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Within the past two years, actin has been implicated in eukaryotic gene transcription by all three classes of RNA
polymerase. Moreover, within just the past year, actin has been identified as a constituent of filaments attached to the
nuclear pore complexes and extending into the nucleus. This review summarizes these and other very recent advances in
the nuclear actin field and emphasizes the key present issues. On the one hand, we are confronted with a body of evidence
for a role of actin in gene transcription but with no known structural basis; on the other hand, there is now evidence for
polymeric actin—not likely in the classical F-actin conformation—in the nuclear periphery with no known function. In
addition, numerous proteins that interact with either G- or F-actin are increasingly being detected in the nucleus,
suggesting that both monomeric and oligomeric or polymeric forms of actin are at play and raising the possibility that the
equilibrium between them, perhaps differentially regulated at various intranuclear sites, may be a major determinant of
nuclear function.

INTRODUCTION

Actin and myosin were first discovered as actomyosin by
Kuhne in 1861, but it was not until 1939–1942 that actin itself
was isolated by Straub, Bonga and Szent-Gyorgyi, and my-
osin was discovered to be an ATPase by Engelhardt and
Lyobimova (Szent-Gyorgyi, 2004). By the 1970s, the presence
of actin and myosin in nonmuscle cells had been firmly
established (Hatano and Oosawa, 1966; Adelman and Tay-
lor, 1969a,b; Ishikawa et al., 1969; Pollard et al., 1970; Weihing
and Korn, 1971; Pollard and Korn, 1973; Lazarides and We-
ber, 1974; Garrels and Gibson, 1976), and although their
localization was mainly cytoplasmic, numerous subsequent
observations suggested the existence of nuclear actin and
myosin as well. Recently, we and others have reviewed the
nuclear actin field (Pederson and Aebi, 2002; Olave et al.,
2002; Shumaker et al., 2003; Bettinger et al., 2004; Blessing et
al., 2004). The two key questions have been “in what form”
and “what for”? Particularly significant progress has been
made in just the past year or so, and thus it is already time
to assess these new developments and ask whether a coher-
ent picture is now coming into view.

ACTIN AND mRNA TRANSCRIPTION

The first solid evidence for a link between actin and gene
transcription came from experiments in which actin antibod-
ies or actin-binding proteins were injected into the germinal
vesicle of salamander oocytes, resulting in a retraction of
nascent RNA on the lateral loops of the meiotic (“lamp-
brush”) chromosomes (Scheer et al., 1984). These investiga-
tors also reported the formation of a perichromosomal

meshwork of filaments when transcription was inhibited by
actinomycin and suggested that these filaments were actin,
based on their observed fragmentation by the F-actin-sever-
ing protein fragmin. Although the Scheer et al. article had a
degree of impact, it did not generate a following in the
eukaryotic transcription field. Ironically, at just the same
time there was a beacon from a major transcription labora-
tory hinting at actin as an important factor (Egly et al., 1984),
but this finding, too, was also largely ignored. It is sobering
to note that virtually all of the experimental systems and
biochemical knowledge of transcription that have very re-
cently been used to definitively implicate actin were avail-
able in 1984. As often happens, it was a paradigm shift that
was needed, not the development of new technology. Al-
though a number of key advances in the nuclear actin field
occurred after 1984 (Olave et al., 2002; Pederson and Aebi,
2002), it was 17 years before the issue was investigated in
further depth. This time, the concept took hold.

In 2001, actin was found to be associated with the Balbiani
ring 2 nascent pre-mRNA in Chironomus salivary gland poly-
tene chromosomes (Percipalle et al., 2001), and soon there-
after the same group reported that actin also forms com-
plexes with the pre-mRNA binding hnRNP A- and B-type
proteins (Percipalle et al., 2002). Subsequently this group
provided evidence that the role of actin in stimulating or
sustaining pre-mRNA transcription requires its interaction
with heterogeneous nuclear ribonucleoprotein (hnRNP) pro-
teins (Percipalle et al., 2003). In short order, another study
strongly implicated nuclear actin in RNA polymerase II
transcription in growing mammalian cells (Hofmann et al.,
2004), indicating that a transcriptional role of actin is not
limited to the meiosis-arrested amphibian oocyte (Scheer et
al., 1984) or the insect larval polytene nucleus (Percipalle et
al., 2001, 2002; Percipalle et al., 2003), however implausible
that hypothesis might have been.

