrees of
freedom.

We also performed a simulation of the response of excitatory
synapses with model parameters determined by the data of Bi
and Poo to presentations of periodic pre- and postsynaptic spike
trains with periods ranging from 5 to 100 ms and to pre- and
postsynaptic spikes trains with Poisson ISI distributions of
different mean ISIs. Our modeling predicts that long-term
plasticity for an excitatory synapse presented with periodic fast
repetition of pre- and postsynaptic spikes exhibits only LTP.
Again we note this is consistent with the experiments reported
in ref. 19. Poisson spike trains for the parameters obtained from
the experimental data always produce LTP.

It seems reasonable that the direction and magnitude of
synaptic modifications depend not only on the relative spike
timing between neurons but also on the intrinsic features of each
neuron. This idea is supported by the experimental results of
refs. 26 and 27. The first result (26) is related to activity-induced
synaptic modification between excitatory and inhibitory neu-
rons. The authors have observed the ‘‘anti-hebbian’’ synaptic
modification: LTD for positive � and LTP for negative values in
these synapses. Such spike timing dynamics is described in our
model by changing the sign of �. ‘‘Anti-hebbian’’ learning is also
observed by Holmgren and Zilberter (28) on LTP and LTD in
inhibitory synapses with pyramidal cells from neocortex. We can
use our formula with � � 0 to evaluate the expected result from
their combination of pre- and postsynaptic stimuli.

The experiments of Froemke and Dan (27) investigate two
presynaptic spikes and one postsynaptic spike, or vice versa.
Their results indicate that the contribution of each pre�post-

spike pair may depend not only on its temporal separation but
also on the presence of other spikes in both neurons. In
particular, a preceding spike in the presynaptic neuron can
suppress the contribution of a pre�post-spike pair in synaptic
modification. Our model gives an analytic formula, generalizing
10 and 11, for this kind of experiment. The number of data
presented in these experiments does not permit a quantitative
comparison here.

Our model is also in qualitative agreement with experiments
on voltage-clamped postsynaptic cells. In a situation where the
activity of the postsynaptic cell is ‘‘clamped,’’ leading to constant
D(t) � D0, we have suggested a connection with the BCM rule
for synaptic plasticity. In this circumstance, we have �g as a
function of D0, which resembles the BCM rule in many details
and has an activity-dependent sliding threshold.

Because spike time-dependent modification of synaptic
strengths certainly has important implications for the function of
real neural circuits, we anticipate that our suggested model will
prove useful for the simulation of such dynamics and for inquiries
into their ability to process information.
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