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A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were
established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient
gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequenc-
ing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated
with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured
non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms
corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two
analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the
TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of
the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of
Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples,
but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this
study demonstrate the limitations and the potential utility of DNA microarrays for microbial community
analysis.

Although hydrocarbons such as benzene, toluene, ethylben-
zene, and the xylene isomers are among the most tractable of
environmental contaminants to eliminate by natural or stimu-
lated activities of native microbiota, their degradation is con-
strained by the natural system. For example, aerobic degrada-
tion of hydrocarbons is generally much faster than anoxic
processes (13, 25). However, most polluted environments (e.g.,
soils, sediments, and groundwater) are oxygen limited or an-
oxic. Although many pathways of aerobic degradation of hy-
drocarbons are well known, their degradation under anaerobic
conditions has been little studied. Thus, the fate of hydrocar-
bons in anoxic settings is much less predictable. Since pollutant
fate is largely controlled by the native microbiota, a more
complete understanding of community structure and activity
should provide for better prediction and process control. Since
most environmental bacteria cannot be cultured by conven-
tional culture methods (6, 29), molecular methods (often based
on 16S rRNA) have served to provide a more explicit account-
ing of the genetic diversity (6).

A variety of genetic fingerprinting and hybridization formats
have been developed to resolve sequence diversity and abun-
dance. Fingerprinting methods are often a prelude to more
quantitative methods. For example, denaturing gradient gel
electrophoresis (DGGE) of PCR-amplified fragments pro-
vides for the evaluation of genetic diversity and the monitoring
of succession in microbial communities (21, 39). However, it is
well recognized that PCR biases compromise quantitative in-
terpretation of amplified products (8, 50) and that variable
rRNA gene copy number further complicates this assessment
(22). Thus, more direct methods such as quantitative mem-
brane hybridization of total 16S rRNA extracted from envi-
ronmental samples provide a better estimate of relative abun-
dance with good sensitivity (45, 48, 49, 55). However, available
formats cannot provide for intensive monitoring.

Recently, DNA microarrays have been developed for med-
ical and diagnostic applications (e.g., detection of single-nucle-
otide polymorphism, sequencing by hybridization with oligo-
nucleotide in a matrix, and evaluation of gene expression) (14,
53, 59, 63). With this format, thousands of genes can be simul-
taneously assessed by using a large set of probes miniaturized
on one glass slide. This is also an ideal format to assess the
sequence diversity of 16S rRNA in natural environmental sam-
ples (27).
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Sulfate-reducing bacteria are thought to play an important
role in degrading hydrocarbons in marine environments be-
cause the concentration of sulfate in seawater is very high (28
mM) (31). This is supported by the enrichment and isolation of
hydrocarbon-degrading organisms under sulfate-reducing con-
ditions (9, 10, 11, 24, 28, 42, 46, 47, 51). However, their isola-
tion from anaerobic consortia is usually difficult, presumably
because they often depend on syntrophic associations (42).
Therefore, studies of their natural diversity and abundance in
relationship to hydrocarbon degradation should be greatly fa-
cilitated by application of microarray technology. The aim of
this study is the parallel detection of specific 16S rRNAs in
microbial consortia by using the novel microarray technique.

MATERIALS AND METHODS

Microorganisms. Desulfobacter latus (DSM 3381), Desulfosarcina variabilis
(DSM 2060), Desulfobacterium anilini (ATCC 49792), and Desulfovibrio africanus
(ATCC 19996) were used as reference strains in this study. They were cultured
with the sulfide-reduced bicarbonate-buffered defined medium described by
Widdel and Bak (61). The medium for seawater and freshwater contained 20 and
1 g of NaCl liter�1, respectively. The substrate for each microorganism was
added according to the recipe on the Deutsche Sammlung von Mikroorganismen
und Zellkulturen GmbH web site.

Bacterial enrichment and sample collection. The mesophilic toluene- and
ethylbenzene-degrading consortia were established from sediment obtained from
the Tokyo Bay estuary, Japan, in 1993. The enrichment of these consortia was
established by Nakagawa et al. (41). An aliquot (5 to 10 ml) of sediment was
inoculated into 115 ml of medium in 150-ml serum bottles, which were then
sealed with butyl rubber stoppers under a headspace of N2-CO2 (80:20, vol/vol).
Sulfate-reducing enrichment cultures were established with crude oil as the sole
source of carbon and energy. Incubations were carried out at 28°C in the dark.
An aliquot (3 ml) of enrichment culture was transferred to freshly prepared
medium every 4 months until the sediment was removed. From this enrichment,
toluene (TDC)- and ethylbenzene (EDC)-degrading consortia were established.
To avoid toxicity, toluene and ethylbenzene were diluted with 2,2,4,4,6,8,8-hep-
tamethylnonane as the carrier phase containing 2% (vol/vol) toluene or ethyl-
benzene (28, 47). An aliquot (5 ml) of carrier phase was added to the medium.

To confirm sulfate-reducing bacterial growth, sulfide production was occasion-
ally monitored by mixing 0.2 ml of the culture and 1 ml of sulfide detection
reagent (5 mM CuCl2, 50 mM HCl) (17), producing a dark brown color in the
presence of sulfide. The dissolved sulfide concentration in the aqueous phase of
the enrichment cultures was also colorimetrically measured by using the meth-
ylene blue reaction (16), as modified by Aeckersberg et al. (1). The sulfide
concentration data were obtained from a single experiment and measurement.

A crude oil-contaminated sediment sample was obtained at Shuaiba in the
coastal area of Kuwait in June 1995 by using a van Veen-type grab sampler. The
composition of the oil recovered from the sediment was 7% asphaltene, 43%
polar moltene, 29% saturate neutral, 6% monoaromatics, 11% diaromatics, and
4% triaromatics (52). The sample was transferred to the laboratory in an icebox
for analysis.

DNA extraction. DNA extraction from cell pellets was carried out as described
previously (62). Cells were disrupted by sodium dodecyl sulfate (SDS) and
proteinase K treatment. Polysaccharides and other contaminating macromole-
cules derived from bacterial cells were removed by using hexadecyltrimethyl
ammonium bromide (CTAB). After chloroform-isoamyl alcohol (24:1) and phe-
nol-chloroform-isoamyl alcohol (PCI; 25:24:1, pH 8.0) extractions, total nucleic
acid was recovered by ethanol precipitation.

Extraction and purification of DNA from 2 g of washed sediment were per-
formed by the hydroxylapatite (HTP) (Bio-Gel HTP Gel, Bio-Rad Laboratories,
United Kingdom) spin-column method (44). The samples were freeze-thawed in
0.9 ml of lysing buffer (50 mM Tris-HCl [pH 8.0], 0.1 mM EDTA [pH 8.0], 25%
sucrose, and 10 mM sodium pyruvate). After centrifugation, the supernatants
were removed, and the following solutions added to each tube: 0.7 ml of 120 mM
sodium phosphate (pH 8.0), 0.5 ml of PCI, and 50 �l of 20% SDS. The cells were
then mechanically disrupted by bead beating (FastPrep FP120; Bio 101, Inc.,
Vista, Calif.) for 2 min at the max speed (37).

For removal of humic substances, we used an HTP spin-column constructed
from a 2.5-ml plastic syringe (Terumo Corp., Tokyo, Japan). After loading
extracts, the column was washed four times by spinning at 100 � g for 4 min with

0.8 ml of 50 mM sodium phosphate (pH 6.8) for each wash. Following successive
passages of 0.4 ml of 140 mM potassium phosphate (pH 6.8) and 0.8 ml of 300
mM potassium phosphate (pH 6.8), total nucleic acid was recovered in two
1.5-ml microtubes by eluting twice with 0.8 ml of 300 mM potassium phosphate,
pH 6.8. Salts and humic contaminants were removed from the elution with a
2.5-ml Sephadex G-75 spin column (38), and the nucleic acid was collected by
isopropyl alcohol precipitation.

DGGE analysis. PCR for DGGE analysis was performed as described by
Muyzer et al. (40) but with the complement of probe EUB338 (4) as a forward
primer with GC-clamp (338f, 5�-CGCCCGCCGCGCCCCGCGCCCGTCCCG
CCGCCCCCGCCCG-3�). As a reverse primer, 907r (5) was used.

PCR-amplified 16S rDNA fragments were analyzed by DGGE, followed by
sequencing. DGGE was performed with a D-gene or D-code system (Bio-Rad
Laboratories, Hercules, Calif.), as described previously (39, 40). The denaturing
gradient ranged from 20 to 60%. Approximately 500 ng of PCR products and 100
ng of reamplified DNA fragments were electrophoretically fractionated for 4 h at
a constant voltage of 200 V and a temperature of 60°C. After electrophoresis, the
gels were incubated for 10 min in Milli-Q water containing ethidium bromide
(1.0 mg liter�1), rinsed for 10 min in Milli-Q water, and photographed with a UV
(302 nm) transillumination system equipped with an Atto Printgraph (Atto,
Tokyo, Japan).

DGGE bands excised from the gel were reamplified, and their purity was
verified by DGGE. After purification of PCR products with the QIAquick PCR
purification kit (Qiagen, Hiden, Germany), sequences were determined by cycle
sequencing with a dye-labeled primer.

RNA sample preparation. For native RNA from microorganisms, total RNA
was extracted from cell pellets by the low-pH bead-beating method (37, 55).

For recovery of native RNA from sediments, extraction and purification of
nucleic acids were performed by using the HTP spin-column method described
above. DNA was degraded by using DNase I as previously described (38). RNA
was recovered by PCI extraction followed by ethanol precipitation.

In vitro transcription was used to produce 16S rRNA from the major DGGE
bands and from genomic DNA of individual isolates. PCR amplification was
carried out with the primer pair of T7 promoter-conjugated 338f (5�-TGAATT
GTAATACGACTCACTATAGGGCGAATTC-3�) and 907r or T7 promoter-
conjugated BACT11F (32) and S-D-Bact-1512-a-A-16 (23) in a thermal cycler
(Thermo Hybaid US, Franklin, Mass.) in 100-�l aliquots under the following
conditions. Each tube contained 1� PCR buffer, deoxynucleoside triphosphate
mixture (2.5 mM each), 25 �M each primer, 5 U of Taq DNA polymerase
(Amersham Pharmacia Biotech Inc., Piscataway, N.J.) �l�1, and 100 ng of
template DNA. An initial denaturation step of 3 min at 95°C was followed by 30
cycles of 30 s at 95°C, 30 s at 55°C, and 1 min at 72°C, then 5 min at 72°C. RNA
was transcribed from these PCR-generated templates by using a commercial
RNA transcription kit (New England Bio Labs Inc., Beverly, Mass.) in 150-�l
aliquots according to the manufacturer’s protocol.

Oligonucleotide probe design and determination of washing temperature.
Four oligonucleotide probes were designed for the major DGGE bands by using
the Probe_Design tool of the ARB software package (O. Strunk, O. Gross, B.
Reichel, M. May, S. Hermann, N. Stuckman, B. Nonhoff, M. Lenke, A. Ginhart,
A. Vilbig, T. Ludwig, A. Bode, K.-H. Schleifer, and W. Ludwig, 1998, http://
www.mikro.biologie.tu-muenchen.de/pub/ARB). Since probe S-�-Tsrda-0641-a-
A-20 had self-complementarity near the termini, an alternative probe (probe
S-�-Tsrda-0644-a-A-19) was designed (Table 1). The Probe_Check program pro-
vided by the Ribosomal Database Project II (35) and BLAST search (3) were
both used to evaluate probe specificity. The Td (temperature of dissociation)
values and the specificities of the oligonucleotide probes were assessed by the
general method described by Zheng et al. (64). All oligonucleotide probes were
synthesized with an amino linker at the 3� end by Operon Inc. (Alameda, Calif.).
The amino linker is used for immobilization of the oligonucleotide probes within
the DNA microarrays.

Quantitative membrane hybridization. For quantitative membrane hybridiza-
tion, denatured RNA samples and a dilution series of pure culture RNA were
applied in triplicate to nylon membranes (Magna Charge nylon membrane;
Micron Separation Inc., Westboro, Mass.), and hybridization was performed as
described previously (48, 55, 64). The concentrations of all samples and refer-
ence RNAs were normalized by using the probe S-�-Univ-907-a-A-22. A known
concentration of Escherichia coli native RNA determined spectrophotometrically
was used for normalization. The hybridization signals were measured by using a
PhosphorImager (Storm 860; Molecular Dynamics, Sunnyvale, Calif.) and ana-
lyzed with the ImageQuant software package (Molecular Dynamics). The results
were expressed as the fraction of target 16S rRNA relative to total eubacterial
rRNA quantified by using probe S-D-Bact-0338-a-A-18.
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DNA microarray fabrication. The DNA microarrays used in this study con-
sisted of miniaturized oligonucleotide arrays in which oligonucleotide probes
were individually immobilized within small polyacrylamide gel pads affixed to a
glass slide. A matrix of glass-immobilized gel elements (100 by 100 by 20 �m
each) spaced 100 �m apart was manufactured with photopolymerization (63) and
activated as described previously (33). We have incorporated four new oligonu-
cleotide probes and six previously published probes into the DNA microarray
used in this study (Table 1). Approximately 6 nl of individual 1 mM amino-
oligonucleotide solutions was applied to each gel pad containing aldehyde groups
according to the procedure described previously (63).

RNA fragmentation and labeling. About 10 to 20 �g of either native or
transcribed rRNA was heated at 95°C for 5 min and fragmented by addition of
60 mM MgCl2 (total volume, 20 �l) and incubation at 95°C for 40 min. Phos-
phatase treatment was performed by addition of 3 �l of 10� alkaline phospha-
tase buffer (Promega, Madison, Wis.) and 0.2 �l of shrimp alkaline phosphatase
(1 U �l�1) (Promega) and heating at 37°C for 30 min. Oxidation of the 3�-end
ribosyl moiety was conducted by addition of 6.5 �l of 100 mM sodium periodate
and incubation at room temperature for 20 min.

Labeling was carried out by addition of 3.5 �l of 100 mM lissamine rhodamine
B ethylenediamine (Molecular Probes, Eugene, Oreg.) and 1.65 �l of 1 M
HEPES (pH 7.5) and heating at 37°C for 1 h. Reduction of the Schiff base was
conducted by addition of 6.7 �l of 200 mM sodium cyanoborohydride and
incubation at room temperature for 30 min. Labeled RNA was precipitated by
addition of 15 volumes of 2% lithium perchlorate in acetone and chilling at
�20°C for 20 min. After centrifugation at 14,000 rpm for 5 min, RNA pellets
were washed twice with acetone, dried at 55°C for 10 min, and suspended in 20
�l of nuclease-free water (43).

Microarray and image analysis. An aliquot (40 �l) of hybridization solution
containing labeled RNA [10 �g of native RNA, 5 �g of transcribed (11-
1512)RNA, or 3 �g of transcribed (338-927)RNA], 60% formamide, 0.9 M NaCl,
and 20 mM Tris-HCl buffer (pH 8.0) was passed through a 0.22-�m filter
(Ultra-MC; Millipore) to remove particulates, then heated at 95°C for 3 min, and
held on ice. An aliquot (35 �l) of the hybridization solution was added to a
hybridization chamber (Grace Biolabs, Bend, Oreg.), and the hybridization
chamber was affixed to the microarray. The microarray was allowed to hybridize
at room temperature for at least 16 h in the dark. After the microchamber and

TABLE 1. Probe used in this study

Probea and microorganisms Target sequencee GC%

Membrane DNA microarray

ReferenceTd
(°C)

Tw
(°C)

%
Washed
off at Tw

Td
(°C)

Tw
(°C)

%
Washed
off at TW

S-*-Tsrda-0641-a-A-20 5�CATACTCAAGCCTGGCAGTA3� 50.0 46
T1 3�GUAUGAGUUCGGUCCGUCAU5� 54 58 70 42 46 70 This study
Desulfosarcina variabilis ––––––––––––––U––––– 52 96 36 88

S-*-Tsrda-0644-a-A-19 5�CCCATACTCAAGCCTGGCA3� 57.9 46
T1 3�GGGUAUGAGUUCGGACCGU5� 51.5 60 77 44 46 60 This study
Desulfosarcina variabilis ––––––––––––––––U–– 51.5 100 38.5 79

S-*-Edn-0656-a-A-18 5�CGTCTTCCCCCACCTTAC3� 61.1 46
E1 3�GCAGAAGGGGGUGGAAUG5� 66 66 50 40.5 46 68 This study
Lactobacillus catenaforme ––G–––––A––G––––––

S-*-Edsrb-0656-a-A-19 5�CGAATCTCCTCTCCCATAC3� 52.6 46
E2 3�GGUUAGAGGAGAGGGUAUG5� 62.5 53 40.5 46 68
T1 –––G–AG–––––––––––– 63 39.5 46 98 This study
Desulfobacterium anilini ––G––––––––––––––-– 54.5 100 33 77

S-*-Univ-1390-a-A-18b 5�GACGGGCGGTGTGTACAA3� 61.1 44 46 64

S-*-Univ-0907-a-A-22 5�CCCCGTCAATTCCTTTGAGTTT3� 45.5 46
T1 3�GGGGCAGUUAAGGAAACUCAAA5� 53 6 47 46 36
E1 –––––––––––––––––––––– 45.6 46 54
E2 –––––––––––––––––––––– 42 45 46 55 5
Escherichia coli ––––––––––––T––––––-–– 51 6
Desulfobotulus sapovorans –––––––––––––––––––––– 61 4
Methanococcus thermolithotrophicus –––––G––––––––––U––––– 51 6

S-D-Bact-0338-a-A-18 5�GCTGCCTCCCGTAGGAGT3� 66.7 46
T1 3�CGACGGAGGGCAUCCTCA5� 44.5 46 57
E1 –––––––––––––––––– 54 43 46 62 4
E2 –––––––––––––––––– —c 46 —

S-D-Bact-0927-a-A-17b 5�ACCGCTTGTGCGGGCCC3� 76.5 46 26

S-F-Dsv-0687-a-A-16 5�TACGGATTTCACTCCT3� 43.8 46
Desulfovibrio africanus 3�AUGCCUAAAGUGAGGA5� 44 NSd NS 19
Geobacter metallireducens –––––––––––––––– NS NS

S-*-Dsb-0804-a-A-18 5�CAACGTTTACTGCGTGGA3� 50.0 46
Desulfobacter latus 3�GUUGCAAAUGACGCACCU5� 46 19
T1 –––––––––––––––––– 39.5 46 85

a Probes are named according to the Oligonucleotide Probe Database (2).
b These probes were not used in slot-blot hybridization.
c —, Td was not determined because the melting profile obtained was straight line and did not show a sigmoid curve.
d NS, no signal.
e Underlined positions are positions that may cause self-complementality.
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hybridization solution were removed, the microarray was soaked in warm wash-
ing buffer (20 mM Tris-HCl buffer [pH 8.0], 10 mM NaCl, and 5 mM EDTA [pH
8.0]) at 46°C for 5 min. The microarray was then immediately covered with a
chamber filled with 100 �l of washing buffer.

The signal of each probe hybridized with fragmented and labeled rRNA was
detected by using a custom-made epifluorescence microscope equipped with a
charge-coupled device camera (Princeton Instruments, Princeton, N.J.), and the
intensity of each signal was measured at room temperature with WinView soft-
ware (Princeton Instruments). Exposure times were in the range of 0.1 to 1 s,
depending on the signal intensity. When melting curves were determined, the
microarray was washed at room temperature for 1 min two times and then
covered with the chamber filled with 100 �l of washing buffer. The temperature
of the microscope slide was controlled by a thermotable mounted on a stage of
the epifluorescence microscope and connected with a thermoelectric tempera-
ture controller (LFI-3751; Wavelength Electronics, Inc., Bozeman, Mont.) and a
waterbath (Cole Parmer Instruments Co., Chicago, Ill.). Melting profiles for all
probes were monitored and recorded at 2°C intervals from 10 to 70°C by in-
creasing the temperature at 1°C per min.

Nucleotide sequence accession numbers. The partial rRNA gene sequences
have been deposited in the GenBank, EMBL, and DDBJ nucleotide sequence
databases under accession nos. AB062689, AB062688, and AB062924.

RESULTS AND DISCUSSION

Sulfide production and hydrocarbon degradation in enrich-
ments. We enriched the marine sediment, which was obtained
from Tokyo Bay, by adding toluene (2% [vol/vol] in the carrier
phase) or ethylbenzene (2% [vol/vol] in the carrier phase) as a
sole electron donor and carbon source under sulfate-reducing,

anaerobic conditions. The sulfide production of these enrich-
ment cultures was monitored with respect to growth on hydro-
carbon. In the toluene-degrading consortium (TDC), the
amount of toluene decreased from 1.53 to 0.72 mmol, associ-
ated with 2.92 mmol of sulfide production after 90 days of
incubation. In the ethylbenzene-degrading consortium (EDC),
the concentration of sulfide increased from 0.39 mmol on day
15 to 1.63 mmol on day 49, then reached 2.14 mmol after 82
days. The amount of ethylbenzene decreased from 0.95 mmol
on day 5 to 0.38 mmol on day 82. Attempts to isolate pure
cultures from TDC and EDC have so far been unsuccessful.

DGGE analysis and sequencing. DGGE patterns of TDC at
30 days, EDC at 30 and 60 days, and oil-contaminated sedi-
ment are shown in Fig. 1 (lanes 2, 5, 6, and 7, respectively). A
few conspicuous bands (T-1 in TDC and E-1 and E-2 in EDC)
were observed on the DGGE gel. This result indicated that
specific microorganisms were selectively enriched. The DGGE
pattern of the DNA amplicon from the oil-contaminated sed-
iment was faint, and no conspicuous bands were detected.

The bands corresponding to T-1, E-1, and E-2 were not
visible in the sediment sample. DNA fragments were excised
from the major bands on the DGGE gel (T-1, E-1, and E-2)
and reamplified (Fig. 1, lanes 1, 3, and 4, respectively). The
sequences of these 16S rRNA fragments (338 to 927, based on
E. coli numbering) were determined. The sequence of T-1 was

FIG. 1. DGGE analysis of PCR-amplified 16S rDNA fragments obtained from TDC and EDC, microbial populations in an oil-contaminated
sediment at the coastal area of Kuwait, and the major DGGE bands. Inverted image of the DGGE gel stained by ethidium bromide. Lane 1,
reamplified band T-1; lane 2, TDC (30 days); lane 3, reamplified band E-1; lane 4, reamplified band E-2; lane 5, EDC (30 days); lane 6, EDC (60
days); lane 7, Kuwaiti sediment. 16S rDNA fragments of TDC, EDC, and oil-contaminated sediment were obtained by PCR amplification of
genomic DNA (lanes 2, 5, 6, and 7). Reproducibility of DGGE analysis was confirmed by three replications of PCR.
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most similar to that of strain oXyS1 (99.8%), which originated
from the water phase of an oil tank (28). Strain oXyS1 is
affiliated with a relatively deep-branching lineage within the
family Desulfobacteriaceae. Growth on toluene was also ob-
served for strain oXyS1.

Even though utilization of ethylbenzene has not previously
been detected under mesophilic sulfate-reducing conditions
(47, 51), we successfully enriched for sulfate-reducing bacteria
by using ethylbenzene as a sole energy and carbon source.
DGGE analysis followed by sequencing revealed that the se-
quence of E-2 was most similar to that of mXyS1 (98.0%),
affiliated with the family Desulfobacteriaceae. mXyS1 is a novel
type of marine sulfate-reducing bacterium capable of complete
anaerobic degradation of m-xylene (28). The sequence of E-1
showed highest similarity (84.6%) to an uncultured soil bacte-
rium, PBS-21, loosely affiliated with a deep-branching lineage
within the order Spirochaetales.

These results are consistent with the finding that all known
sulfate-reducing bacteria enriched on aromatic compounds are
affiliated with the family Desulfobacteriaceae (47). Moreover,
Phelps et al. (42) reported that 4 of 12 clones isolated from a
sulfate-reducing consortium enriched with benzene belonged
to the family Desulfobacteriaceae.

Quantitative membrane hybridization. In order to deter-
mine the abundance of the putative hydrocarbon-degrading
bacteria revealed by the DGGE analysis, we designed four
oligonucleotide probes based on the sequences of the major

DGGE bands (Table 1). In addition, probes S-D-Bact-0338-a-
A-18, S-F-Dsv-0687-a-A-16, and S-�-Dsb-0804-a-A-18 were
also used. Probe S-�-Univ-0907-a-A-22 was used for normal-
ization. The final washing temperature (Tw) for each probe
(Table 1) was empirically determined by a temperature of
dissociation (Td) study and specificity study as previously de-
scribed by Zheng et al. (63). Normalized Td curves of these
probes were obtained with high reproducibility (Fig. 2). Table
1 lists the targets, the sequence alignments, and the amount of
32P-labeled probes dissociated at each specific wash condition
(Tw). Tw for probe S-�-Univ-0907-a-A-22 corresponded to the
temperature at which an almost equal percentage of the duplex
between any 16S rRNA target and probe remained intact, but
was higher than the temperature causing nonspecific binding.

Probes S-�-Tsrda-0641-a-A-20 and S-�-Tsrda-0644-a-A-19,
which target the same region of the 16S rRNA, showed differ-
ent melting curves. Also, the initial signal intensity of probe
S-�-Tsrda-0641-a-A-20 was 100 times lower than that of probe
S-�-Tsrda-0644-a-A-19. This difference was attributed to self-
complementarity (Table 1). For probe S-�-Tsrda-0641-a-A-20,
the Td value for the nontarget organism containing one mis-
match was only 2°C lower than that for the target organism
(Fig. 2A). Since a Tw achieving complete discrimination be-
tween the target and the nontarget containing one mismatch
would reduce signal intensity by 90%, 58°C was selected as the
Tw. Therefore, the signal of single-mismatch nontargets would
be slightly above background (96% washed off) (Table 1).

FIG. 2. Normalized Td (temperature of dissociation) curves determined by using transcribed RNA (338 to 927, E. coli numbering) of target 16S
rDNA fragments and native RNA of nontarget microorganisms. Numbers in parentheses indicate the number of mismatches between probe and
target sequences. All curves shown are the result of duplicate experiments. Only target RNA was used for probe S-�-Edn-0656-a-A-18.
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For probe S-�-Tsrda-0644-a-A-19, the Td values of the target
organism and the nontarget organism with one mismatch were
not different. However, the melting curve of the duplex be-
tween S-�-Tsrda-0644-a-A-19 and the target (T-1) had a shoul-
der at around 53°C (Fig. 2B). Due to this shoulder, it was
possible to determine a Tw that would result in reasonable
hybridization signals. Probes S-�-Edn-0656-a-A-18 and S-�-
Edsrb-0656-a-A-19 showed ideal melting curves (Fig. 2C and
D). Their Td values were 66 and 63°C, respectively (Table 1).
These probes could distinguish between the target organisms
and the nontarget reference organisms with one or more mis-
matches by washing at their respective Td values.

Figure 3 displays the relative fraction of 16S rRNA extracted
directly from microbial populations comprising the toluene
(TDC)- and ethylbenzene (EDC)-degrading consortia and the
oil-contaminated sediment determined by quantitative mem-
brane hybridization. This analysis revealed that T-1 and E-1
and E-2 were members of the TDC and EDC, respectively.
This was consistent with the results of DGGE analysis. The
signals of the probes for T-1 were negligible in EDC and those
for T-1, E-1, and E-2 were negligible in the oil-contaminated
sediment.

Since the dissimilatory, gram-negative sulfate-reducing bac-
teria can be roughly divided into the families Desulfovibrion-
aceae and Desulfobacteriaceae (18), we used general probes for
these groups to encompass most of the gram-negative sulfate-
reducing bacteria mesophilic group. The signals of probe S-F-

Dsv-0687-a-A-16 accounted for 11.1 to 14.4% of total eubac-
terial 16S rRNA in all samples. However, this probe hybridizes
to some species of Geobacteriaceae (20), and the contribution
of these types in the samples is unknown. The group hybrid-
izing with probe S-�-Dsb-0804-a-A-18 was abundant in all sam-
ples, consistent with the previously reported finding that most
aromatic compound-degrading bacteria belong to the family
Desulfobacteriaceae (42, 47).

In TDC, probes S-�-Tsrda-0641-a-A-20 and S-�-Tsrda-0644-
a-A-19 (targeting T-1) gave positive signals and accounted for
16.3 and 19.2% of total 16S rRNA, respectively. There were no
significant differences between the results with probes S-�-
Tsrda-0641-a-A-20 and S-�-Tsrda-0644-a-A-19 in any of the
samples. In EDC, the signal intensity of probe S-�-Edn-0656-
a-A-18 increased markedly from 7.2% on day 30 to 19.0% on
day 60. The signal with probe S-�-Edsrb-0656-a-A-19 did not
change significantly, from 41.4% to 39.1%, during this period.

The Desulfobacter group was not more abundant in EDC
than in TDC. McMahon et al. (36) demonstrated the differ-
ence caused by the use of in vitro-transcribed and native RNAs
for membrane hybridization. They concluded that transcribed
RNA could be used to determine Td values because differences
were relatively small. They also mentioned that when in vitro-
transcribed rRNA was used as a standard for quantitative
hybridization, the population was consistently underestimated.
The ratio of T-1, E-1, and E-2 to total bacteria might be
underestimated because we used transcribed RNA as a stan-

FIG. 3. Results of quantitative membrane hybridization signals obtained with specific probes were normalized to the hybridization signal of
probe S-D-Bact-0338-a-A-18. The results are expressed as a percentage of the total eubacterial 16S rRNA and represent the mean values of
triplicate applications from a single sample. Vertical bars indicate maximum and minimum ratios of specific probes to eubacterial probe
(S-D-Bact-0338-a-A-18) calculated by all combinations as follows: aA�1, aB�1, aC�1, bA�1, bB�1, bC�1, cA�1, cB�1, and cC�1, where the
lowercase letters represent the signal intensities of each specific probe in triplicate (a, b, and c), and the capital letters represent the signal
intensities of eubacterial probe in triplicate (A, B, and C). RNA samples were obtained from TDC, EDC, and oil-contaminated sediment in the
coastal area of Kuwait.
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dard of the populations corresponding to the major DGGE
bands. Nevertheless, we demonstrated that the combination of
DGGE and quantitative membrane hybridization without iso-
lation could be applied more generally to the quantification of
slow-growing environmental populations such as hydrocarbon-
degrading sulfate-reducing bacteria.

It has been estimated that 6 to 10 million barrels of crude oil
were released into the coastal area of Kuwait during the 1991
Gulf War (56). Oil-contaminated sediment from the coast of
Kuwait was studied as an example of a bioremediating system
inhabited by complex microbial communities. Application of
membrane hybridization with the above probes to characterize
oil-contaminated marine sediments from the coast of Kuwait
revealed the presence of hydrocarbon-degrading sulfate-reduc-
ing bacteria. This sediment contained more than 1 mg of oil
g�1 (wet weight). Forty percent of total bacteria (total 16S
rRNA) were detected with the probes used in this study. The
E-2 target population, which may degrade ethylbenzene, com-
prised 4.3% of rRNA extracted from this sediment. The family
Desulfobacteriaceae (probe S-�-Dsb-0804-a-A-18) accounted
for 21.1%. Members of this family are known to degrade the
aromatic compounds present in the contaminated sediment.
Times series analysis from November 1993 to June 1995 re-
vealed that the asphaltene content decreased from 12 to 2%
and the monoaromatic component (containing toluene and
ethylbenzene) remained almost constant at 10% during this
period (52). These results indicate that the asphaltene compo-
nent was degraded without accumulation of monoaromatic
compounds, suggesting that biodegradation of aromatic com-
pounds was occurring simultaneously.

Application of DNA microarrays. Optimal washing condi-
tions for the microarray used in this study were established by
first determining the melting profiles of all probe-target du-
plexes. The design of the DNA microarray and the numbers of
mismatches are listed in Table 2. Nontarget RNAs having
three or more mismatches were completely dissociated follow-
ing two washings at room temperature for 1 min. However, the
duplex between probes S-�-Edsrb-0656-a-A-19 and T-1 was
not dissociated under this condition. A single washing temper-
ature of 46°C was established based on the melting profile (Fig.
4 and Table 1). The optimal washing time was determined by
evaluating dissociation kinetics for a series of washing times

(data not shown). In summary, these studies showed that wash-
ing for 5 min was sufficient to eliminate nontargets containing
three or more mismatches. However, washing for longer than
5 min reduced signal intensities without improvement in spec-
ificity. Thus, a washing protocol of 46°C for 5 min was used for
further experiments.

The RNAs transcribed from DGGE fragments hybridized
with the complementary probes under the washing condition
defined above (Fig. 5). Universal and eubacterial probes gave
positive signals for all samples. Since the RNAs of DGGE
bands were transcribed from the DNA fragments amplified
with the 338f-907r primer pair, probes S-�-Univ-1390-a-A-18
and S-D-Bact-0927-a-A-17 did not hybridize for lack of target
sequences. In contrast, the failure of probe S-F-Dsv-0687-a-
A-16 to hybridize is attributed to the lower stability of this
short probe under the conditions used in this study (43). The
effect of probe length and sequence composition on DNA
microarray hybridization is under investigation.

This microarray was then used to characterize enrichment
and environmental samples (Fig. 6). The in vitro-transcribed
RNA was used to increase the sensitivity of analysis for some
samples. The hybridization of the TDC sample with native and
in vitro-transcribed RNAs showed comparable patterns, al-
though the native RNA (including 23S and 5S rRNA) gener-
ated a higher background than in vitro-transcribed RNA (Fig.
6A and B). Since EDC and the oil-contaminated sediment
generally did not yield sufficient native RNA to hybridize to the
DNA microarray, transcribed RNA was used to amplify the
signal. Each yielded characteristic patterns.

The equal variance and significant differences of signal in-
tensities between specific probes and blank were verified by
two-tailed F test [F (3, 19; 0.005)] and t test [t (22, 0.01)],
respectively. Probes S-�-Tsrda-0641-a-A-20 and S-�-Tsrda-
0644-a-A-19 gave positive signals for the TDC sample (P �
0.01) (Fig. 6A and B) and probes S-�-Edn-0656-a-A-18 and
S-�-Edsrb-0656-a-A-19 gave positive signals for EDC (P �
0.01) (Fig. 6C and D). For the Kuwaiti sediment, only the
universal and eubacterial probes gave positive signals (P �
0.01) (Fig. 6E). Although the Desulfobacter group (hybridized
by probe S-�-Dsb-0804-a-A-18) accounted for more than 50%
of bacterial 16S rRNA as revealed by membrane hybridization
(Fig. 3), the signal was not detected (Fig. 6). Possible reasons
for this observation include the low Td value of probe S-�-Dsb-
0804-a-A-18 and the length of the transcribed target RNA
used in the enrichment and environmental samples.

The Td value of probe S-�-Dsb-0804-a-A-18 was the lowest
of all the probes used in this study (Table 1). This means a
lower affinity between the probe and target RNA. In addition,
probe specificity on the DNA microarray was checked by using
short fragments (338 to 927, E. coli numbering) (Fig. 5),
whereas almost full-length transcribed 16S rRNA (11 to 1512,
E. coli numbering) was used to compare with native intact 16S
rRNA when we applied the DNA microarray to enrichment
and environmental samples (Fig. 6). We suggest that the frag-
mentation of long transcribed 16S rRNA molecules may have
been less efficient than for short fragments and that the target
site of probe S-�-Dsb-0804-a-A-18 may have been more diffi-
cult to fragment than other regions due to its three-dimen-
sional structure. We need further optimization to design good
probes for DNA microarray hybridization.

TABLE 2. Probe names, number of mismatches, and locations on
DNA microarray

Probe
No. of mismatches Location

T1 E1 E2 Column Row

S-*-Tsrda-0644-a-A-19 0 7 4 1 A
S-*-Tsrda-0641-a-A-20 0 6 5 2 A
S-*-Edn-0656-a-A-18 6 0 6 3 A
S-*-Edsrb-0656-a-A-19 3 7 0 4 A
S-*-Dsb-0804-a-A-18 0 3 2 3 B
S-F-Dsv-0687-a-A-16 3 5 3 4 B
S-D-Bact-0338-a-A-18 0 0 0 3 C
S-D-Bact-0927-a-A-17 0 0 0 4 C
S-*-Univ-0907-a-A-22 —a — — 3 D
S-*-Univ-1390-a-A-18 — — — 4 D

a —, transcribed rRNA (338 to 927, E. coli numbering) T-1, E-1, and E-2 do
not contain the target sites.
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The unambiguous analysis of natural systems requires an
understanding of mismatch discrimination. In particular, sin-
gle-mismatch discrimination is often difficult to achieve (30, 48,
55, 64). Both probes S-�-Tsrda-0644-a-A-19 and S-�-Tsrda-

0641-a-A-20 contain one U-G mismatch to D. variabilis located
3 and 6 bases from the 5� end of the probes, respectively (Table
1). Although the target with one mismatch could not be com-
pletely eliminated, the melting profile of the one-mismatch

FIG. 4. DNA microarray temperature-of-dissociation study for transcribed RNA fragments derived from DGGE bands on DNA microarrays.
Numbers in parentheses indicate the number of mismatches between probe and target sequences. All elution curves represent the means of four
replicate experiments on one chip. Hybridization to RNA containing more than three mismatches could not be detected at the beginning of the
melting curve except for the duplex of S-�-Edsrb-0656-a-A-19 and T-1. A washing temperature of 46°C (vertical line) was used to achieve suitable
mismatch discrimination.

FIG. 5. Hybridization of lissamine rhodamine-labeled RNA to DNA microarray. RNAs (338 to 927, E. coli numbering) were transcribed from
PCR-amplified 16S rDNA fragments from the DGGE gel, fragmented with magnesium, and labeled with lissamine rhodamine. Probes, their
locations, and the number of mismatches between each probe and the RNA are shown in Table 2. The DNA microarray was hybridized to in
vitro-transcribed 16S rRNA fragments from bands T-1, E-1, and E-2, shown in panels T-1, E-1, and E-2, respectively.
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duplex differed from that of the perfect-match duplex. The Td

values for the perfect-match duplexes were 42.0 and 44.0°C, 3.5
and 5.5°C higher than those for the one-mismatch duplexes,
respectively. This could provide a basis to distinguish between
perfect-match and single-mismatch duplexes by further opti-
mization of hybridization and washing condition (e.g., form-
amide and salt concentration in buffer) (57). Alternatively,
monitoring the dissociation kinetics of all array elements si-
multaneously could also provide improved discrimination.

DNA microarrays have been used mainly as a tool to deter-
mine microbial species (7, 15, 27, 34) and to profile gene
expression of microorganisms (60). There are few studies of
the application of DNA microarrays to analysis of bacterial
communities (12, 54). A general objective of our study was to
evaluate, in a comparative framework, alternative methods of
community analysis. The same microbial communities were
characterized by using DGGE, membrane hybridization, and
DNA microarray hybridization. All methods were consistent,
showing that T-1, E-1, and E-2 existed in our enrichment
cultures (Fig. 1, 3, and 6), even though quantification of rela-
tive abundance is not possible with DGGE and has yet to be
established for DNA microarray hybridization.

Although DNA microarray technology is a rapid and high-
throughput format for nucleic acid hybridization, this tech-
nique still has limitations. However, technical issues such as
sample preparation, sensitivity, and one-mismatch discrimina-
tion will be resolved in the near future. For example, the
importance of the location of mismatches in probe-target du-
plexes has been clarified by Urakawa et al. (58). This should be
helpful information for the design of probes for microarray
hybridization. This study is the first to compare the novel
microarray technique and other methods, and it demonstrates
that the target populations were qualitatively detected by mi-
croarray hybridization. We anticipate that the DNA microar-
ray technology used in this study will ultimately provide a rapid
and high-throughput platform for microbial population analy-
sis.
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