Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1967 Jun;103(3):863–876. doi: 10.1042/bj1030863

The effects of sodium ions and potassium ions of glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors

A A Eddy 1, Máire F Mulcahy 1,*, Patricia J Thomson 1
PMCID: PMC1270492  PMID: 6072273

Abstract

1. The initial rate, v, of glycine uptake by ascites-tumour cells respiring their endogenous nutrient reserves was studied as a function of the respective extracellular concentrations of glycine, Na+ and K+. With the extracellular concentration of Na++K+ constant at 158m-equiv./l. and that of glycine either 4 or 12mm, v tended to zero as the extracellular concentration of Na+ approached zero. Glycine appeared to enter the cells as a ternary complex with a carrier and Na+. K+ competed with Na+ for one of the carrier sites, whereas glycine was bound at a second site. The values of the five relevant binding constants showed that the two sites interacted. 2. The glycine uptake rate at various extracellular concentrations of glycine and Na+ was scarcely affected by starving the cells for 30min. in the presence of 2mm-sodium cyanide provided that cellular Na+ and K+ contents were kept at the normal values. When the cells took up Na+, however, v decreased approximately threefold. 3. When their Na+ content was relatively small and the extracellular concentration of Na+ was large, the starved cells accumulated glycine in the presence of cyanide for about 15min. Glycine then tended to leave the cells. An average of about 5μmoles of glycine/ml. of cell water was taken up from a 1mm solution, representing about 20% of the accumulation observed during respiration. Studies with fluoride, 2,4-dinitrophenol and other metabolic inhibitors supported the view that ATP and similar compounds were not implicated. The relation between the transient accumulation of glycine that occurred in these circumstances and the normal mode of active transport was not established.