There have been numerous reports linking nuclear actin to
the phenomenon of chromatin remodeling (reviewed in
Olave et al., 2002), although there has not been uniform
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acceptance of this conclusion. A recent investigation in the
aforementioned Chironomus system has now added further
evidence for a connection among nuclear actin, chromatin
remodeling, and RNA polymerase II transcription (Sjölinder
et al., 2005.) In this study, it was found a peptide that inhibits
the actin-nascent pre-mRNP association was counteracted
by trichostatin A, which inhibits histone deacetylation. Ad-
ditional experiments revealed that both actin and the pre-
mRNP protein hrp65 are complexed in situ with the histone
H3-specific acetyltransferase p2D10 and that disruption of
the actin–hrp65 interaction causes release of p2D10 from Pol
II-transcribing genes coincident with reduced H3 acetylation
and diminished transcription. These new findings (Sjölinder
et al., 2005) considerably bolster the notion of a link among
nuclear actin, chromatin remodeling, and Pol II transcrip-
tion—the connection between the latter two phenomena
already well established.

BEYOND mRNA SYNTHESIS: ACTIN IN RNA
POLYMERASE I AND III TRANSCRIPTION

By 2003, most investigators of the nucleus had taken note of
the growing evidence for a role of actin as well as a nucleus-
specific isoform of myosin I in transcription by RNA poly-
merase II (Pederson and Aebi, 2002). Then, in rapid succes-
sion, two groups published evidence that actin is also
involved in transcription by RNA polymerases I and III.
Actin was found to be associated with purified Pol III and
was also shown to be localized in vivo on a gene known to
be transcribed by Pol III (Hu et al., 2004). These investigators
also reported experiments indicating that when Pol III is
inactivated by a specific inhibitor, its associated actin is
released and that the polymerase’s activity is restored when
actin is added back (Hu et al., 2004).

At about the same time, evidence was gathered for an
involvement of both actin and myosin I in Pol I transcription
(Fomproix and Percipalle, 2004; Philimonenko et al., 2004).
Although Pol II and Pol III transcription takes place on
extended chromosomes situated in the nucleoplasm, Pol I
transcription occurs deep within the compact nucleolar
structure. There is thus no simple large-scale architectural
homology between the environment of Pol II- and III-tran-
scribed genes on the one hand, and the setting of Pol I
transcription on the other, and this suggests that the role of
actin in transcription by all three polymerases is not related
to some common element of nuclear organization.

DOES ACTIN BIND A COMMON FACTOR DURING
TRANSCRIPTION BY ALL THREE RNA
POLYMERASES?

Because actin has now been implicated in transcription by
all three RNA polymerases, it is obvious to consider an
actin-binding target that is common to the respective tran-
scription machineries. The actin-binding hnRNP A- and B-
proteins (Percipalle et al., 2002) are unlikely candidates be-
cause these only interact with Pol II transcripts. Actin has
recently been reported to bind to the C-terminal domain
(CTD) of the largest subunit of Pol II (Kukalev et al., 2005),
but this domain is not present in any of the subunits of Pol
I or Pol III. In Pol III transcription, actin was observed to
bind directly to three of the enzyme’s 17 subunits (when
tested individually): RPC3, RPABC2, and RPABC3 (Hu et al.,
2004). Interestingly, the latter two are common to all three
polymerases. In this regard, it is to be borne in mind that the
actin-binding properties of the individual subunits of Pol I
have not been examined and that in the recent Pol II study

the experiments focused on the interaction of actin solely
with the hyperphosphorylated CTD of the largest subunit.
In addition, it is to be noted that the actin interactions with
the polymerases I and II were observed to be influenced by
other transcription-related proteins: the Pol I initiation factor
TIF-1A (Philimonenko et al., 2004), and the hnRNP U protein
in the case of Pol II (Kukalev et al., 2005). Remaining before
us are mechanistic issues such as the specific step or steps of
transcription in which actin is involved, presently looking
like at least elongation in the case of Pol II (Percipalle et al.,
2003; Kukalev et al., 2005; although see Hofmann et al., 2004)
and the identity of the actin-interactive proteins such as
hnRNP U that collaborate with actin in transcription.

WHAT LIES BENEATH? ACTIN INSIDE THE
NUCLEAR ENVELOPE

The studies that implicated actin in gene transcription did
not focus on the form of actin that is involved. It had long
been known that the nucleus (germinal vesicle) of amphib-
ian oocytes contains unpolymerized actin at a level very
close to the critical concentration for polymerization (�0.1
�M; Clark and Merriam, 1977; Gounon and Karsenti, 1981).
Whether the nucleus of these oocytes, or any other nuclei,
contain some polymerized form of actin—not necessarily in
the F-actin conformation—in the living state, amid a vast
ocean of monomeric actin, had been long pondered.

In early 2004, field emission scanning electron microscopy
(EM) evidence was published for distinct actin and protein
4.1 containing nuclear “pore-linked filaments” (PLFs) that
are attached to the nuclear pore complexes of Xenopus oo-
cytes and extend into the nucleus (Kiseleva et al., 2004).
These investigators demonstrated that these PLFs collapsed
upon exposure of the oocytes to the actin filament depoly-
merizing agent latrunculin A. In contrast, jasplakinolide,
which stabilizes preexisting actin filaments (Lee et al., 1998)
and can also induce actin polymerization (Spector et al.,
1999), produced PLFs with a more open substructure. Im-
munogold EM of oocyte nuclei revealed that actin and pro-
tein 4.1 each localized on PLFs. Whereas the actin-gold
epitopes were irregularly spaced along PLFs, the protein
4.1-gold epitopes were spaced at �120-nm intervals and
were often paired (�70 nm apart) at filament junctions.
Together, these observations make it rather unlikely that the
backbone of PLFs, exhibiting a typical thickness of 40 nm
(range, 12–100 nm), is made of F-actin filaments. Thus, it is
plausible that PLFs are heterotypic. The p270/Tpr protein
has previously been identified as a constitutive component
of pore complex-attached intranuclear filaments (Cordes et
al., 1997), and preliminary immunogold labeling studies
(cited in Kiseleva et al., 2004) also suggest that PLFs are
specifically labeled by antibodies directed against a Tpr-
related epitope. Last but not least, the Kiseleva et al. images
also suggested that some of these PLFs might interact with
more internally located nucleoplasmic structures involved
in gene transcription (i.e., Cajal bodies and snurposomes;
vide infra.) It is also noteworthy that just before the Kiseleva
et al. study, actin and protein 4.1 had been colocalized in the
nucleus of (detergent extracted) human fibroblasts by im-
muno-EM (Krause et al., 2003), although the intranuclear
location of these sites relative to the nuclear envelope was
not reported.

NUCLEAR ACTIN “RODS”

Nuclear actin “rods,” “bundles,” and “tubules” have been
described by a number of investigators (Fukui and Kat-
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sumaru, 1979; Iida et al., 1986; Iida and Yahara, 1986; Nishida
et al., 1987; Wada et al., 1998), but their supramolecular
organization has remained elusive except for one case
(Sameshima et al., 2001). These investigators have described
a new type of actin rods formed both in the nucleus and the
cytoplasm of Dictyostelium discoideum that have been impli-
cated in the maintenance of dormancy and viability at the
spore stage of the developmental cycle. Examination of their
ultrastructure has revealed these actin rods as bundles of
hexagonally packed actin tubules consisting of three actin
filaments each.

In several instances, cofilin seems to be a major compo-
nent of intranuclear actin rods (Nishida et al., 1987; Wada et
al., 1998; Aizawa et al., 1999). Moreover, because it has been
shown that Exp6 mediates export of nuclear actin in a com-
plex with profilin (Stuven et al., 2003), it would be important
to determine whether profilin is in fact a component of the
intranuclear actin bundles. In this context, profilin has been
observed in mammalian cell Cajal bodies and interchroma-
tin granule clusters (Skare et al., 2003), the latter constituting
the mammalian homologues of amphibian oocyte snurpo-
somes. In addition, actin has been reported to partially co-
localize with Cajal bodies (Gedge et al., 2005), and actin has
also been implicated in mRNA export from the nucleus
(Hofmann et al., 2001; Kimura et al., 2000). The discovery of
actin-containing filaments attached to the nuclear envelope
(Kiseleva et al., 2004) together with other recent findings
(Dahl et al., 2004; Holaska et al., 2004; Libotte et al., 2005) are
beginning to raise the possibility that there is a perinucleo-
plasmic, infranuclear envelope “cortex” of actin that dynam-
ically interacts with the nuclear lamina and nuclear pore
complexes and that plays a critical role in molecular export
from the nucleus or nucleocytoplasmic interactions. Here,
too, it is (very) early days, particularly when it comes to the
question as to the form that this putative nuclear actin cortex
assumes in terms of actin conformation, oligomerization,
and/or polymer formation.

DISTINCT ANTIGENIC SIGNATURES OF NUCLEAR
VERSUS CYTOPLASMIC ACTIN

At the time of our previous review (Pederson and Aebi,
2002), there was some evidence that nuclear actin exhibited
epitopes that are “shielded” in cytoplasmic actin and vice
versa, such that they differentially react with a monoclonal
anti-actin antibody (Gonsior et al., 1999). The hypothesis that
nuclear actin (or some fraction of the nuclear actin) pos-
sesses a distinct immunological signature, and therefore pre-
sumably a distinct conformation and/or oligomeric/poly-
meric state, has been supported in a recent study in which
two monoclonal anti-actin antibodies were compared whose
reactivities provide evidence that more than one conforma-
tion of actin is present in the nucleus of mammalian cells
(Schönenberger, Buchmeier, Sutterlin, Aebi, and Jockush,
personal communication of unpublished results). Also to be
borne in mind is the possibility that the nuclear and cyto-
plasmic populations of actin in a given cell are distinct
isoforms of the protein. Vertebrate genomes contain multi-
ple genes encoding distinct isoforms of nonmuscle (non-�)-
actin (Engel et al., 1982; Pollard, 2001) and it is certainly
possible that the major nuclear and cytoplasmic populations
differ in amino acid sequence. The fact that actin dynami-
cally exchanges between the nucleus and cytoplasm in Xe-
nopus oocytes (Clark and Merriam, 1977) does not exclude
the possibility of a second isoform being more nuclear re-
stricted. We may recall here that at least in vitro, actin can
form supramolecular assemblies that are different from the

classical F-actin filament (e.g., Millonig et al., 1988; Steinmetz
et al., 1997; Schoenenberger et al., 2002). In fact, these assem-
blies are built from an actin dimer (the so-called “lower
dimer” based on its migration in nondenaturing gel electro-
phoresis) that assumes a conformation distinct from that of
F-actin (Bubb et al., 2002; Reutzel et al., 2004).

ARE THERE OTHER ROLES FOR NUCLEAR ACTIN?

A recent study has revealed that herpesvirus particles are
transported within the nucleus of infected cells by a spatially
directed process that is dependent on metabolic energy and
blocked by the alleged myosin-targeting inhibitor 2,3-bu-
tanedione dioxime (BDM) and also by latrunculin-A (Forest
et al., 2005). The facts that BDM is no longer accepted as a
specific myosin inhibitor and that viral transport within the
nucleus was insensitive to actin depolymerization mediated
by cytochalasin D weaken the authors’ conclusion. How-
ever, that the transport was spatially directed and depen-
dent on metabolic energy were convincingly demonstrated
and certainly suggest a filament-based transport process.
These findings take on added interest in view of the fact that
several studies have revealed that host cell proteins and
RNAs move within the nucleus of mammalian cells by a
diffusion-driven process (Politz et al., 1999, 2003; Politz and
Pederson, 2000; Misteli, 2001; Shav-Tal et al., 2004), indicat-
ing that the intranuclear transport of herpesvirus capsids
may be an exception.

Yet another recent investigation has demonstrated a role
for actin polymerization in chromosome capture and meta-
phase congression during activation of meiosis I in large
oocytes in which spatial considerations had raised the pos-
sibility of a nonmicrotubule-based mechanism (Lenart et al.,
2005). Although this is a most intriguing new finding, it is
not yet clear (despite the article’s title) whether the actin that
participates in this phenomenon is intranuclear before nu-
clear envelope breakdown. The starfish oocytes used in this
study are arrested at prophase and have intact nuclear en-
velopes before activation so it is possible that the participat-
ing actin is initially cytoplasmic and moves into the former
nuclear zone, in either an unpolymerized or polymerized
state, after nuclear envelope breakdown. This caveat in no
way reduces the significance of these findings but simply
leaves open the question of whether this is a role of nuclear
actin sensu stricto. In another recent study a role of actin was
uncovered in meiotic telomere clustering in Saccharomyces
cerevisiae (Trelles-Sticken et al., 2005.) This actin-based telo-
mere clustering produces a chromosomal “bouquet” at the
at the leptotene-zygotene transition. Because this stage of
meiosis precedes nuclear envelope disassembly, this re-
cently described role of actin in telomere clustering consti-
tutes an intranuclear phenomenon.

ACTIN-BINDING PROTEINS IN THE NUCLEUS

A rather large number of actin-binding proteins has now
been identified in the nucleus of various cells, summarized
in Table 1. These are to be contrasted with nuclear actin-
related proteins, or arps, which have been reviewed in detail
recently (Blessing et al., 2004) and are not discussed further
here. As can be seen, the reported nuclear actin-binding
proteins include ones that classically bind to either G- or
F-actin, but in no case has the form of nuclear actin bound by
these proteins been unequivocally established. It is also to be
noted that some of the entries in Table 1 bind actin rather
weakly, e.g., the protein 4.1–actin interaction has a dissoci-
ation equilibrium constant in the millimolar range. The func-

Actin in the Nucleus

Vol. 16, November 2005 5057



tions of these various nuclear actin-binding proteins have
not been comprehensively studied in all cases, and those
functions listed should be viewed as simply the current
snapshot.

WHAT DO WE MOST NEED TO KNOW NEXT?

There is presently no experimental evidence for the exis-
tence of filamentous structures at sites of gene transcription,
notwithstanding controversial claims of an in vivo “nuclear
matrix,” which did not invoke actin in any case (Pederson,
1998, 2002). Nevertheless, a recent study suggests that nu-
clear actin might be a determinant in the partitioning of
certain proteins between the soluble or residual fraction
when nuclei are extracted to produce the nuclear matrix
biochemical fraction (Andrin and Hendzel, 2004).

A major issue then is to define the stoichiometry and
molecular organization of actin at sites of gene transcription.
One possibility is that to perform its role in gene transcrip-
tion, actin assembles into some sort of unconventional oli-
gomeric or polymeric structure that has not yet been ob-
served in ultrastructural studies of active genes. The finding
that (presumably monomeric) actin forms complexes with
hnRNP proteins (Percipalle et al., 2001, 2002, 2003; Kukalev
et al., 2005) suggests that numerous actin subunits might be
brought into proximity along a single nascent Pol II tran-
script, a situation possibly conducive to promoting a tem-
plate-mediated actin polymerization process yielding con-
ventional F-actin filaments or perhaps an unconventional
form of actin, such as the lower dimer, for example (Millonig
et al., 1988; Steinmetz et al., 1997; Bubb et al., 2002; Schoenen-
berger et al., 2002; Reutzel et al., 2004).

The second area in which much more needs to be learned
is how actin interacts with all three transcription machiner-
ies. This includes both the many subunits of all three poly-
merases, already well done for Pol III (Hu et al., 2004), and
the many transcription factors and other accessory proteins
for each polymerase. At the least, this may help to define
how actin works in each case, and, at the most optimistic,
such studies may reveal common features that will provide
a fundamental insight as to how this ancient protein has
collaborated with gene transcription during eukaryotic evo-
lution.

The third frontier concerns the PLFs (Kiseleva et al., 2004)
as well as nuclear actin rods. Their existence in other cell
types needs to be scrutinized and their molecular architec-

ture must be dissected. The elegantly studied Chironomus
BR2 mRNP (Daneholt, 1999) would seem to be a perfect
system for investigating this issue, hopefully capturing tem-
poral events just before the remarkable nuclear pore transits
of this RNP already captured (Stevens and Swift, 1966;
Daneholt, 1999).
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