Full text

PDF
873

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BITTNER J., HEINZ E. DIE WIRKUNG VON G-STROPHANTIN AUF DEN GLYZINTRANSPORT IN EHRLICH-ASCITES-TUMORZELLEN. Biochim Biophys Acta. 1963 Aug 13;74:392–400. doi: 10.1016/0006-3002(63)91383-0. [DOI] [PubMed] [Google Scholar]
  2. CHRISTENSEN H. N., RIGGS T. R. Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell. J Biol Chem. 1952 Jan;194(1):57–68. [PubMed] [Google Scholar]
  3. CHRISTENSEN H. N., RIGGS T. R., FISCHER H., PALATINE I. M. Amino acid concentration by a free cell neoplasm; relations among amino acids. J Biol Chem. 1952 Sep;198(1):1–15. [PubMed] [Google Scholar]
  4. CSAKAY T. Z. A possible link between active transport of electrolytes and nonelectrolyes. Fed Proc. 1963 Jan-Feb;22:3–7. [PubMed] [Google Scholar]
  5. CSAKY T. Z. Effect of cardioactive steroids on the active transport of non-electrolytes. Biochim Biophys Acta. 1963 Jul 2;74:160–162. doi: 10.1016/0006-3002(63)91350-7. [DOI] [PubMed] [Google Scholar]
  6. Christensen H. N., Liang M. On the nature of the "non-saturable" migration of amino acids into Ehrlich cells and into rat jejunum. Bibl Laeger. 1966 Mar 14;112(3):524–531. doi: 10.1016/0926-6585(66)90255-x. [DOI] [PubMed] [Google Scholar]
  7. Crane R. K., Forstner G., Eichholz A. Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. Biochim Biophys Acta. 1965 Nov 29;109(2):467–477. doi: 10.1016/0926-6585(65)90172-x. [DOI] [PubMed] [Google Scholar]
  8. FLORINI J. R., VESTLING C. S. Graphical determination of the dissociation constants for two-substrate enzyme systems. Biochim Biophys Acta. 1957 Sep;25(3):575–578. doi: 10.1016/0006-3002(57)90529-2. [DOI] [PubMed] [Google Scholar]
  9. FOX M., THIER S., ROSENBERG L., SEGAL S. IONIC REQUIREMENTS FOR AMINO ACID TRANSPORT IN THE RAT KIDNEY CORTEX SLICE. I. INFLUENCE OF EXTRACELLULAR IONS. Biochim Biophys Acta. 1964 Jan 27;79:167–176. doi: 10.1016/0926-6577(64)90049-x. [DOI] [PubMed] [Google Scholar]
  10. GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
  11. GLYNN I. M. TRANSPORT ADENOSINETRIPHOSPHATASE' IN ELECTRIC ORGAN. THE RELATION BETWEEN ION TRANSPORT AND OXIDATIVE PHOSPHORYLATION. J Physiol. 1963 Nov;169:452–465. doi: 10.1113/jphysiol.1963.sp007272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GONDA O., QUASTEL J. H. Effects of ouabain on cerebral metabolism and transport mechanisms in vitro. Biochem J. 1962 Aug;84:394–406. doi: 10.1042/bj0840394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GROBECKER H., KROMPHARDT H., MARIANI H., HEINZ E. UNTERSUCHUNGEN UEBER DEN ELEKTROLYTHAUSHALT DER EHRLICH-ASCITES-TUMORZELLE. Biochem Z. 1963 Jul 26;337:462–476. [PubMed] [Google Scholar]
  14. HEINZ E., MARIANI H. A. Concentration work and energy dissipation in active transport of glycine into carcinoma cells. J Biol Chem. 1957 Sep;228(1):97–111. [PubMed] [Google Scholar]
  15. HEINZ E. The exchangeability of glycine accumulated by carcinoma cells. J Biol Chem. 1957 Mar;225(1):305–315. [PubMed] [Google Scholar]
  16. HELMREICH E., KIPNIS D. M. Amino acid transport in lymph node cells. J Biol Chem. 1962 Aug;237:2582–2589. [PubMed] [Google Scholar]
  17. HEMPLING H. G., HARE D. The effect of glycine transport on potassium fluxes in the Ehrlich mouse ascites tumor cell. J Biol Chem. 1961 Sep;236:2498–2502. [PubMed] [Google Scholar]
  18. Inui Y., Christensen H. N. Discrimination of single transport systems. The Na plus-sensitive transport of neutral amino acids in the Ehrlich cell. J Gen Physiol. 1966 Sep;50(1):203–224. doi: 10.1085/jgp.50.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. JACQUEZ J. A. Transport and exchange diffusion of L-tryptophan in Ehrlich cells. Am J Physiol. 1961 May;200:1063–1068. doi: 10.1152/ajplegacy.1961.200.5.1063. [DOI] [PubMed] [Google Scholar]
  20. JOHNSTONE R. M., SCHOLEFIELD P. G. THE NEED FOR IONS DURING TRANSPORT AND EXCHANGE DIFFUSION OF AMINO ACIDS INTO EHRLICH ASCITES CARCINOMA CELLS. Biochim Biophys Acta. 1965 Jan 25;94:130–135. doi: 10.1016/0926-6585(65)90016-6. [DOI] [PubMed] [Google Scholar]
  21. JOHNSTONE R. M., SCHOLEFIELD P. G. The influence of amino acids and antimetabolities on glycine retention by Ehrlich ascites carcinoma cells. Cancer Res. 1959 Dec;19:1140–1149. [PubMed] [Google Scholar]
  22. Jacquez J. A., Sherman J. H. The effect of metabolic inhibitors on transport and exchange of amino acids in Ehrlich ascites cells. Biochim Biophys Acta. 1965 Sep 27;109(1):128–141. doi: 10.1016/0926-6585(65)90097-x. [DOI] [PubMed] [Google Scholar]
  23. KROMPHARDT H., GROBECKER H., RING K., HEINZ E. UBER DEN EINFLUSS VON ALKALI-IONEN AUF DEN GLYCINTRANSPORT IN EHRLICH-ASCITES-TUMORZELLEN. Biochim Biophys Acta. 1963 Aug 13;74:549–551. doi: 10.1016/0006-3002(63)91400-8. [DOI] [PubMed] [Google Scholar]
  24. Kuchler R. J., Marlowe-Kuchler M. The transport and accumulation of alpha-aminoisobutyric acid into l-strain mouse fibroblasts. Biochim Biophys Acta. 1965 May 25;102(1):226–234. doi: 10.1016/0926-6585(65)90215-3. [DOI] [PubMed] [Google Scholar]
  25. NATHANS D., TAPLEY D. F., ROSS J. E. Intestinal transport of amino acids studies in vitro with L-[1311] monoiodotyrosine. Biochim Biophys Acta. 1960 Jul 1;41:271–282. doi: 10.1016/0006-3002(60)90010-x. [DOI] [PubMed] [Google Scholar]
  26. OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
  27. Quastel J. H. Molecular transport at cell membranes. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):169–196. doi: 10.1098/rspb.1965.0065. [DOI] [PubMed] [Google Scholar]
  28. RIGGS T. R., WALKER L. M., CHRISTENSEN H. N. Potassium migration and amino acid transport. J Biol Chem. 1958 Dec;233(6):1479–1484. [PubMed] [Google Scholar]
  29. ROSENBERG L. E., BERMAN M., SEGAL S. Studies of the kinetics of amino acid transport, incorporation into portein and oxidation in kidney-cortex slices. Biochim Biophys Acta. 1963 Jun 4;71:664–675. doi: 10.1016/0006-3002(63)91140-5. [DOI] [PubMed] [Google Scholar]
  30. TENENHOUSE A., QUASTEL J. H. Amino acid accumulation in Ehrlich ascites carcinoma cells. Can J Biochem Physiol. 1960 Nov;38:1311–1326. [PubMed] [Google Scholar]
  31. VIDAVER G. A. GLYCINE TRANSPORT BY HEMOLYZED AND RESTORED PIGEON RED CELLS. Biochemistry. 1964 Jun;3:795–799. doi: 10.1021/bi00894a011. [DOI] [PubMed] [Google Scholar]
  32. VIDAVER G. A. TRANSPORT OF GLYCINE BY PIGEON RED CELLS. Biochemistry. 1964 May;3:662–667. doi: 10.1021/bi00893a011. [DOI] [PubMed] [Google Scholar]
  33. WEINSTEIN S. W., HEMPLING H. G. THE EFFECT OF COENZYME Q0 ON POTASSIUM TRANSPORT IN THE EHRLICH ASCITES-TUMOR CELL. Biochim Biophys Acta. 1964 Mar 30;79:329–336. [PubMed] [Google Scholar]
  34. Wheeler K. P., Inui Y., Hollenberg P. F., Eavenson E., Christensen H. N. Relation of amino acid transport to sodium-ion concentration. Biochim Biophys Acta. 1965 Nov 29;109(2):620–622. doi: 10.1016/0926-6585(65)90191-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES